
Identifying Software Problems Using Symptoms

Inhwan Lee Ravishankar K. Iyer Abhay Mehta

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana- C hampaign
1308 W Main St., Urbana, IL 61801

Tandem Computers Incorporated
14231 Tandem Boulevard

Austin, TX 78728

Abstract
This paper presents an approach to automatically

identify recurrent software failures using symptoms, in
environments where many users run the same soft-
ware. The approach is based on observations that
the majority of field software failures in such envi-
ronments are recurrences and that failures due to a
single fault often share common symptoms. The pa-
per proposes the comparison of failure symptoms, such
as stack traces and symptom strings, as a strategy for
identifying recurrences. This diagnosis strategy is a p -
plied using the actual field software failure data. The
results obtained are compared with the diagnosis and
repair logs b y analysts. Results of such comparisons
using the failure, diagnosis, and repair logs in two
Tandem system software products show that between
75% and 95% of recurrences can be identified success-
fully b y matching stack traces and symptom strings.
Less than 10% of faults are misdiagnosed. These re-
sults indicate that automatic identification of recur-
rences based on their symptoms is possible.

1 Introduction
A field software failure can occur due to a known

fault, a newly found fault, or an unidentified fault.
Here these failures are referred to as a “recurrence,”
“first occurrence,” or “unidentified,” respectively.
[Lee93a] showed that about 72% of reported field soft-
ware failures in Tandem systems are recurrences. Con-
sidering that a quick succession of failures at a site,
which are likely to be due to the same fault, are often
reported in a single failure report, the actual percent-
age of recurrences can be higher. Recurrences are not
unique in Tandem systems. A similar situation ex-
ists in IBM systems [Adams84] and AT&T systems
[Levendel]. This shows that the software development
process is not the only important factor. Recurrences
can seriously degrade software dependability in the
field.

Recurrences exist for several reasons. First, design-
ing and testing a fix of a problem can take a significant
amount of time. In the meantime, recurrences can oc-
cur at the same site or at other sites. Second, the
installation of a fix sometimes means a planned out-
age. This may force users to postpone the installation
and cause recurrences. Third, a purported fix of a

0363-8928/94 $3.00 0 1994 IEEE

problem can fail. Finally and probably most impor-
tantly, users who did not experience problems due to
a certain fault often hesitate to install an available fix
for fear that doing so will cause new problems, as is
sometimes the case with fixes.

1) more failures
than predicted based on the number of faults, 2)
wasted resources due to repeated data collection, re-
porting, and diagnosis of the same problem, and 3)
delayed service to users even if solutions to problems
are available. Preventive maintenance, which refers
to the process of fixing a software fault in a user sys-
tem when the fault did not cause a problem in the
system, can potentially reduce the number of recur-
rences. But it costs resources. Besides, faults in a fix
can cause new problems in user systems. Based on the
failure and shipment data in IBM products, [Adams84]
proposed that preventive maintenance be limited to a
small number of highly visible faults. This result and
the above reasons for recurrence indicate that recur-
rences will continue to be a significant part of field
software failures.

In this paper, we present an approach to automat-
ically identify recurrences based on their symptoms.
The approach is based on an observation that fail-
ures due to the same fault often share common symp-
toms [Lee93a]. Specifically, we propose the compar-
ison of stack traces and symptom strings as a strat-
egy for identifying (i.e., diagnosing) recurrences. A
stack trace is the history of procedure calls made by
the active process at the time of a failure. It repre-
sents the software function that detected a problem.
A symptom string uniquely identifies the code loca-
tion at which a problem was detected. We applied
the proposed diagnosis strategy using the failure data
from two Tandem system software products. We then
compared the results obtained with the actual Tandem
diagnosis and repair logs. Results of the comparison
showed that between 75% and 95% of recurrences can
be identified successfully by matching stack traces and
symptom strings. Less than 10% of faults are misdi-
agnosed. These results indicate that recurrences can
be identified automatically based on their symptoms.

