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Abstract—Most Conventional traffic light control (TLC) tech-
niques do not provide enough efficiency to control dynamic
traffic situations in real-time. Recently, DQN (Deep Q Network)
algorithm is considered for TLC at the intersection because
of its optimization technique for complex problems, where key
features of the intersection traffic, such as vehicle positions and
velocities, are obtained from the intersection by the camera
installed at well above the ground. However, the general DQN-
based TLC algorithms have failed to utilize the fact that vehicle
trajectories are continuous, which can be very useful in sensing
real-time traffic. To utilize the continuous vehicle motion for
TLC improvement, we propose DRQN-TLC (Deep Recurrent Q
Network for TLC) algorithm that is based on LSTM (Long-
Short Term Memory) with DQN. The superior performance of
the proposed algorithm is demonstrated with the simulation; the
proposed algorithm reduces the average traveling time by 23%
and the overall vehicle waiting time by 10% when compared
with the general DQN-based TLC algorithm.

I. INTRODUCTION

Traffic congestion causes social costs such as time spent
on the road, unnecessary fuel consumption, environmental
pollution. As the traffic congestion cost increases worldwide
[1], there is a strong demand for efficient traffic congestion
control. Traffic light control (TLC) technique is widely used as
one of the various techniques to reduce the traffic congestion.
Studies [2]–[6] introduced in the literature have calculated the
cycle length of the traffic signal phase in advance based on
the accumulated traffic data. This method may not effectively
cope with dynamic traffic flows in real-time, making TLC
inefficient and leading to greater traffic congestion in some
cases. To resolve this problem, real-time TLC techniques are
studied in order to operate robustly in dynamic traffic flows.
Deep reinforcement learning technique, such as DQN (Deep
Q Network) [7], has gained an increasing attention as an
optimization technique for complex problems such as TLC.
In the TLC with reinforcement learning, the traffic light acts
as an agent and interacts with the intersection environment.

In real intersection environments, various sensors and appro-
priate sensing algorithms are required for TLC agent to acquire
precise state information in real-time. However, in the process
of sensing, there is a probability that the state observation
is incomplete or incorrect due to the error of the sensor and
the sensing algorithm. A recent study in TLC [8]–[10] based
on the CNN (Convolutional Neural Network)-DQN algorithm
assumes perfect sensing and extracts the main features of the
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state without any error. However, this assumption may not
be applied to practice, because sensing can never be perfect
due to the errors. Therefore, it is necessary to cope with
the imperfection of the observed state caused by the sensing
error, so that the agent can select more reliable and efficient
actions. In addition, since the input and output are handled
independently in general DNN (Deep Neural Network), the
TLC techniques [11], [12] can have degraded performance
because of the states with the causal relationship over a long
time in the intersection.

Although CNN and general DNN have limited applicability
to the TLC, we need a neural network for state-action function
approximation, because there are countless states in dynamic
intersection environments. In this paper, we use a recurrent
network as a function approximator to recognize the causal
relationship between the observed states in the intersection,
since the recurrent network can process sequential information.
As shown in Fig. 1, a vehicle trajectory in the intersection is
characterized by a certain order and persistence that can be
predicted in general. Therefore, when the recurrent network
is used to process the state, it can understand the continuous
vehicle motion with the observed state at every time-steps.
In addition, the recurrent network can sufficiently compensate
for the imperfection of the state due to the sensing noise and
errors inevitably occurring in real-world environments.

In this paper, we propose DRQN-TLC (Deep Recurrent
Q Network for Traffic Light Control), which exploits LSTM
[13], a recurrent network, and DQN. The proposed DRQN-
TLC algorithm can analyze the sequential change and find
the vehicle trajectory and motion in the observed states of the
intersection. In this paper, we assume a single camera detector
that can be used as a traffic monitoring camera in practice
to observe the state of the intersection. The state, action,
and reward are defined as the key elements of reinforcement
learning. To define the state, we use three kinds of information
to express key features of the intersection environment: <P, V,
S>, where P, V, and S represent the vehicle presence, vehicle
velocity, and current traffic signal phase state, respectively.
Action is defined as <Keep, Change>, which is to express
whether to ’keep’ the current traffic signal phase or ’change’
to the next traffic signal phase. Reward is defined as the sum of
the presence values (0 or 1) of all vehicles within and around
the intersection. As an outcome of the reinforcement learning,
the agent learns the optimal action policy that minimizes the
total travel time and waiting time of the vehicles.

