Subversive Architecture Overview
Table of contents

2Subversive modules

3Subversive architecture

4Sample of Subversive Core API usage

7The Command Framework functionality

9Extension points

9The Subversive Core extension points

10The Subversive UI extension points

Subversive modules

There are two main plug-ins in the Subversive project: Core and UI. Additionally the Subversive distribution contains two SVN Connector plug-ins: native – JavaHL and pure Java implementation – SVN Kit. As you can see from the Picture 1 contributors may implement their own SVN Connector Library plug-ins and Subversive will use them automatically after its installation into the Eclipse IDE. Also Subversive provides reuse abilities to the external plug-ins designed for automated or interactive work.

[image: image1]
Picture 1 Subversive modules diagram
Subversive Core module provides flexible and easy to use API which allows user to interact with all SVN functionality in simple and similar way. At the same time interface simplicity does not make performance impact and user is able to build powerful and high-performance applications on top of the Subversive Core base. Subversive Core is tested in the headless environment and is a solid ground for creation of automated applications.

Subversive UI module is stabile and usable. Most significant benefits are:

· Usability optimizations (pop-up menu enablement’s, controls layout etc.)

· Detailed description on each UI form

· “On the fly” data validation in dialogs and wizards

· Eclipse IDE-like style

· Extensibility

Last benefit allows users create their own UI extensions for the Subversive. Such extensions can be tracker integrations or any other application that require SVN connector base. Additionally the Subversive UI has several extension points which allows contribute into:

· Synchronize View actions
· Checkout action
· Share Project action
· Commit action
· Resources decoration
· History View multi-line comment
· Error reporting
This list can be extended. Comments and suggestions from community regarding enhancement of the Subversive integration abilities, creation new extension points and API’s, are welcome.

Subversive architecture

The Subversive project architecture follows to several important requirements for both – UI and Core modules:

· Precise separating of UI and Core parts

· Unified error handling

· Failure tolerance

· Conceptual integrity of API

· Strong API levels delimitation

· Easy API extensibility

[image: image2]
Picture 2 Subversive architecture diagram
Core plug-in has two API levels – user-level and low-level. First is most frequently used API level and it is based on the low-level API.

User-level API contains following parts:

· Command Framework designed correspondingly to “Command Pattern” concept. It allows user to perform any complex interactions with Subversion and Eclipse Platform in performance-optimal and easy way. Command Framework already contains command implementations for all frequently used cases of interaction with Subversion, checked out projects and Eclipse Platform. The Command Framework allows reducing “copy-paste”-technique usage and providing fast development with minimal efforts. All provided commands can be fully reused in external tools without any limitations
· SVN Resource Model allows building of local and repository resource hierarchies and provide command framework with all required information in one standard way
· Execution Framework allows running all commands in the similar way. Its background implementation is responsible for automated resource locking rules calculation and error handling
· Execution Engine API is set of classes and interfaces that hides from user how background implementation serves a Commands execution

· Error Handling mechanism provided by Subversive Core allows user to build applications with high failure tolerance: one failed command does not prevent other commands from execution if it is required. Moreover, commands itself can be recovered from errors, for example: Commit Command commits resources to all repositories that are available and skip all resources that cannot be committed; all information about committed and uncommitted resources is provided to the caller level.
Low-level API allows user to build Command Framework extensions in order to handle some rarely used or application-specific cases.

The Subversive UI extends Command and Execution Frameworks with UI specific features most of which can be reused by depended projects. Additionally Subversive UI provides powerful and flexible Data Validation Framework for dialogs and wizards. Provided extension points allow reorganizing the Subversive UI functionality in some critical cases. For example “Error Reporting” extension point allows redirect bug reporting into application specific mailing list.
UI plug-in extends Core functionality with several UI-specific features:

· UI Execution Extensions: enhance error handling in order to distinguish errors by severity, show errors to user and propose sending of bug reports to plug-in developers, connect progress monitoring to Eclipse Platform UI

· UI Command Extensions include commands that required interaction with Eclipse Platform UI.
The Subversive architecture overview shows how the project structure corresponds to requirements. First of all both modules – Core and UI – are strongly separated and Core module is fully functional and allows user to build automated applications. Unified error handling mechanisms provided by Execution Framework allows improving of the Subversive project failure tolerance. API concept allows easy extending without mixing of different API levels in the same code.
Sample of Subversive Core API usage
On the Picture 3 you can see flow of calls that is required from user in order to update resources to latest revision in background execution thread. And next – Code Sample 1, Code Sample 2 – are samples how it looks in the code.