The diagnosis strategy is currently being imple-
mented as an automatic diagnosis tool. The tool is
envisioned to monitor many user systems connected

The impact of recurrences are:

320

by an on-line alarm system. Given a failure alarm,
the tool will extract a stack trace and a symptom
string from the failed machine, compare these with
those from past failures, and determine whether the
failure is a recurrence or due to a new fault. Such
a fully-integrated tool is not up and working at this
point. The benefits of developing and using such a
diagnosis tool are 1) saving the wasted human effort
of reporting and diagnosing the same problem repeat-
edly and 2) identifying an available fix or a workaround
rapidly.

2 Related Work
Measurements on software errors have been per-

formed by researchers. Some recent studies are the
following. A census of Tandem system availability
[Gray901 has shown that, as the reliability of hard-
ware and maintenance improves significantly, software
becomes the major source (62%) of outages in the
Tandem system. [Sullivan91] investigated software de-
fects and their impact on system availability using the
data from the IBM/MVS system. An approach to use
observed software defects to provide feedback on the
development process was proposed in [Chillarege92].
[Lee93b] discussed a methodology for analyzing op-
erating system fault tolerance and demonstrated the
methodology through three case studies.

Symptoms of faults in computer systems have been
studied using error logs. An information organization
and data reduction concept, called tuple , for fault pre-
diction was developed in [Tsao83]. Separation of an
error log into transient and intermittent events, and
failure prediction based on the shape of the interar-
rival time function were discussed in [LinSO]. A prob-
abilistic methodology for recognizing the symptoms of
persistent problems was proposed and illustrated us-
ing error data collected from an IBM 3081 and two
CYBER systems [IyerSO].

Failure diagnosis attempts to locate the under-
lying faults of failures. Symptom directed diagno-
sis of system faults was discussed in [Maxion85].
[Latham861 discussed an expert system to help in
analyzing crashes of the VMS operating system us-
ing the crash dump files and system event logs as
data. [Maxion931 studied the detection and discrimi-
nation of network faults based on network traffic sig-
natures. The recreate problem in identifying and di-
agnosing software failures in the field was discussed in
[Chillarege93].

3 Measurements
The Tandem Nonstop' system is a message-based

multiprocessor system designed for on-line transac-
tion processing (OLTP). The Tandem system software
halts the processor on which it is running when it de-
tects a nonrecoverable error. When a processor halt
occurs, a memory dump is taken from the halted pro-
cessor and sent to Tandem in the form of a Tandem
Product Report (TPR). All diagnosis actions taken by
analysts including the log of memory dump analysis
are appended to each TPR.

' N o n s t o p is a trademark o f Tandem Computers Inc.

Failures in two Tandem system software products
are used in this study. One product implements the
low-level functions to support database applications
and is referred to as DB in this paper. The other prod-
uct implements network communication functions and
is referred to as DC. These products run as processes
and serve requests from user applications. Among an-
alysts, DB is known to be robust, while DC is known
to be not robust.

We first extracted all user-generated TPRs caused
by faults in the two system software products for the
past few years. We then extracted all preceding TPRs
due to the same causes. During the measurement pe-
riod, the products were modified many times due to
bugfixes and minor enhancements. There was also a
major revision. Both products are written in Transac-
tion Application Language (TAL), which is similar to
C. The size of each product is on the order of lo5 lines
of commented source code. In this paper the terms
processor halt and fai lure were used interchangeably.

4 Diagnosis Strategy
A memory dump captures the processor state at the

time of a failure. Given a dump, analysts investigate
key failure symptoms such as the software funct,ion
being executed, the apparent, reason for the halt, and
the error pattern (see Figure 1). Based on the symp-
toms, they attempt to identify the underlying fault by
reasoning back through the error generation and prop-
agation process. This diagnosis requires experience, a
detailed knowledge of the operating system, and ex-
tensive reasoning. Although software failure diagnosis
is a complex task that is hard to automate, it has been
observed that failures due to the same software fault
often have identical stack traces [Lee93a], suggesting
that it may be possible to identify recurrences based
on their symptoms.

A diagnosis strategy consists of a set of common
symptoms and associated matching scheme to be used
for identifying recurrences. The diagnosis strategy is
determined once by off-line evaluation.