This paper is organized as follows. In Section II, we
provide a literature review of previous studies in TLC. In
Section III, we define the proposed algorithm model for deep
reinforcement learning. Section IV introduces the proposed
DRQN-TLC. The proposed algorithm is evaluated in Section
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Fig. 1: Trajectory of a vehicle.

V with simulations. And the conclusion is drawn in Section
VI with a discussion of future works.

II. RELATED WORKS

TLC has been a field of research since 1980s. The initial
study was to find the optimum cycle length of traffic lights
to reduce traffic congestion based on the traffic data observed
over a period of time, which are traffic volumes of roads,
average vehicular speeds of roads, and etc. This approach can
be categorized as Adaptive Traffic Control Systems (ATCS).
More than 20 technologies, for example, SCOOT [2], SCATS
[3], OPAC [4], RHODES [5], ACS-Lite [6], have been de-
veloped by 2010 [14]. ATCS analyzes collected traffic data
such as vehicular density for several minutes and set the cycle
length of the traffic light. Since the traffic light is not controlled
simultaneously, there is a time lag between the data collection
and the TLC operation.

In order to resolve this problem, real-time TLC has emerged
as a major topic in the field. It has focused on controlling
the traffic light in real time by setting each intersection
as a decentralized agent. SURTRAC [15] is a decentralized
schedule-driven method using forward dynamic programming.
To ensure real-time performance, large clusters are formed to
reduce the state space. Al Islam and Hajbabaie [16] proposed a
TLC using Mixed Integer Linear Programming (MILP), which
assumes a specific situation such as no yellow/red clearance,
no phase min/max requirement and etc.

With the introduction of deep learning model for reinforce-
ment learning in 2015 [17], DQN has begun to be used
as optimization method in complex environments. In TLC,
which deals with complex traffic environments, reinforcement
learning can effectively reduce traffic congestion. Compared
with the macroscopic multi-agent reinforcement learning stud-
ies [18]–[20], which control the multiple intersections, mi-
croscopic studies have been conducted actively to view the
intersection as a decentralized agent, which makes TLC easy
in real-time.

Wade [8] applied the DQN by limiting the state of the
intersection environment to the discrete position and the
corresponding speed. However, the action that the agent can
choose is simplified to four traffic signal phases, and it can
be changed randomly. It may not be applicable in the real
environments because the actual traffic signal phases change
in a certain order. Mousavi [9] used deep policy-gradient
and value-function based reinforcement learning, where image
snapshot is used as a state. This approach is only applicable
to simulations with snapshots, so it is difficult to apply in
real-world intersection.

Du et al. [10] studied TLC using 3DQN (Double, Dueling,
and Deep Q network) algorithms. However, the MDP(Markov
Decision Process) in [10] requires nine actions even in a
simple lane intersection environment, which may lead mul-
tiple actions for a complex intersection. There is a potential
disadvantage that it does not converge to the optimal action
policy in reinforcement learning, if there are too many actions.
In addition, the up and down of the traffic signal phase duration
is set in units of 5 seconds, and the action is performed once
every 5 seconds to avoid a sudden change, which is inefficient
in real-time.

In this paper, we set the state, action, and reward that
enable convergence to the optimal action policy even in a more
complex environments than environments considered in the
previous studies. Instead of exploiting CNN-based approach,
we propose a new technique direction by applying LSTM so
that the algorithm can understand the certain vehicle motion
in the state at each time-step. In section IV, we will show
that it allows faster convergence to the optimal action policy
and better learning performance than general DQN-based TLC
algorithm.

III. ALGORITHM MODEL

In this section, we define the state, action, and reward used
in the proposed DRQN-TLC algorithm. The key parameters
for the reinforcement learning are described in detail.

A. State

Previous studies for TLC using DQN algorithm have ob-
tained information of intersection using image snapshot from
simulator; An image snapshot is used to determine the ve-
hicle’s occupancy [8]–[10], or the position and velocity of
vehicles are achieved through a grid structure that divides each
traffic lane into cells of a pre-defined size. However, image
snapshots cannot be applied in real intersection environments.
Since various features such as position and velocity of each
vehicle are necessary to describe the intersection traffic sit-
uation, various sensing methods are required to obtain such
information in real intersection environments. Typically, in
order to detect traffic in a real intersection environment from
the viewpoint of a traffic light, a camera and various sensors
can be fused for robust detection [21]. In addition, the key
features of the intersection environment can be extracted by
the sensing method using the latest machine learning detection
technique for the camera image [22].