[image: image3]
Picture 3 Update flow sequence diagram
Code Sample 1 Subversive UpdateAction class implementation

	public class UpdateAction extends AbstractRecursiveTeamAction {

public UpdateAction() {

super();

}

public void run(IAction action) {

IResource []resources = UnacceptableOperationNotificator.

shrinkResourcesWithNotOnRespositoryParents(

this.getShell(), this.getSelectedResources(IStateFilter.SF_ONREPOSITORY));

if (resources == null || resources.length == 0) {

return;

}

this.runScheduled(UpdateAction.getUpdateOperation(this.getShell(), resources));

}

protected boolean isEnabled() throws TeamException {

return this.getSelectedResources(IStateFilter.SF_ONREPOSITORY).length > 0;

}

public static CompositeOperation getUpdateOperation(Shell shell, IResource []updateSet) {

final DetectDeletedProjectsOperation detectOp = new DetectDeletedProjectsOperation(updateSet);

final UpdateOperation mainOp = new UpdateOperation(detectOp, true);

IResourceProvider refreshProvider = new IResourceProvider() {

public IResource []getResources() {

HashSet fullSet = new HashSet(Arrays.asList(mainOp.getResources()));

fullSet.addAll(Arrays.asList(detectOp.getDeleted()));

return (IResource [])fullSet.toArray(new IResource[fullSet.size()]);

}

};

CompositeOperation op = new CompositeOperation(mainOp.getOperationName());

op.add(detectOp);

SaveProjectMetaOperation saveOp = new SaveProjectMetaOperation(detectOp);

op.add(saveOp);

op.add(mainOp);

op.add(new RestoreProjectMetaOperation(saveOp));

op.add(new ProcessDeletedProjectsOperation(detectOp));

op.add(new ClearUpdateStatusesOperation(refreshProvider));

op.add(new RefreshResourcesOperation(refreshProvider));

op.add(new NotifyUnresolvedConflictOperation(shell, mainOp));

return op;

}

}

As you can see the UpdateAction class implementation is more complex in compare with the sequence diagram because it supports more functionality — detecting projects, that is deleted on repository, saving Eclipse IDE meta-information in order to prevent problems when something like “.project” is deleted on repository.

In general case it is not required for programmer to implement his own commands and work with SVN Client Library API. Nevertheless programmer can create own commands using SVN Client Library API – it also easy. The command implementation does not requires from programmer any additional actions (like integral resource locking policies calculation for all commands, interfaces that allows data transmitting between commands, error handling and crash recovery support) except of freeing of allocated resources in finally section.
Code Sample 2 Command implementation

	public class ExportOperation extends AbstractRepositoryOperation {

protected String path;

public ExportOperation(IRepositoryResource resource, String path) {

super("Export", new IRepositoryResource[] {resource});

this.path = path;

}

protected void runImpl(IProgressMonitor monitor) throws Exception {

IRepositoryResource resource = this.operableData()[0];

IRepositoryLocation location = resource.getRepositoryLocation();

ISVNClientWrapper proxy = location.acquireSVNProxy();

try {

String path = this.path + "/" + resource.getName();

proxy.doExport(

SVNUtility.getEntryRevisionReference(resource),

path,

null,

Depth.INFINITY,

ISVNConnector.Options.FORCE,

new SVNProgressMonitor(this, monitor, null));

}

finally {

location.releaseSVNProxy(proxy);

}

}

protected String getShortErrorMessage(Throwable t) {

return "Export operation for '" + this.operableData()[0].getUrl() + "' failed.";

}

}

The Command Framework functionality
The Command Framework totally contains 89 commands which are presents in three subsets:

· Execution Framework Part (2)

· Core Command Framework (60)

· UI Command Extensions (17)

