
OPEN SOURCE CONTRIBUTIONS AND USING OSGI BUNDLES AT 

DIAMOND LIGHT SOURCE 

M. Gerring, A. Ashton, R. Walton, Diamond Light Source, Oxfordshire, UK 

 

Abstract 

This paper presents the involvement of Diamond Light 

Source (DLS) with the open source community, the 

Eclipse Science Working Group and how DLS is 

changing to share software development effort better 

between groups. The paper explains moving from 

product-based to bundle-based software development 

process which lowers reinvention, increases reuse and 

reduces software development and support costs. This 

paper details specific ways in which DLS are engaging 

with the open source community and changing the way 

that research institutions deliver open source code. 

INTRODUCTION 

Diamond Light Source [1] is a third-generation 3 GeV 

synchrotron light source based on a 24-cell double-bend 

achromatic lattice of 561m circumference. The photon 

output is optimised for high brightness from undulators 

and high flux from multi-pole wigglers. The accelerators 

and first phase of seven photon beamline were 

constructed from 2002 to 2007; a second phase of fifteen 

photon beamlines from 2006 to 2012; and a third phase of 

ten photon beamlines was approved in 2011 with 

construction due to finish in 2017-8. 

  As well as the construction of the synchrotron, the 

early phases of the project saw choices about the software 

which would be deployed on site. For hardware control 

such as motors, the EPICS framework was chosen which 

included a data driven user interface called EDM [2] for 

configuring devices. The acquisition and online data 

analysis system was developed from a product in 

operation at the SRS [3] called GDA [4] previously 

presented at ICALEPCS. 

  Diamond Light Source (DLS) have switched GDA 

(client) and a standalone analysis product called DAWN 

[5] to load using a system called OSGi (Open Service 

Gateway Initiative) [6]. In addition, the EPICS/EDM 

screens are planned to be phased out of active support [7] 

in line with the move to RHEL7. The next generation of 

software for controls and acquisition is based on Eclipse 

Rich Client Platform (RCP). This allows software 

products to be built from OSGi bundles and features to be 

developed which are interoperable between controls, 

acquisition and data analysis software. This paper details 

how DLS interacts with open source technology to deliver 

feature rich, interoperable and reusable software systems 

across groups and in the wider community. 

 

OPEN SOURCE ‘ECOSYSTEM’ 

Eclipse RCP [8] is a software technology which has 

been available for more than a decade. It is used to build 

user interface applications and OSGi servers. DLS are 

utilizing it as a platform to deliver native user interface 

clients.  One of the first RCP clients in production for 

acquisition was on the B18 beamline, presented at 

ICALEPCS 2011 [9]. 

  The Eclipse Foundation is also an open source 

publisher which verifies open source code for intellectual 

property (IP) and software license. Its rigorous IP process 

[10] renders code safe for commercial companies and 

institutions to reuse at reduced risk of litigation. It 

provides a rich open source feature set, similar to that on 

offer by the Apache Foundation. This ‘ecosystem’ of IP 

checked bundles has provided many useful features which 

DLS have been able to reuse within software products. 

  In 2014 DLS proposed an Eclipse project [11] to make 

aspects of its DAWN product open source and IP checked 

by the Eclipse Foundation. This project was granted and 

IP checking is active, nearing completion at the time of 

this conference. 

How Open Source Works 

 The procedure in scientific institutions active in open 

source software release has often been to provide source 

using GNU Public License (GPL). Various mechanisms 

have been used to do this for example: zip file on an ftp 

site, by implementing a web site using a technology such 

as Redmine or by using an open repository site like 

github. These approaches are now considered unsafe 

however because the GPL can force institutions to release 

previously unready or non-public code. More importantly, 

the source code has often not been IP checked before it is 

released. Foundations such as Apache and Eclipse provide 

an IP checking service. The service gives confidence to 

the copyright holder that they have provided something  

for which they have a lower risk of litigation. The source 

code of the software is also more likely safe to be re-used. 

This promotes wider use and contributions from outside 

collaborators. 

ECLIPSE SCIENCE WORKING GROUP 

DLS, Oak Ridge National Laboratory [12] and IBM 

have formed an Eclipse Science Working Group (SWG) 

in conjunction with ten other members ranging from 

small contractors to large commercial companies. The 

SWG members have started projects such as Triquetrum, 

Chemclipse and Integrated Computational Environment 

(ICE), links to which can be found on the web site [13]. 



The SWG also propose projects such as Eclipse Rich 

Beans and Eclipse Advanced Visualization. The SWG are 

working together on interoperable features and to deliver 

novel software solutions. A key area identified to allow 

interoperability has been the description and mathematics 

of n-dimensional data. In order to address this, DLS have 

produced an API of two OSGi bundles. These bundles are 

similar in scope and functionality to numpy [14] for 

python. The SWG have identified data description 

important to making future software features 

interoperable/reusable and propose projects planned to 

reuse this work in other fields. 

