
DRAFT 03 - Getting Started with EclipseRT

Dec. 11th, 2009
1. DRAFT 03 - Getting Started with EclipseRT ... 1
2. Overview .. 1
3. Desktop Applications .. 1
4. Web Applications .. 2
5. SOA and REST ... 2
6. Enterprise Applications ... 3
7. Platforms .. 4
8. Mobile & Embedded Systems .. 4
9. Conclusion - Eclipse Runtimes... 5

Overview

Eclipse is well known as a source of trusted development tools, but it also provides a wide
selection of runtime containers, middleware and enterprise frameworks. EclipseRT is the
name given to this portfolio of Eclipse runtime projects. Developers can use the EclipseRT
technology to build rich desktop, web, enterprise, and embedded applications, as well as
service-oriented architectures (SOA) and applications platforms.

EclipseRT is based on the concept of component-oriented development and assembly, or
CODA. A key aspect of CODA and EclipseRT is the ability to assemble and extended different
components to meet the immediate needs of a specific application type. In this document
we will show how EclipseRT can help you apply the principles of CODA to some of the more
popular application architectures: desktop applications, web applications, SOA, enterprise
applications, platforms and mobile/embedded systems.

Desktop Applications

Desktop applications provide a rich, rapid-response graphical interface for end users. This
type of application also allows for easier access to the desktop resources and allow for an
off-line/disconnected mode.

The Eclipse Rich Client Platform (RCP) provides a modern desktop framework with the rich
and powerful features required for high productivity applications. For example, RCP has
been used by companies like IBM to deliver its highly dynamic and network-dependent
applications in its Lotus productivity portfolio used as a core business tool daily in many
companies.

Extending the capabilities of RCP, the Riena project provides a complete framework for
creating next generation client/server applications. In addition to making GUI development
with RCP easier, Riena provides the communications back-end needed to create and run
connected desktop applications. The Eclipse BIRT reporting framework is commonly used in
desktop applications for enterprise grade reporting. For creating applications with graphical
editors, the Graphical Editing Framework (GEF) and Eclipse Modeling Framework (EMF) are
valuable frameworks for accelerating development of these types of applications.

1

http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php
http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php
http://www-01.ibm.com/software/lotus/products/connections/

The p2 provisioning platform in Equinox provides the runtime updating framework needed
to support frequent feature delivery. More than just providing a place to click and download
an installer for a new version of the application, Equinox-driven desktop applications can
update select components with p2 over the network resulting in easier to manage update
cycles.

Web Applications

Web applications are clearly one of the favorite delivery models for consumer oriented
applications. While web applications are quick and easy to create, as they grow the
demands to extend and maintain the application can quickly overwhelm the team. EclipseRT
provides reliable, and flexible frameworks for web user interfaces, back-end connectivity,
and the tools that support a healthy software development process.

Eclipse provides a light-weight, high-performance web server, called Jetty. Widely used in
many domains, such as Google, HP, Cisco, and Atlassian, as a web container in
development and production. During development, Jetty's easy configuration management
and fast start-up time enables a rapid feedback loop code-build-deploy. In fact it is so fast,
we eliminate the "build" and "deploy" parts and just run right out of the workspace for test
cycles, allowing developers to stay focused on the immediate task. In production, Jetty
provides a diverse array of performance profiles for different scenarios, providing a
complete runtime for web applications. Jetty integrates with popular frameworks such as
Spring, JBoss, Glassfish, ActiveMQ, and standard Java web technologies. And, of course,
Jetty can be used with the rest of EclipseRT, such as the Eclipse Rich Ajax Platform and
Equinox.

The Eclipse Rich Ajax Platform (RAP) is a runtime for running web applications and a
complete framework and tool-set for developing Ajax applications. RAP is tuned to work
with Jetty, Tomcat, or any standard web container. In addition to web applications, RAP
builds on SWT and the Eclipse UI framework so you can write the application UI once and
have it rendered as web or desktop UI.

A rich UI is vital for any contemporary web application, but access to all types of data and
back-end processes is required as well. EclipseLink can be used for integrating data
mapping into a web applications, Eclipse Communication Framework (ECF) can be used for
REST-based access to back-end services and Swordfish can be used for integration with
SOA infrastructures.

SOA and REST

EclipseRT includes a SOA framework called Swordfish. Built on proven open source
components such as Apache ServiceMix and Apache CXF, Swordfish provides an extensible
framework that allows application developers and system integrators to build their own ESB
that can be tailor-made to their requirements. Other components include a process engine
provided by Apache ODE for BPEL support, monitoring, a service registry, and the
configuration stores required to run an ESB-driven SOA. The components in Swordfish come
together to provide a extensive platform for creating and then running service oriented
architectures.

Developers can also use EclipseRT to implement a lightweight REST-based infrastructure.

2

http://docs.codehaus.org/display/JETTY/Jetty+Powered
http://servicemix.apache.org/home.html
http://cxf.apache.org/
http://ode.apache.org/

The Eclipse Communication Framework (ECF) provides for discovering, accessing, and
implementing REST-based services, asynchronous/messaging-based services, and full
support for the OSGi 4.2 Enterprise Experts Group remote services standard. ECF's
transport-independent architecture allows a variety of protocols to be used (e.g. http, JMS,
XMPP, multicast IP, zeroconf, SLP, others) without modification of application code that uses
the framework.