The Core Commands cover all SVN functionality used in Subversive and it can be fully reused without any restrictions. Most UI Commands are designed for interactive cases. So, they cannot be used in automated processing. Execution Framework Commands, like LoggedOperation and CompositeOperation, are responsible for error handling and resource locking rules calculation.
	Command
	Description

	Execution Framework Part (2)

	LoggedOperation
	Allows safely write errors to log

	CompositeOperation
	Provides the way to combine different operations

	Core Command Framework (60)

	SaveProjectMetaOperation
	Saves project meta (.project and .classpath) in order to prevent project refresh problem when meta is deleted

	RestoreProjectMetaOperation
	Restores project meta (.project and .classpath) in order to prevent project refresh problem when meta is deleted

	ShareProjectOperation
	Shares the project from scratch

	ReconnectProjectOperation
	Reconnects the projects with existing SVN meta-information

	DisconnectOperation
	Disconnects the projects with or without deletion of SVN meta-information

	CheckoutOperation
	Checkout set of projects into workspace

	CheckoutAsOperation
	Checkout project into specified location with specified set of options

	ObtainProjectNameOperation
	Request real project name for the project in SVN repository

	CommitOperation
	Commit resources

	JavaHLMergeOperation
	Merge resources in standard way

	MergeOperation
	Interactive merge implementation

	MergeStatusOperation
	Interactive merge implementation

	UpdateOperation
	Update resources

	AddToSVNIgnoreOperation
	Add resources to svn:ignore

	AddToSVNOperation
	Add resources to source control

	LockOperation
	Lock resources

	UnlockOperation
	Unlock resources

	RevertOperation
	Revert modifications

	MarkAsMergedOperation
	Mark conflicts as resolved

	RemoveNonVersionedResourcesOperation
	Remove any non-versioned resources starting from the level specified

	SwitchOperation
	Switch project to new URL

	GetPropertiesOperation
	Get all resource properties

	SetPropertyOperation
	Set resource property

	RemovePropertyOperation
	Remove resource property

	GetAllResourcesOperation
	Get all resources for the specified local folder including deleted, missing etc.

	DetectDeletedProjectsOperation
	Detect which projects are deleted on repository (the deleted projects cannot be processed in normal way)

	SaveRepositoryLocationsOperation
	Save Subversive meta-information changes

	DiscardRepositoryLocationsOperation
	Remove specified repository locations from the Subversive meta-information

	AddRepositoryLocationOperation
	Add repository location to the Subversive meta-information

	AddRevisionLinkOperation
	Create revision links in the Subversive meta-information

	RemoteStatusOperation
	Update status for the specified resources

	InfoOperation
	Retrieve Info2 structure for the specified resource

	RelocateWorkingCopyOperation
	Relocate working copy

	CreatePatchOperation
	Create patch based on working copy changes

	RefreshResourcesOperation
	Refresh workspace tree and send internal Subversive resource modification events

	NotifyProjectStatesChangedOperation
	Send internal Subversive notification when project state is changed (shared, disconnected, opened, closed etc.)

	GetRemoteContentsOperation
	Get remote file or folder contents into specified folder overriding existing files

	GetFileContentOperation
	Fetch remote file content from SVN

	GetLocalFileContentOperation
	Fetch local file content from SVN (BASE or WORKING revisions)

	CleanupOperation
	Cleanup working copy after power loss or other failure

	ClearLocalStatusesOperation
	Refresh status cache for the specified resources

	MoveResourceOperation
	Move resources between folders in one/different working copy/copies saving the history

	CopyResourceWithHistoryOperation
	Copy resources between folders in one/different working copy/copies saving the history

	CopyResourceOperation
	Copy resources without saving history

	DeleteResourceOperation
	Delete versioned resources

	RenameResourceOperation
	Move resource from one URL to another

	LocateProjectsOperation
	Find Eclipse projects on repository

	ImportOperation
	Import specified folder into repository

	GetResourceAnnotationOperation
	Get annotation for the specified resource

	GetRemotePropertiesOperation
	Get properties for the resource on repository

	GetLogMessagesOperation
	Get resource modification history

	ExportOperation
	Export repository resource into specified local folder

	DeleteResourcesOperation
	Delete resources directly from repository

	CreatePatchOperation (remote)
	Create patch bases on difference between revisions