Memory Dump

Underlying Error Generation

and Propagation

Key Symptoms

- Reason for halt _ _ _ _ _ _ _ _ _ _
- Active s/w function
- Error pattern

Error Generation

and Propagation

Key Symptoms

- Reason for halt _ _ _ _ _ _ _ _ _ _
- Active s/w function
- Error pattern

I I

Figure 1: Software Failure Diagnosis

4.1 Common Symptoms
A question to ask is: What are the symptoms that

are usually shared by the failures due to the same
fault? Such common symptoms will be useful for iden-
tifying recurrences. Our experience shows that failures
due to the same fault often share two types of common

321

Halt code + %00104 into PAGEFAULT
TOS + %00365 into GETACCTENTRY

%00220 into GETTILEOPJNPUTBUF
%00052 into READSETUP
%00015 into READ-RQST
%00446 into MAINLOOP

Figure 2: Sample Stack Trace with Offsets

symptoms: 1) certain local and shared data (data-
oriented symptoms) and 2) code that was being exe-
cuted (code-oriented symptoms). Code-oriented symp-
toms capture information such as the active process
at the time of failure, the software function being ex-
ecuted (i.e., stack trace), and the exact code location
where a problem was found (i.e., symptom string).
Examples of data-oriented symptoms are the values of
parameters passed between procedures in a stack trace
and the state of certain local and global variables. In
this study, we focused on the use of stack traces and
symptom strings because we used failure reports (i.e.,
TPRs) generated by analysts, not actual dumps. Full
data-oriented symptoms were not usually recorded in
the failure reports, although they were available from
the dumps.

Figure 2 shows a stack trace extracted from a fail-
ure. Each line represents a procedure, and the as-
sociated number represents the offset of the code lo-
cation (i.e., the machine instruction) that called the
next procedure from the beginning of the procedure,
in octal words. In Figure 2 the (system) process that
halted the processor is normally sitting in the pro-
cedure MAINLOOP. When the process receives a re-
quest, it serves the request by calling necessary proce-
dures. In this case, the process detected a nonrecov-
erable error during the execution and halted the pro-
cessor on which it is running. The set of procedures
shown in Figure 2 is a stack trace for the failure. Each
software failure has its stack trace.

The first line from the top shows an error handling
procedure. There is an error handling procedure and
associated halt code for each type of problem detection
defined by software developers and system designers.
In the sample shown in Figure 2, the error handling
procedure shows that a page fault occurred while exe-
cuting a code section in which a page fault is not sup-
posed to occur. The actual stack trace consists of the
procedure names beginning from the second line. The
stack trace represents the software function that de-
tected the problem. It is not necessarily related to the
location of the underlying fault. The first procedure
from the top, except for the error handling procedure,
is called the procedure a t the top of the stack (TOS)
in this study.

The procedure a t the TOS and the associated offset
(i.e., “%00365 into GET-ACCTENTRY’ in Figure 2),
when combined with the software version information,
uniquely identifies the code location at which prob-
lems were detected. The software version needs to be
known because the procedure offset may change due

to bug fixes or enhancements. DB developers designed
the code such that when errors are detected by consis-
tency checks (i.e., explicit software checks), an ASCII
string (called symptom string) is inserted at the des-
ignated location of the process stack before asserting
a processor halt, so that analysts can read it and rec-
ognize the location of problem detection regardless of
software version. The symptom string consists of three
parts that identify the source file name, the procedure
name, and the software check that detected a problem.

TK-PROCESS--
MONITOR- TKCKPT Failure

Exercised

NEXTREQ

Y L

MAINLOOP

Figure 3: Detection near Faulty Code

PROTOCOL r” xALL,g-

DCTS SETOCB

Figure 4: Detection after Corruption in Shared Data

Two extremes exist. First, a software fault can
cause failures with different symptoms as illustrated
in Figure 3. The figure shows a case in which
a problem was detected near the faulty code sec-
tion. A circle represents a procedure call and an
arrow represents the execution within a procedure.
The figure shows a failure in which the base proce-
dure MAINLOOP called the procedure NEXTREQ,
which in turn called the procedure MONITORPRI-
MARY. MONITORPRIMARY called the procedure
TK-PROCESS-TK-CKPT in which a fault was ex-
ercised and a halt was asserted. In another failure,

322

the same thing happened except that MAINLOOP
reached MONITORPRIMARY through the procedure
INITIALIZE. This was also shown in the figure. The
chain of procedure calls forms a stack trace and is
represented by a set of connected solid arrows in the
figure. The dotted arrows represent a pair of a proce-
dure call and return that does not explicitly appear in
a stack trace. Because the software structure is modu-
lar, there can be different program paths to reach the
faulty code section. Figure 3 shows two such paths.
Each of the paths gives a distinct stack trace.