SOFTWARE IN BUNDLES 

Traditionally software has been created using designs 

which are non-modular at runtime – all of the program 

has to be in memory for it to run. In the Java world, this 

resulted in long start up times because a large “classpath” 

of jar files (compiled code) had to be resolved while 

software started. 

OSGi bundles make code modular and low 

dependency. They have a feature known as declarative 

services which export functionality to other bundles 

without making hard dependencies. This means that 

software does not have to fully be in memory when it is 

run and so has fast start up times. Without hard 

dependencies, the architecture can load features 

incrementally as they are required by the user. It also 

means that software is made formally modular making it 

easy to reuse within different products because its 

requirements for compilation are low and well defined. 

The declarative services approach results in lower 

software development and support costs. 

  DLS have divided features into OSGi bundles for 

many features, for example: data including nD 

mathematics, file loading including HDF5, plotting and 

visualization, user interface widgets and auto generation, 

communication and devices, interacting with remote data, 

hardware configuration and mathematical processing 

pipelines, see also Table 1. This approach is leading to a 

swap in orientation from developing products to 

developing bundles. Management and support engineers 

are then free to define products based on the needs of the 

synchrotron users, software developers can more easily 

work together on multiple products and features can be 

reused in multiple areas. 

CASE STUDIES 

Data Format 

A first common problem encountered by institutions 

running large experimental physics control, is the format 

in which data is written. Then once data is read into 

memory from a given format, a second problem is that 

data needs to be described in a standard way. Various 

frameworks have existed which deal with these problems 

at different institutions and in different programming 

languages. 

DLS software developers took the approach that the 

details of the file format and the way it is loaded should 

be hidden from the part of software where the data is 

used. An OSGi service was created for loading data 

which supports a wide range of data formats such as 

HDF5 incl. NeXus, CBF, ASCII formats and most 

standard image formats. However it is also extendible in 

the compiled product by users. This is available because 

an extension point in the RCP framework has been 

created whereby the application may be added to after 

compilation and deployment. This approach means that 

any data format can be supported, providing a reader for it 

may be written. 

 
ILoaderService service = …  // OSGi 

File file = new File(…); 

IDataset d = service.getDataset(file, …) 

Snippet 1: Loading data by service 

 

These lines of code read one dataset from a file and 

return an object similar to a numpy array, called IDataset. 

This object is the key to the second problem. (A 

comparison of MATLAB,  numpy and IDataset is 

available in the DAWNSci Project examples.) It means 

that any application, written in Java, can load and share 

the data of multiple formats and create tools which use 

the data. The mathematics of the tools can be reused 

because of the common data format. The user interface 

can also be reused if the chosen platform is SWT. In 

addition a non-RCP application is not precluded from 

using the data layer, including non-OSGi based 

frameworks. The feature is a standard Java ‘jar’ file. 

 

Plotting 

   The ability to plot data and interact with visual tools has 

been designed as an OSGi service. For instance all the 

plot operations, generic tools like peak fitting or 

integration of different regions and science specific tools 

like diffraction experiment ring fitting. This plotting 

service allows a plotting system to be created and data to 

be plotted with the proviso it is described as an IDataset.  

 
IPlottingService ser = …  // OSGi 

IPlottingSystem ps = ser.createPlottingSystem() 

ps.createPlotPart(…) 

ITrace trace = ps.createImageTrace(…) 

trace.setData(d) 

 

// Other config like name, colour map etc. then 

ps.addTrace(trace) 

 

Snippet 2: Plotting an image 

   Visual Tools are available to the user once the plotting 

system has been created, automatically. The plotting 

system comes with a wide range of tools which are 

extendible, again via extension points. The data rank 

plotted is passed to an underlying tool system which 

determines the available tools for that rank, see Figure 1 

and 2. Tools may be chained together. 



 

    

 

   Regions of Interest are supported by the plotting 

system enabling a variety of shapes useful for data 

analysis to be drawn. The region system is integrated with 

the plotting system and uses a standard factory pattern 

(rather than extension points) to define available regions. 

   Multiple Viewers plug into the plotting system, 

contributable by extension point. For instance the system 

abstracts the plotting of lines from that of isosurfaces and 

uses different underlying user interface toolkits, Draw2D 

and JavaFX respectively, to render them.  

   Python Extensibility is supported by the plotting 

system. It is extensible for those that can write Java 

because of the hooks into it by extension point. However 

many users of the applications produced at DLS are not 

familiar with Java. Therefore the plotting system API is 

available to Python programmers via a plotting to python 

link. It is possible to either use simple factory methods for 

plotting numpy ndarrys or to get a reference to the actual 

plotting system Java object and make calls on to it, using 

a technology called py4j [14]. 

   Streaming Data is supported by the plotting system. It 

can be connected to streams and data from remote file 

systems using a feature called Remote Dataset developed 

at DLS and deployed over several bundles. It is based on 

a servlets running in a Jetty server. In this case the data 

object on the client must implement an interface to mark 

it as dynamic and optionally remote. This dataset can be 

an MJPEG stream or a NeXus file on another file system, 

for instance. The plotting system will then update live 

feeds and the tool system is designed to work with live 

data. This works by using the Eclipse Job system to 

complete the tool mathematical operations in a separate 

thread and using a queue. 