	CreateFolderOperation
	Create set of folders at any depth on the repository

	CreateFileOperation
	Create file directly on the repository with specified initial content

	BreakLockOperation
	Unlock resource directly on the repository

	BranchTagOperation
	Create branch or tag

	CopyResourcesOperation (remote)
	Copy resources to specified URL

	MoveResourcesOperation (remote)
	Move resources to specified URL

	UI Command Extensions (17)

	UILoggedOperation
	UI extension of LoggedOperation, show errors to user and propose to send bug report in case of internal failures

	ShowUpdateViewOperation
	Show synchronize view

	ShowPropertiesOperation
	Show properties view

	ShowMergeViewOperation
	Show interactive Merge View

	ShowHistoryViewOperation
	Show history view

	ShowConflictEditorOperation
	Show conflicted files editor (for resources update by external tools)

	RemoteShowAnnotationOperation
	Show annotation for repository resource

	RefreshRepositoryLocationsOperation
	Refresh repository browsing view

	RefreshRemoteResourcesOperation
	Refresh repository resources in the repository browsing view

	ProcessDeletedProjectsOperation
	Notify user about deleted projects and request his decision

	PrepareRemoteResourcesTransferrableOperation
	Insert references to repository resources into clipboard

	PasteRemoteResourcesOperation
	Paste repository resources from clipboard into selected location

	OpenRemoteFileOperation
	Open remote file in its default viewer

	ObtainProjectNameOperation
	Fetch project name from .project file placed in repository

	NotifyUnresolvedConflictOperation
	Notify user about unresolved conflicts in time of updating/committing resources

	MoveProjectsToWorkingSetOperation
	Adds specified projects to specified working set

	LocalShowAnnotationOperation
	Show annotation for local resource

	FileToClipboardOperation
	Places file content into clipboard

	ClearUpdateStatusesOperation
	Clear update statuses cached in Synchronize View

	ClearMergeStatusesOperation (experimental)
	Clear merge statuses cached in interactive Merge View

	CompareResourcesOperation
	Three-way compare of working copy resources with the selected revision and show the result in compare viewer

	CompareRepositoryResourcesOperation
	Two-way compare of the repository resources with specified revisions and show the result in compare viewer

Extension points

The Subversive project provides several extension points:
· Core extensions
1. SVN Connector Factory
2. Resource Ignores Recommendations
3. Crash Recovery

4. Core Configuration Options

· UI extensions
1. Bug or Tip Reporter Factory

2. Product Reporting Descriptor
3. Checkout Interceptor
4. Commit Interceptor

5. Decoration Filter
6. Multi-line Comments in History
7. Share Project Wizard

8. Synchronize View Actions Contribution

An interface of the core extensions is full-featured and enough flexible from our point of view. It covers most possible integration aspects and can be treated as stable.
UI extensions are subjects of further discussions and we will very appreciate to community for any ideas on how to improve them.

The Subversive Core extension points

· “SVN Connector Factory” extension point allows contributors to implement alternative SVN client library support. The extension should implement following interface:
Interface 1 “SVN Connector Factory” extension point

	public interface ISVNConnectorFactory {

public static final String DEFAULT_ID = "org.eclipse.team.svn.connector.svnkit";

public static final String CURRENT_COMPATIBILITY_VERSION = "0.7.0.v20080214";

/**

 * Enumeration of connector API compatibility levels

 */

public static class APICompatibility {

/**

 * Compatibility level for the connector library is not specified

 */

public static final int SVNAPI_NOT_SPECIFIED = -1;

/**

 * SVN 1.0 compatible API is supported by the connector

 */

public static final int SVNAPI_1_0_x = 0;

/**

 * SVN 1.1 compatible API is supported by the connector

 */

public static final int SVNAPI_1_1_x = 1;

/**

 * SVN 1.2 compatible API is supported by the connector

 */

public static final int SVNAPI_1_2_x = 2;

/**

 * SVN 1.3 compatible API is supported by the connector

 */

public static final int SVNAPI_1_3_x = 3;

/**

 * SVN 1.4 compatible API is supported by the connector

 */

public static final int SVNAPI_1_4_x = 4;