Figure 4 shows a case in which a wide range of
corruption occurred in shared data. The dotted lines
represent accesses to the shared data. The underly-
ing fault was a developer’s misunderstanding of data
structure. In this case, any software function can de-
tect some of the errors and assert a halt. This would
lead to widely different stack traces, problem detec-
tion locations, and error patterns. Figure 4 shows two
very different stack traces.

The second extreme to consider is that differ-
ent faults can cause failures with identical symp-
toms. There was a case in which a processor
halt was asserted while executing the procedure
DC-LV4_PROTOCOLl which was called by the base
procedure DCTS. The underlying fault was not pro-
viding a routine to handle a rare but legitimate se-
quence of events, which led the system to an inconsis-
tent state. This failure scenario and the left-hand-side
stack trace in Figure 4 show that different faults can
cause identical symptoms (i.e., identical stack traces
in this case).

4.2 Matching -
Once a set of common symptoms is determined, the

next question is: How do we compare failure symp-
toms (i.e., particular values of the common symptoms
that were chosen to be used for the diagnosis)? Three
types of matching can be considered: complete match-
ing, partial matching, and weighted matching. Com-
plete matching means that two failures are declared
to be due to the same fault if their failure symp-
toms (e.g., two stack traces extracted from the two
failures) are identical. Partial matching means two
failures are declared to be due to the same fault if
their failure symptoms are within a certain distance
from each other, based on a predefined measure of
distance. Partial matching can allow us to make a
certain tradeoff under the two extremes discussed in
Section 4.1. This issue will be discussed further in the
next subsection and Section 6. Weighted matching is
necessary when using several types of common symp-
toms. In weighted matching, a measure of similarity of
two failures is determined by comparing their values
of each type of common symptom. These measures
are then combined to form an overall measure that
represents the similarity of two failures in their symp-
toms, based on their weights. The weights for differ-
ent types of common symptoms can be determined by
an iterative performance evaluation and based on the
knowledge of software structure and functionality.

In this study, we used the complete and partial
matching of stack traces. Since the symptom string

is a single piece of information, only complete match-
ing can be used for matching symptom strings.
4.3 Evaluation Method

To evaluate the effectiveness of the proposed diag-
nosis strategy under the extremes described in Sec-
tion 4.1, we considered fault clusters and symptom
clusters. A fault cluster consists of all failures due to
a fault. In this study fault clusters were formed based
on Tandem diagnosis and repair logs. Given a set of
failures, the set of fault clusters is unique. A symptom
cluster consists of all failures that share certain com-
mon symptoms. As far as the diagnosis is concerned,
failures in the same symptom cluster are regarded as
the manifestations of the same fault. Each choice of
common symptoms and associated matching scheme
(i.e., each diagnosis strategy) may give a new set of
symptom clusters.

(a) Join

Symptom Cluster 1 Fault j

(b) Split
- C l u s t e r m

w Symptom Cluster o

Figure 5: Join and Split

A one-to-one correspondence between fault clusters
and symptom clusters would be ideal, but hard to
achieve. We considered two general situations to de-
scribe the imperfectness of a diagnosis strategy: join
and split (Figure 5). A join means that failures due to
more than one fault are grouped into a single symp-
tom cluster. From the perspective of the diagnosis,
it represents the possibility of a misdiagnosis. Two
scenarios are possible. First, a failure due to a new
fault can be declared as a recurrence of a previously
reported fault. Second, a recurrence of a fault can
be declared as a recurrence of another fault. A split
means that failures due to a single fault are divided

323

into multiple symptom clusters. From the perspective
of the diagnosis, it represents a repeated diagnosis of
the same fault because it means that a recurrence is
declared as a first occurrence.