In the real-world environments, a sensing system extracts
key information of intersection by fusing with traffic camera or
other sensors. The traffic camera at a height of the traffic light
might observe objects within a certain range. In the simulation,
we use traffic camera to derive vehicle presence and velocity
information at the intersection; sensing range is 30m from the
center of the intersection. There are 60 (5x3x4) detecting areas,
the five areas in each of three lanes in North, South, East, and
West directions.

The size of each detecting area for the traffic camera
processing is equal to the maximum pre-defined vehicle length
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Fig. 2: Sequence of traffic signal phase change via the actions.

(5m) and the interval between detecting areas is set to the pre-
defined maximum gap (2m) with the preceding vehicle. The
presence of vehicles on each detecting area is denoted as <0
or 1>, and the vehicle velocity is expressed as a normalized
value, <velocity of the current vehicle / maximum speed limit
in the lane>. Also, it is necessary to perceive the current traffic
signal phase among the 8 possible traffic signal phases because
of our action definition, keep or change the signal phase. As
a conclusion, state is a vector of <P (vehicle presence), V
(normalized velocity of the vehicle), S (current traffic signal
phase)>.

B. Action

In reinforcement learning, the agent selects an optimal ac-
tion according to the observed state. In the proposed algorithm,
<keep, change> is defined as action. For the safety of the
drivers, the traffic signal phase changes according to a pre-
defined sequence used in the real-world TLC system. Agent
determines whether to keep the current traffic signal phase or
to change to the next phase based on the current state.

We set minimum keep duration as Nkeep seconds (Nkeep

= 3 sec in the simulation) for each traffic signal phase. That
is, it maintains the current traffic signal phase at least Nkeep
seconds even the change-action is selected. It is considered
for fairness; there must be no vehicle waiting too much in the
intersection. Furthermore, we set maximum keep duration as
Nstraight (Nstraight = 60 sec in the simulation) for straight
traffic signal phase and Nleft (Nleft = 20 sec in the simulation)
for left-turn traffic signal phase in order to prevent the infinite
increase of the duration of any traffic signal phase. For the
driver’s safety, there must be yellow/red clearance (3 sec in
the simulation) between green traffic signal phases. It provides
enough time to vehicles approaching to the intersection for
deceleration. The sequence of traffic signal phase is shown in
Fig. 2

C. Reward

It is one of the most important factors in the reinforcement
learning to select the reward with appropriate range. It can
be set as plus-reward and minus-reward according to agent’s
action result. The agent learns the optimal action policy
maximizing cumulative rewards from the feedback of the
evaluation on the action conducted by the agent at every time-
step.

Previous studies for TLC using DQN algorithm have also
devised appropriate reward definitions. For example, cumula-
tive delay of all vehicles during the simulation [8] and staying
time of all vehicles during green traffic signal phase [11] can
be considered as reward. In this paper, we set a reward as a
minus reward, sum of the vehicle’s presence value (0 or 1) in
the 60 detecting areas obtained by the traffic camera at each
time-step as shown in equation (1). When the total sum of the
presence values is reduced, the traveling time and the waiting
time of the vehicles decrease. Reward is always a negative
value.

rt = −
60∑
i=1

pi,t (1)

IV. DEEP RECURRENT Q NETWORK FOR TRAFFIC
LIGHT CONTROL

In the studies using DQN algorithm for TLC, CNN is
used for state approximation [8]–[10]. The authors assume
perfect sensing (i.e., no sensor error or sensing algorithm
error) and extract the main features of the observed state in
the intersection using CNN. This assumption is impractical as
there often occur various sensor errors and algorithmic errors
in real environments. To mitigate the effect of these errors, it is
necessary to compensate the state error caused by the sensing,
so that the agent can recognize the state correctly and select
appropriate actions.