/**

 * SVN 1.5 compatible API is supported by the connector

 */

public static final int SVNAPI_1_5_x = 5;

}

/**

 * Enumeration of optional feature masks

 */

public static class OptionalFeatures {

/**

 * No optional features supported

 */

public static final int NO_OPTIONAL_FEATURES = 0;

/**

 * All optional features supported

 */

public static final int ALL_OPTIONAL_FEATURES = ~NO_OPTIONAL_FEATURES;

/**

 * Direct SSH settings specification is supported by connector

 */

public static final int SSH_SETTINGS = 0x01;

/**

 * Direct PROXY settings specification is supported by connector

 */

public static final int PROXY_SETTINGS = 0x02;

/**

 * Atomic cross-working copy commit is supported by connector

 */

public static final int ATOMIC_X_COMMIT = 0x04;

}

public static final ISVNConnectorFactory EMPTY = new ISVNConnectorFactory() {

public ISVNConnector newInstance() {

throw new UnreportableException(this.getName());

}

public int getSupportedFeatures() {

return OptionalFeatures.NO_OPTIONAL_FEATURES;

}

public String getVersion() {

return "";

}

public String getName() {

return SVNTeamPlugin.instance().getResource(this.getId());

}

public String getId() {

return "Error.NoSVNClient";

}

public String getCompatibilityVersion() {

return ISVNConnectorFactory.CURRENT_COMPATIBILITY_VERSION;

}

public String getClientVersion() {

return "";

}

public int getSVNAPIVersion() {

return APICompatibility.SVNAPI_NOT_SPECIFIED;

}

};

/**

 * Makes new SVN Client Library instance

 * @return SVN Client Library instance

 */

public ISVNConnector newInstance();

/**

 * Returns unique SVN Client library plug-in id

 * @return SVN Client library plug-in id

 */

public String getId();

/**

 * Returns user-friendly SVN Client library plug-in name

 * @return SVN Client library plug-in name

 */

public String getName();

/**

 * Returns SVN Client library plug-in version

 * @return plug-in version

 */

public String getVersion();

/**

 * Returns SVN Client library plug-in API compatibility version

 * @return plug-in version

 */

public String getCompatibilityVersion();

/**

 * Returns SVN Client library version

 * @return connector version

 */

public String getClientVersion();

/**

 * Returns supported optional features set

 * @return supported optional features set

 */

public int getSupportedFeatures();

/**

 * Tell which SVN API version supported

 * @return API version Id

 */

public int getSVNAPIVersion();

}

ISVNConnector interface design, which instances is returned by ISVNConnectorFactory.newInstace() method, allows to reduce quantity of incompatible changes introduced by future Subversion versions support and allows to hide specific of the SVN client library used by concrete SVN Connector implementation from the Subversive Core module.
The Subversive project uses some specific features provided by SVN Kit library, at the same time the features are unsupported by current implementation of the native JavaHL library. In general case an arbitrary SVN Connector plug-in may provide partial support of extended features. So, we have the compatibility problem with the Subversive-specific features. Subversive architecture allows solving the problem in simple way. All compatibility settings are provided by each SVN Client Library plug-in through ISVNConnectorFactory interface.

If a SVN Connector plug-in does not support extended features it reflects on the Subversive functionality like described below:

· The “Cross WC atomic commit” feature implementation is completely transparent for end users who are used the Subversive and for programmers who are used the Subversive API. One little difference is non-atomic revision numbers in case when feature is inaccessible
· Compare folders is inaccessible if supported API version before SVNAPI_1_5_x
· SSH and Proxy settings is inaccessible

· Locks decoration for repository resources is inaccessible if supported API version before SVNAPI_1_5_x
· “Resource Ignores Recommendations” allows automatic ignoring of specific resources.
Interface 2 “Resource Ignores Recommendations” extension point
	public interface IIgnoreRecommendations {

/**

 * Tells if the given resource can be processed by recommendation provider

 * @param resource resource to be processed

 * @return true if and only if the given resource can be processed by recommendation provider

 * @throws CoreException

 */

public boolean isAcceptableNature(IResource resource) throws CoreException;