Let’s assume that using a particular diagnosis strat-
egy leads to N joins and M splits. Also let Ji be the
number of unique faults involved in the i-th join, and
Sj be the number of symptom clusters involved in the
j - th split. Then, the following measures of efficiency
can be defined:

F m s d x E Fmisdiagnosis,mas

E M a x i m u m number of f au l t s misdiagnosed

N

= (Ji - 1)
i = l

Frpdx E Frepeated-diagnosis,maz

E M a x i m u m number of repeated diagnoses

M

= E(Si - 1)
i=l

Scrdn Scorrect - diagnosis ,min

E M i n . number o f recurrences diagnosed correctly

= Number of recurrences - Frpdx (3)

The actual number of misdiagnoses can be smaller

than Fmisdiagnosis,max for the following reasons:
0 Overlaps in joins and splits: For example, two

faults can generate two symptom clusters as a re-
sult of two joins and two splits. In this case, the
actual number of misdiagnoses is at most one, not
two as calculated from Equation 1.

0 Nonoverlap of fault manifestation windows: Even
if two faults cause failures with identical symp-
toms, if one fault appears after the other is com-
pletely fixed in the field, there can be no misdi-
agnosis. In this study, if the last failure due to a
fault and the first failure due to another fault oc-
curred more than six months apart in such cases,
we assumed that there is no misdiagnosis.

Frepeated-diagnosis,max and Scorrect-diagnosis,min Pro-
vide a maximum and a minimum respectively because
of the first reason listed above for Fmisdiagnosis,max.

Note that partial matching uses a less strict rule
than complete matching in building symptom clusters
and therefore generates fewer symptom clusters. This
means that, when compared with complete matching,
partial matching leads to a greater or equal number of
joins and a lesser or equal number of splits. Therefore,
partial matching can be used to increase the probabil-
ity of correct diagnosis, at the cost of increasing the
probability of misdiagnosis.

4.4 Cost of Misdiagnosis
A question to ask here is: What is the cost of misdi-

agnosis in an automated diagnosis environment? Con-
sider that two faults (faults A and B) cause failures
with identical symptoms. Fault A already caused a
failure, and a fix for the fault is available. When fault
B causes a failure for the first time, it will be treated as
a recurrence of fault A , and the fix for fault A will be
recommended by the tool. Then a concern is: What
if fault B keeps causing failures? A similar concern
exists in the case of an incorrect fix. Consider that a
purported fix of fault C fails to fix the fault. When
fault C causes another failure with identical symptoms
at another site, the tool will declare it as a recurrence
of fault C and recommend the incorrect fix. As a re-
sult, fault C may keep causing failures.

Both of these situations can be handled by associat-
ing each fault in the failure database with the software
version information that is supposed to contain a fix
for the fault. With this information, when fault B or
C causes a failure at a site that installed a fix for the
fault, the tool will realize that the failure is due to an-
other fault or due to an incorrect fix and recommend
the diagnosis of the problem by human analysts. In
the first situation, after a fix for fault B is made, when
fault A or B causes a failure, the tool will recommend
the installation of fixes for both faults A and B. In
both situations, the cost of a misdiagnosis is the time
between initial incorrect diagnosis and eventual cor-
rect diagnosis. Considering the implementation of a
diagnosis strategy as an automatic tool, more empha-
sis can be put on reducing Fmisdiagrsosis,max than on
increasing Scorrect-diagnosis,min.

5 Diagnosis Environment
Figure 6 illustrates the type of automatic diagnosis

environment envisioned. The diagnosis tool is con-
nected with many user systems by an on-line alarm
system. All previously reported failure symptoms and
the associated information such as underlying faults
and fixes are stored in a database. On a failure alarm,
the tool accesses the system that sent the alarm, ex-
tracts the values of the common symptoms (i.e., a
stack trace and a symptom string), and compares
them with those of previously reported faults in the
database. If a match is found in the database, it is
declared as a recurrence of the corresponding fault;
otherwise, it is declared to be due to a new fault. In
the case of recurrence, it also identifies an available fix.
After the diagnosis, the database is updated with new
failure data. The diagnosis strategy is determined a
priori, by off-line evaluation. The tool is built based
on the selected diagnosis strategy.

The environment shown in Figure 6 involves con-
nections with many user systems and a database, and
cooperation with other software service tools. Such
a fully-integrated environment is not up and working
at this point, although some individual parts exist.
Note that, in such a diagnosis environment, the terms
matching and clustering can be used interchangeably.
That is, “found a matching symptom in the database”
(see Figure 6) and “clustered together with a symptom
in the database” will have identical meanings.