The fact that the state feature shown in the Fig. 3 (e.g.
vehicle presence) and other state features (e.g. velocity of the
vehicle and lane occupied by the vehicle) have appeared in
the previous steps is because of a continuous vehicle motion
along a trajectory and those features will also appear in the
next state. In order to exploit the continuous flow (i.e., vehicle
motions) of traffic, it is found useful in this paper to process
the state using a recurrent network that can recognize linked
information over time. In addition, there is a risk of obtaining
incorrect state information due to the errors in the sensing in
practice. However, learning through the recurrent network can
cope with the risk and be robust to those errors for TLC, and
we utilize recurrent network in the proposed algorithm.

As shown in Fig. 4, the network of DRQN-TLC is a
combination of MLP (Multi-Layer Perceptron) structure with
three hidden layers and LSTM. MLP consists of three hidden
layers with 512, 256, and 128 output dimensions respectively,
and ReLU (Rectified Linear Unit) is used for an activation
function. The output of the MLP is the input to the LSTM. The
state S = <P, V, L> observed from the intersection is the input
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Fig. 3: Trajectory of the vehicle at the intersection with presence value.
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Fig. 4: The architecture of DRQN-TLC.

of the proposed algorithm, and the output vector is the number
of actions to approximate the Q-function. In addition, in order
to solve the problem of correlation between samples and non-
stationary target, which is a fundamental problem occurring
in DQN, we exploit the learning method of experience reply
and target network [17].

V. EVALUATION

This section describes the simulation environment for the
proposed DRQN-TLC algorithm performance verification. We
show the performance of the proposed algorithm by improve-
ment of the occupancy rate of vehicles, waiting time of
vehicles, and average running time of all vehicles.

A. Simulation enviroment

To implement the proposed algorithm, we utilize the Keras
and Tensorflow libraries to build a deep learning network,
and the OpenAI-Gym library to build reinforcement learning
environments. Simulation of Urban Mobility (SUMO), which
is an open traffic simulation software that simulates traffic
conditions at an intersection, is used to verify the performance
of the proposed algorithm. SUMO provides several convenient
functions for traffic signal control through the TraCI (Traffic
Control Interface) module. Table. I summarizes the intersec-
tion environment and vehicle parameters considered in this
simulation.

Fig. 5: The intersection area [320m x 160m] for the simulation.

1) Intersection environment: The intersection area consid-
ered in this paper is of size 320m x 160m as shown in Fig. 5
The length of East-West road is 160m and North-South road is
80m. Each road from East/West/North/South comprises three
lanes and each lane allows left turn only, straight ahead only,
and jointly serving right turn and straight, respectively. The
maximum allowed speed of all lanes is limited to 13.89 m/s
(i.e. about 50 km/h).

2) Traffic flow generation: Generation of vehicles entering
the intersection is determined according to the random process
as follows; first, a uniform random number in the range of 0 to
1 is generated at every 1 second. When the random number is
0.5 or more, a vehicle is generated with a probability of 0.1 for
each North-South lane and 0.2 for each of the East-West lane.
In contrast, when it is less than 0.5, the vehicle is created with
a probability of 0.2 for each North-South lane and a probability
of 0.1 for East-West lane. The departure and destination (i.e.
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arrival lane) of the vehicle are the default random value
provided by SUMO. Depending on the probability, the flow
of the vehicle is renewed for every episode. Traffic flow of
each episode are different. Each episode corresponds to 1000
time-steps. In this study, we set up to follow the Krauss-
car following model [23], which avoids collisions between
vehicles and allows safe speeds.

3) Considering real-world vehicular characteristics: Un-
like most vehicle models of the same size and characteristics
used for the previous studies, vehicles of diffrent size travel
simultaneously with their own characteristics on the actual
road. A driver, who cares about safety, keeps a wide distance
from the front car and runs at the appropriate speed or low
speed. Drivers preferring fast move keep a short distance,
and may travel at a maximum speed. In this paper, similar
to the reality, uniformly random vehicle characteristics are
considered within range: length of vehicles 3∼4.5m, minimum
gap between vehicles 1∼2m, maximum speed (40∼50km/h),
acceleration (0.5∼1m/s2), and deceleration (3.5∼5m/s2).

TABLE I: Key parameters of the simulation.