/**

 * Tells if ignore is recommended for the given resource

 * @param resource resource to be processed

 * @return true if and only if ignore is recommended for the given resource

 * @throws CoreException

 */

public boolean isIgnoreRecommended(IResource resource) throws CoreException;

/**

 * Tells if resource is autogenerated output

 * @param resource resource to be processed

 * @return true if and only if resource is autogenerated output

 * @throws CoreException

 */

public boolean isOutput(IResource resource) throws CoreException;

}

· “Crash Recovery” allows core to recover from errors which cannot be processed without knowledge about external context

Interface 3 “Crash Recovery” extension point
	public interface IResolutionHelper {

/**

 * The method provides resolution for errors about it is known

 * @param description structure which describes the error happened

 */

public boolean acquireResolution(ErrorDescription description);

}

· “Core Configuration Options” allows to configure Subversive core module at startup

Interface 4 “Core Configuration Options” extension point
	public interface IOptionProvider {

public static final IOptionProvider DEFAULT = new IOptionProvider() {

public ISVNCredentialsPrompt getCredentialsPrompt() {

return null;

}

public ILoggedOperationFactory getLoggedOperationFactory() {

return ILoggedOperationFactory.DEFAULT;

}

public void addProjectSetCapabilityProcessing(CompositeOperation op) {

}

public boolean isAutomaticProjectShareEnabled() {

return false;

}

public FileModificationValidator getFileModificationValidator() {

return null;

}

public boolean isSVNCacheEnabled() {

return true;

}

public String getSVNConnectorId() {

return ISVNConnectorFactory.DEFAULT_ID;

}

public String getDefaultBranchesName() {

return "branches";

}

public String getDefaultTagsName() {

return "tags";

}

public String getDefaultTrunkName() {

return "trunk";

}

public SVNProperty[] getAutomaticProperties(String template) {

return new SVNProperty[0];

}

public String getResource(String key) {

return SVNTeamPlugin.instance().getResource(key);

}

};

/**

 * Returns read-only files modification validator

 * @return read-only files modification validator

 */

public FileModificationValidator getFileModificationValidator();

/**

 * Provides credentials prompt call-back

 * @return credentials prompt call-back

 */

public ISVNCredentialsPrompt getCredentialsPrompt();

/**

 * Provide logged operation factory which allows to override exceptions handling

 * @return logged operation factory instance

 */

public ILoggedOperationFactory getLoggedOperationFactory();

/**

 * Installs additional handlers into project set processing workflow

 * @param op project set processing workflow

 */

public void addProjectSetCapabilityProcessing(CompositeOperation op);

/**

 * Returns <code>true</code> if auto-share is enabled

 * @return <code>true</code> if auto-share is enabled, false otherwise

 */

public boolean isAutomaticProjectShareEnabled();

/**

 * Returns preferred SVN connector plug-in id

 * @return preferred SVN connector plug-in id

 */

public String getSVNConnectorId();

/**

 * Returns set of automatic properties

 * @param template resource name template

 * @return set of properties

 */

public SVNProperty[] getAutomaticProperties(String template);

/**

 * Tells if SVN meta-information cache is enabled

 * @return <code>true</code> if cache is enabled, <code>false</code> otherwise

 */

public boolean isSVNCacheEnabled();

/**

 * Returns default trunk name

 * @return default trunk name

 */

public String getDefaultTrunkName();

/**

 * Returns default branches name

 * @return default branches name

 */

public String getDefaultBranchesName();

/**

 * Returns default tags name

 * @return default tags name

 */

public String getDefaultTagsName();

/**

 * Provides access to internationalization strings

 * @return nationalized value

 */

public String getResource(String key);

}

The Subversive UI extension points

The Subversive UI plug-in provides a set of different extension points:
· “Bug or Tip Reporter Factory” extension point provides custom report handling mechanism. Concrete implementation, for example, can provide ability to send reports through e-mail or post them through Web-based interface. Default Subversive implementation based on the reporting abilities of the Mylyn plug-in.
Interface 5 “Bug or Tip Reporter Factory” extension point

	public interface IReporterFactory {

/**

 * Enumeration of available report types

 */

public enum ReportType {

BUG, TIP

}

/**

 * Returns <code>true</code> if report could be edited in the custom feature-reach editor