324

Failure

Fault History Database

- Fault & Fix

- Failure Symptoms

- S I W Version with Fix

I
Match I

Found? I
I
I
I
I Database

Update - - - - - - - -
No

First
Occurrence Recurrence

Common Symptom

Stack Trace

Problem Detection Fraction (%)

detection within DB
detection outside DB

detection within DB (13)
detection outside DB

Virtual Memory Protection

Hane

#Joins #Splits Fmsdz Scrdn

2 9 2{0} 28

Table 1: Problem Detection Profile (DB)

I (78 TPRs, 39 faults) I
{ }: nonoverlap of fault manifestation windows

Figure 6: Diagnosis Environment Envisioned Table 2: Complete matching of Stack Traces (DB)

6 Evaluation of Diagnosis Strategies

This section evaluates the effectiveness of the pro-
posed diagnosis strategy using the field failure data in
two Tandem software products. The thrust of the eval-
uation is to investigate the range of effectiveness of the
proposed diagnosis strategy and its variations. Ideally
we would have evaluated the strategies using all fail-
ures. We used failures in two products due to time
constraint. Given this limit, we selected two prod-
ucts with widely different reputations among Tandem
analysts in terms of their quality, hoping that an eval-
uation using failures in the two products would give
us a range of effectiveness.
6.1 Evaluation Using Failures in DB

Table 1 shows a breakdown of the 152 failures in
DB, based on how the problems were detected. The
numbers inside parentheses represent a further subdi-
vision inside a class. The failures occurred due to 55
unique faults. The table shows that about 85% per-
cent of the problems were detected while executing
the DB code and 72% of the problems were detected
by the consistency checks in DB. Only the 130 failures
detected while executing the DB code were considered
because these failures and the failures detected outside
DB naturally have different code-oriented symptoms.

Using Field Data

6.1.1 Matching Stack Traces

Although the stack trace exists in all failures, not all
TPRs contained stack traces. This usually happened
when there were many recurrences due to a single
fault. In TPRs reporting later occurrences, analysts
sometimes just left pointers to the TPRs that ana-
lyzed previous occurrences, rather than describing the
detailed symptoms. Our experience shows that this
is more likely to happen when later occurrences share
the same symptoms with early occurrences. Out of

130 TPRs, 78 contained stack traces. These failures
occurred due to 39 unique faults. Note that the recur-
rence rate in the data set became much lower than its
actual value. The average number of procedures in a
stack trace (i.e., the average length of a stack trace)
was 5.7.

Table 2 shows the effectiveness of the diagnosis
when symptom clusters were constructed by the com-
plete matching of stack traces. The table shows that,
with the complete matching of stack traces, a t least
72% (28 out of 39) of the recurrences could have been
identified correctly. (We think that this percentage
would be higher if all TPRs contained stack traces.)
The cost of using such a diagnosis is the misdiagnosis
of a t most two faults. In each join, two different faults
affected the processor state in the same manner: a ta-
ble entry was missing due to the faults. The problems
were detected when attempting to locate a nonexist-
ing entry. They were detected at an identical location
while executing the same function. So the joins were
unavoidable with code-oriented symptoms. The data
showed that, in each join, the two faults had nonover-
lapping manifestation windows. Therefore the actual
number of misdiagnoses was zero, which is shown in-
side a pair of braces in Table 2. Including the halt
code in constructing symptom clusters had negligible
effect: it decreased Scqrrect-diagnosis,maz by one. This
was because many failures were detected by consis-
tency checks and had identical halt codes.