Parameter Value(range)
Road Length 160m(East-West), 80m(North-South)

Available Route Straight, Right-turn, Left-turn
Maximum Speed at Road 50Km/h

Length of Vehicles 3∼4.5m
Minimum Gap between Vehicles 1∼2m

Max Speed 40∼50km/h
Acceleration 0.5∼1m/s2

Deceleration 3.5∼5m/s2

Traffic Flow Generation 0.1/sec or 0.2/sec

B. Simulation result

In order to verify the performance of the proposed DRQN-
TLC algorithm, we analyze the results of the simulation with
three indicators: cumulative reward, average traveling time
of each vehicle, and overall waiting time of vehicles. We
compared with the general DQN-based TLC algorithm that
does not combine with LTSM to verify the performance of
the proposed algorithm. All parameters used in the simulation
are the same in both cases.

1) Cumulative reward: The reward is defined as the total
sum of the vehicles in the current intersection environment,
that is, the sum of the presene values of all vehicles within
the camera observation range at each time-step. Reward uses
a cumulative reward that is accumulated until the end of
an episode. Reward is always negative and learning of the
algorithm proceeds with the goal of converging to zero as close
as possible. The change in reward obtained by simulations
can be confirmed by Fig. 6. The average of 50 episodes is
represented by one epoch, which represents the horizontal-axis
of Fig. 6. The red dotted line shows the change in reward of the
proposed algorithm in this paper, and the blue line shows the
change in reward of the general DQN-based TLC algorithm.
The red dotted line changes steadily to the starting point of
about 12 epoch, but the blue line still shows unstable change.
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Fig. 6: Cumulative reward during all the training epochs.
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Fig. 7: The average traveling time during all the training
epochs.

In addition, we can see that the red dotted line converges to
a higher reward than the blue line in overall change trend.
The reward of the proposed algorithm based on the last epoch
is about -12000 and the reward of the typical DQN-based
algorithm is about -12400. This indicates that the proposed
algorithm optimizes TLC more quickly and stably than the
general DQN-based TLC algorithm.

2) Average traveling time: The performance of the pro-
posed algorithm is analyzed through, the average time for
each vehicle to arrive at its destination, which is found in
Fig. 7. The red dotted line in Fig. 7 shows the average
traveling time change of the vehicles as a result of applying
the proposed algorithm. The blue line shows the average
traveling time of the vehicles using the general DQN-based
TLC algorithm. As shown in Fig. 7, It is confirmed that the
proposed algorithm outperforms the general DQN-based TLC
algorithm. Here, we can see that the average traveling time
of vehicles converges quickly and stably. Also, the general
DQN-based TLC algorithm shows that the average traveling
time of the vehicles reaches the steady state at about 180,000
ms. However, the average traveling time of the proposed
algorithm reaches about 140,000 ms at steady state, which
is the result of 23% reduction. This result shows that our
algorithm can effectively reduce the average traveling time of
vehicles compared to the general DQN-based TLC algorithm.

3) Overall waiting time: We analyze the performance of
the proposed algorithm using the time that the vehicles wait
to pass the intersection. Fig. 8 shows the change in the sum
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Fig. 8: The overall waiting time during all the training epochs.

of the waiting times of all vehicles in each simulation. The
red dotted line shows overall waiting time of the proposed
algorithm. The blue line shows overall waiting time of the
general DQN-based TLC algorithm. Similar to the average
traveling time, the proposed algorithm outperforms the general
DQN-based TLC algorithm in the viewpoint of the overall
waiting time of all vehicles. Based on the last epoch in Fig. 8,
overall waiting time of the vehicles is about 125,000 ms for
the proposed algorithm, and that for the general DQN-based
TLC algorithm is about 140,000 ms. This demonstrates that
when the proposed algorithm is applied, the overall waiting
time of the vehicles is reduced by 10% compared with the
recent techniques.

VI. CONCLUSIONS

In this paper, DRQN-TLC (Deep Recurrent Q Network
for Traffic Light Control) algorithm has been proposed to
solve the traffic congestion problem in the intersection. The
superior performance of the proposed algorithm has been
demonstrated with the simulation. As a result, the proposed
algorithm reduces the overall waiting time of the incoming
vehicles to the intersection by 23% and reduces the average
traveling time of vehicles running through the intersection by
10% when compared with general DQN-based TLC algorithm.
For the future work, we plan to apply empirical sensing errors
or imperfect sensing results in order to develop robust TLC
algorithm useful in practice.
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