   Reuse of the plotting system bundles are in the GDA 

client and DAWN products at DLS. It is also available in 

a product running at ISIS. It is being investigated for use 

with plotting of data from Control System Studio at DLS 

because of features like the tool system, python 

connectivity, streaming and ability to deal with many plot 

viewers. 

 

Malcolm 

   DLS have a prototype project designed to abstract 

configuration and running of devices. The focus of the 

project, called ‘Malcolm’, is to deliver a way to configure 

and run Zebra devices [16]. It exposes a configurable 

device via a port to any client application via objects 

encoded into JSON strings. DLS have created a set of 

OSGi bundles for interacting with Malcolm devices 

which expose them as an OSGi service. 

 

   A State Machine has been designed to control Zebra 

but it also allows any hardware to be integrated. The well-

defined states ensure that a programmer using the device 

has a clear idea of how to drive it, regardless of the details 

of the underlying hardware. 

 
Figure 3: Design of Malcolm state machine 

 

   The service is implemented using a connection to a 

python program which manages sending commands to the 

Zebra device and status to the user of the Malcolm state 

machine. This approach has allowed a software layer to 

sit close to the device and expose a well-defined way of 

using that device so reducing redevelopment of user 

interface and other features for similar devices. 

 
Figure 1: Using a single tool for radial profile 

 
Figure 2: Some of the available tools for 2D data 

IMalcolmService ms = …  // OSGi 

IMalcolmConnection c = ms.createConnection(…) 

IMalcolmDevice device= c.getDevice(…) 

device.configure(…) 

device.run() 

 

Snippet 3: A service to configure devices 



Other Services 

   DLS would like to reuse more services between 

applications and have created more, which it hopes to 

reuse in the future between applications. Some of the 

more important are in Table 1. 

 

Service Description 

Conversion Convert files from any format in which 

can be loaded to any which may be 

written. 

Operation Allows the programmer to create a 

processing pipeline from a large library 

of mathematical operations and run the 

pipeline over large image stacks on 

clusters. 

Persistence Save data, meta-data, masks and regions 

to a persisted NeXus file which can be 

loaded later and reimported. 

Macro A service which maps user interface 

actions with their python equivalent and 

allows the user interface to print macro 

commands into a running terminal while 

using the user interface. 

Expression A service to evaluate expressions. For 

instance the programmer may enter 

string expressions of datasets in 

expression language similar to python 

and evaluate them.  

Table 1: Some useful services available from the 

framework 

CONCLUSION 

   Diamond Light Source software developers have and 

continue to engage with the open source community. Best 

practice for IP checking code and releasing code is being 

adopted to ensure that it can be safely contributed for 

reuse and safely extended by external developers. New 

open source projects have been created which allow 

reusers of software produced at the synchrotron to take 

advantage of features developed. A new Eclipse Science 

Working Group has been formed where new ideas for 

projects and APIs can be discussed and the more 

interesting ones tried out. Many of the internal features 

developed at DLS are being released as bundles which 

contribute services. This is decoupling the software at 

DLS - making it more modular, easier to reuse features 

between applications and cheaper to support. 

 

ACKNOWLEDGEMENT 

   The members of the Eclipse Science Working Group, 

large and small whom have helped create a positive 

environment for discussing and sharing code. Thanks to 

the many contributors to RCP products at DLS, especially 

DAWN and its external contributors. 

REFERENCES 

[1] R. P. Walker, “Commissioning and Status of The 

Diamond Storage Ring”, APAC 2007, Indore, India.  

[2] John Sinclair, “EDM: Extensible Display Manager for 

EPICS”,  USPAS 2003 

[3] V.P. Suller, “Performance of the Daresbury SRS with 

an Increased Brilliance Optic”, EPAC 1988 

[4] Generic Data Acquisition, www.opengda.org 

[5] M. Basham, “Data Analysis WorkbeNch (DAWN)”, J. 

Synchrotron Rad. (2015). 22, 853-858 

[6] O. Alliance, “Osgi service platform, release 3” IOS 

Press, Inc. 2003 

[7] M. Furseman, “Adopting and Adapting Control 

System Studio at Diamond Light Source”, 

ICALEPCS 2015, Melbourne, Australia 

[8] Eclipse - www.eclipse.org 

[9] R. J. Woolliscroft, “Quick EXAFS Experiments Using 

a New GDA Eclipse RCP GUI with EPICS Hardware 

Control”, ICALEPCS 2011, Grenoble, France 

[10] www.eclipse.org/projects/dev_process/ip-process-in-

cartoons.php 

[11] DAWNSci projects.eclipse.org/proposals/dawnsci 

[12] ORNL www.ornl.gov/ 

[13] Eclipse Science Working Group - science.eclipse.org 

[14] NUMPY www.numpy.org 

[15] PY4J www.py4j.org 

[16] T. Cobb, “Zebra: A Flexible Solution for Controlling 

Scanning Experiments”, ICALEPCS 2013, San 

Francisco, USA 