EclipseLink SDO offers the reference implementation of Service Data Objects allowing services to easily
pass structured data between them crossing service and programming language boundaries. This
infrastructure is leveraged with the Swordfish project but could be used in any SOA development efforts.

There are two key advantages of using EclipseRT to build SOA and REST-based applications:
1) tight integration with Eclipse tools makes it easier to build-test-debug new services and
2) the component nature of EclipseRT means you can easily integrate and use other
EclipseRT components like BIRT, EclipseLink as you develop the specific services.

Enterprise Applications

EclipseRT's component-driven nature makes it extremely good for delivering and
maintaining large, modern enterprise applications. IT departments are expected to deliver
applications more frequently, delivering on the promise of agile software development. As
business requirements evolve at a rapid clip, software must change and move at the same
fast pace. At the same time, development teams must provide the same stability, controls,
and forward looking design that comes from good enterprise architecture.

Starting with Equinox, an OSGi runtime framework, EclipseRT provides the foundation for an
enterprise architecture, allowing you to specialize the enterprise stack to your application's
needs. This component-oriented approach allows you to spend less time carving down bulky
runtimes, instead focusing on the application at hand.

The EclipseRT portfolio of capabilities allows developers to easily extended and assembled
different frameworks to satisfy the infrastructure needs of the enterprise applications.
EclipseRT includes the following capabilities:

• UI layers with RCP, RAP, or Rienna.
• Runtime containers such as Jetty and Equinox
• Persistence services with EclipseLink
• Data reporting support from BIRT.
• Data modeling with Eclipse Modeling Framework (EMF)
• Remote communication and distributed OSGi with ECF
• SOA integration with Swordfish
• Identity integration and management with Higgins
• Access to unstructured information in the enterprise via search solutions using

SMILA.

The combination of the EclipseRT projects and Eclipse tooling make it the ideal choice for
developing and deploying enterprise applications.

3

http://www.eclipse.org/equinox-portal/whitepaper/20080310_equinox.php

Platforms

Larger organizations and teams working together become more efficient when they
consolidate their architecture, services, and code around a shared platform. These platforms
then become a shared set of services and frameworks used by others to build applications
and allow developers to focus on their business logic rather than the general purpose
underpinnings.
Eclipse itself is an example of a platform for creating tools and runtime frameworks. As
such, it's little wonder that many of the early adoptors of EclipseRT have built platforms
that allow them to rapidly deliver applications to their customers and end-users.

For example, NASA, the US space agency, uses EclipseRT for its Ensemble platform.
Ensemble is used by the different science teams to write the applications needed to control
and run the experiments on their Mars rover operations. Instead of each team writing their
software from the ground up, they build on-top of the EclipseRT-based Ensemble platform.
This results in an an acceleration of their software development efforts, a consistent end-
user view of these applications and an interchange point between applications.

The component-oriented nature of EclipseRT and the OSGi standard creates a technology
base that can be designed to be a platform. Architects can use the design and policy
enforcement aspects available in EclipseRT to architect proper extension points and
application development in their organization. Because the platform is built on-top of Eclipse
technologies, developers can use their familiar tools and frameworks when developing for
the platform instead of being forced to use custom platform tools. The deployment services
available in p2 gives IT the ability to deploy and then maintain applications built on the
platform.

Mobile & Embedded Systems

While EclipseRT is often used for traditional software projects, it works well for mobile and
embedded software. These types of software systems have a different set of challenges,
due to the limited resources, yet they are increasingly expected to be as dynamic and
functional as regular applications.

Once again, the close attention to a high performance, component-oriented architecture
provides the foundation for EclipseRT's success in embedded software, helping to support
everything from physical security management to bomb sniffing. The embedded Rich Client
Platform (eRCP) provides a lightweight footprint for application delivery to many embedded
scenarios.

Device connections to back-end systems can be integrated with the Eclipse Communications
Framework (EC), integration with back-end data stores and orchestration services can be
provided with technology such as EclipseLink and Swordfish. The p2 updating and
management mechanisms mean that embedded devices can be updated dynamically,
adding new functionality as needed across the life-time of the device.

A key point of the EclipseRT approach is that developers can use: 1) use the same OSGi
component model across embedded, mobile, desktop and server applications and 2) use the
same Eclipse tool-chain across the same applications types, making developers more

4

http://www.eclipse.org/equinox-portal/case_studies/skidatafinal.pdf
http://www.eclipse.org/community/casestudies/cyranofinal.pdf

productive by cutting down context-switching costs and helping unify development teams
instead of splitting them based on the delivery model.

Conclusion - Eclipse Runtimes

Eclipse has excelled at providing cross-platform tooling for many years, and now with
EclipseRT now provides a high quality foundation for all types of applications and services.

[Once main content is nailed down, the conclusion will tie together with a theme like "RT
enables agile/rapid application delivery no matter what the delivery mode," or RT as a
diverse, general purpose development and production environment." A key part will be
emphasizing again that RT is only partly about development, but is also largely about
production runtimes.]

5

	DRAFT 03 - Getting Started with EclipseRT
	Overview
	Desktop Applications
	Web Applications
	SOA and REST
	Enterprise Applications
	Platforms
	Mobile & Embedded Systems
	Conclusion - Eclipse Runtimes