 * @return <code>true</code> if the custom editor is supported by reporter

 */

public boolean isCustomEditorSupported();

/**

 * Create new issue reporter instance based on {@link IReportingDescriptor} descriptor

 *

 * @param settings

 * tracker settings descriptor

 * @return new issue reporter instance or <code>null</code>

 */

public IReporter newReporter(IReportingDescriptor settings, ReportType type);

}

· “Product Reporting Descriptor” extension point provides information about the product which can be used by reporter factory in order to send reports to tracking system..
Interface 6 “Product Reporting Descriptor” extension point

	public interface IReportingDescriptor {

/**

 * Returns report addressee

 *

 * @return report addressee

 */

public String getEmailTo();

/**

 * Returns report sender

 *

 * @return report sender

 */

public String getEmailFrom();

/**

 * Returns mail server host

 *

 * @return mail server host

 */

public String getHost();

/**

 * Returns mail server port

 *

 * @return mail server port

 */

public String getPort();

/**

 * Returns plug-in name

 *

 * @return plug-in name

 */

public String getProductName();

/**

 * Returns plug-in version

 *

 * @return plug-in version

 */

public String getProductVersion();

/**

 * Returns the product tracker URL.

 *

 * @return the product tracker URL

 */

public String getTrackerUrl();

/**

 * Returns <code>true</code> if a bug tracker supports HTML in reports

 *

 * @return <code>true</code> if tracker supports HTML in reports

 */

public boolean isTrackerSupportsHTML();

}

 “Synchronize View Action Contributions” extension point allows adding of custom actions into the Subversive project Synchronize View
Interface 7 “Synchronize View Action Contributions” extension point

	public interface ISynchronizeViewActionContributor {

/**

 * This method returns synchronize view action contributions for update mode

 * @return collection of AbstractSynchronizeActionGroup

 */

public Collection getUpdateContributions();

/**

 * This method returns synchronize view action contributions for merge mode

 * @return collection of AbstractSynchronizeActionGroup

 */

public Collection getMergeContributions();

}

· “Share Project Wizard” extension point allows overriding of the default Subversive project behavior while sharing the project.
Interface 8 “Share Project Wizard” extension point

	public interface IShareProjectFactory {

/**

 * The method provides ShareProjectWizard page with some extended options in compare to default Subversive implementation

 * @param project the project which will be shared

 * @return wizard page

 */

public SelectProjectNamePage getProjectLayoutPage(IProject project);

/**

 * Allows to override default Subversive behavior while sharing the project

 * @param project the project which will be shared

 * @param location the repository location which will be used in order to share the project

 * @param page advanced share project configuration page

 * @return share project operation implementation which overrides default Subversive behavior

 */

public ShareProjectOperation getShareProjectOperation(IProject project, IRepositoryLocation location, SelectProjectNamePage page);

/**

 * Force disablement of the finish button on the "Already Connected" page

 * @return true if should be disallowed

 */

public boolean disallowFinishOnAlreadyConnected();

/**

 * Force disablement of the finish button on the "Add Repository Location" page

 * @return true if should be disallowed

 */

public boolean disallowFinishOnAddRepositoryLocation();

/**

 * Force disablement of the finish button on the "Select Repository Location" page

 * @return true if should be disallowed

 */

public boolean disallowFinishOnSelectRepositoryLocation();

}

· “Multi-line Comments in History” extension point allows replacement of the default Subversive multi-line viewer implementation to more powerful which, for example, provides hyperlinks in comments etc.
Interface 9 “Multi-line Comments in History” extension point

	public interface IHistoryViewFactory {

/**

 * Returns project-specific multi-line comment view implementation

 * @return project-specific multi-line comment view implementation

 */

public ICommentView getCommentView();

}

· “Checkout” extension point allows performing of some non-standard actions with projects which will be checked out by the product that contributes the Subversive project.

Interface 10 “Multi-line Comments in History” extension point

	public interface ICheckoutFactory {

/**

 * The method allows specific decorations for the projects in Checkout As wizard

 * @param name2resources mapping between proposed project names and repository resources that is referenced

 * to corresponding projects on repository

 * @return table decorator

 */

public ITableLabelProvider getLabelProvider(Map name2resources);

/**

 * The method provides specific filter allowing automated detection of the projects on repository

 * @return repository resource filter

 */

public LocateProjectsOperation.ILocateFilter getLocateFilter();

/**

 * The method allows override the default Subversive project Checkout Operation behavior with specific one

 * @param shell the Shell instance that will be used to interact with user

 * @param remote resources that will be checked out

 * @param checkoutMap project names mapping

 * @param respectHierarchy create locally folder structure that corresponds to repository projects layout

 * @param location destination folder

 * @param checkoutRecursively true if recursive checkout is required, false otherwise

 * @return alternative Checkout Operation instance

 */

public IActionOperation getCheckoutOperation(Shell shell, IRepositoryResource []remote,

Map checkoutMap, boolean respectHierarchy, String location, boolean checkoutRecursively);

/**

 * The method allows correction of the automatically proposed project name mapping

 * @param name2resources automatically proposed project name mapping

 * @return corrected project name mapping

 */

public Map prepareName2resources(Map name2resources);

/**

 * The method allows providing of some additional processing for the projects found on repository

 * @param op default locate projects operation

 * @param provider found repository resource provider

 * @return additional resources provider

 */

public IRepositoryResourceProvider additionalProcessing(CompositeOperation op, IRepositoryResourceProvider provider);

}

· “Commit” extension point allows overriding the standard Subversive Commit Dialog with more powerful and performing additional tasks for the committed resources.
Interface 11 “Commit” extension point

	public interface ICommitActionFactory {

/**

 * The method provide abilities in extending of the standard Subversive Commit Dialog to more powerful

 * @param shell Shell instance which will be used to interact with user

 * @param allFilesToCommit full set of files which will be committed

 * @param panel the default Subversive Commit Panel implementation

 * @return enahanced Commit Dialog

 */

public ICommitDialog getCommitDialog(Shell shell, Collection allFilesToCommit, ICommentDialogPanel panel);

/**

 * The method allows customizing of the Commit Operation

 * @param operation prepared Commit operation

 * @param revisionProvider committed revision provider

 * @param dependsOn dependencies which can prevent commit operation execution in case of failure

 * @param part workbench part which will be used to interact with user

 */

public void performAfterCommitTasks(CompositeOperation operation, IRevisionProvider revisionProvider,

IActionOperation[] dependsOn, IWorkbenchPart part);

}

· “Decoration filter” extension point allows to switch off decoration for specific resources.
Interface 12 “Decoration Filter” extension point

	public interface IDecorationFilter {

/**

 * Returns <code>false</code> if resource should not be decorated

 * @param resource resource which is about to be decorated

 * @return <code>false</code> if resource should not be decorated, <code>true</code> otherwise

 */

public boolean isAcceptable(IResource resource);

}

SVN Team Core Plug-in

SVN Team UI Plug-in

JavaHL Connector �Plug-in

SVN Kit Connector �Plug-in

SVN Connector extension point

Core API

UI extension points/UI API

Execution Framework

Error Handling

SVN Connector API

Command Framework

SVN Resource Model

SVN Resource Model Impl

SVN Team Core Plug-in

SVN Team UI Plug-in

UI Execution Extensions

UI Command Extensions

Views, Dialogs and Actions

Add(RefreshResourcesOperation)

Add(ClearUpdateStatusesOperation)

Add(UpdateOperation)

CompositeOperation

External Connector Plug-ins

Background Update Operation Flow

External Plug-ins

Client

<Executed By>

<Uses>

Eclipse Platform Team Services

Execution Engine API

External Plug-ins

Legend:

Internal Implementation

Low-level API

User-level API

ProgressMonitorUtility

doTaskScheduled(CompositeOperation)

getSchedulingRule()

calculateSchedulingRule()

<Return calculated rule> [from call delegation]

IOptionProvider

getLoggedOperationFactory()

ILoggedFactory

getLogged(operation)

IActionOperation

getSchedulingRule() [call delegation]

<Return calculated rule>

run()

run() [call delegation]

Run all children

Handle errors

Legend:

Internal services

User-required actions

PAGE
	

	Subversive Architecture Overview
	Page 2 of 15