Partial matching can reduce the number of splits a t
the cost of increasing the number of joins. We inves-
tigated the patterns of stack traces in the nine splits
in Table 2. The splits were mainly due to different
program paths to reach the same errors. As a result,
different stack traces causing the splits often had an
identical procedure at the TOS. Two common pat-
terns of differences in the splits were: 1) stack traces
were much different and 2) stack traces were the same
except for minor differences in the middle. Based on

325

Heuristics #Joins #Splits

Differ-by-one 7(+5) 5(-4)
Differ-by-one & the same

Contain-the-ot her
Contain-the-other & the same

procedure at the TOS

procedure at the TOS 3(+1) 5(-4)

Common Symptom
Symptom string
(110 TPRs, 39 faults)

Table 3: Partial Matching of Stack Traces (DB)

#Joins #Splits Fmadz Scrdn

5 4 8{1} 67

these patterns, the following heuristics were consid-
ered for the partial matching of stack traces:

If two stack traces with the same length differ
from each other by no more than one procedure,
group them-into the same symptom cluster. This
heuristic is called differ-by-one. Note that re-
peated applications of this heuristic can cluster
together stack traces that differ by more than one
procedure.
Apply the differ-by-one heuristic only if the pro-
cedures at the TOS are the same.
If one stack trace includes all procedures in the
other without regard to their order, group them
into the same symptom cluster. This heuristic is
called contain-the-other.
Apply the contain-the-other heuristic only if the
procedures a t the TOS are the same.

Table 3 shows the results of the partial matching of
stack traces. The numbers inside the parentheses indi-
cate the differences from the numbers when complete
matching is used (Table 2). The table shows that the
procedure at the TOS is a useful common symptom.
Including it prevented the increase in the number of
joins appreciably. With the “differ-by-one and same
procedure a t the TOS” heuristic, at least 87% (34 out
of 39) of the recurrences could have been identified
correctly. The number of joins increased by one, but
the actual number of misdiagnoses was still zero due
to the nonoverlap of fault manifestation windows. The
contain-the-other heuristic was not effective.

6.1.2 Matching Symptom Strings

The results in the previous subsection indicated that
the code location at which a problem is detected can
be a useful common symptom. As described in Sec-
tion 4.1, the DB symptom string uniquely identifies
the code location of problem detection, regardless of
software version. In fact, DB developers have been us-
ing this information as an aid for software failure di-
agnosis [Tandem92]. All 110 TPRs reporting failures
detected by the DB consistency checks (see Table 1)
contained symptom strings. These TPRs were due to
39 unique faults.

Table 4 shows the effectiveness of the diagnosis
when symptom clusters were formed using symptom
strings. Since a symptom string is a single piece of in-
formation, only complete matching is possible. Table 4

Table 4: Matching Symptom Strings (DB)

[Common Symptom I #Joins #Splits Fmsdr Scrdn

Procedure at the TOS

Procedure at the TOS
& offset

(110 TPRs. 40 faults)

Table 5: Matching Variations of the Symptom String
(DB)

shows that at least 94% (67 out of 71) of the recur-
rences could have been identified correctly, at the cost
of misdiagnosis of less than eight faults. The data
showed that the maximum number of misdiagnoses
was actually one, considering the nonoverlap in fault
manifestation windows.

The hypothesis that matching symptom strings was
as effective as the complete matching of stack traces
in terms of successful diagnosis was rejected, indicat-
ing that matching symptom strings was more effective
in terms of successful diagnosis for the measured pe-
riod in DB (see Table 2 and Table 4). The hypothesis
was tested using the binomial test at the 5% signifi-
cance level, by treating the diagnosis of recurrences as
Bernoulli trial^.^ The hypothesis that matching symp-
tom strings was as effective as the complete matching
of stack traces in terms of misdiagnosis was not re-
jected by the same test a t the same level. A caution
for the observations is that the two tables used for the
comparison were generated using data sets with differ-
ent recurrence rates, because analysts did not always
record stack traces in TPRs.

A limitation in using symptom strings is that the
symptom string exists only when problems are de-
tected by consistency checks. (This is discussed fur-
ther in Section 6.2.) Note that a stack trace always
exists, even in failures due to nonsoftware faults.

We also used two variations of the symptom string
to construct symptom clusters: 1) procedure at the
TOS, and 2) procedure at the TOS and associated
offset. These symptoms always exist. Table 5 shows
the results. Although the three sets of TPRs used to
generate Table 4 and Table 5 were different, we can
make several observations. Compared to the use of
symptom strings, using the procedure at the TOS in-
creased Fmisdjagn,,sis,mar because some problems due

Whether a diagnosis strategy is better than another can be
answered by conducting a hypothesis test. We addressed such
issues lightly because we used failures in only two products.

326

Problem Detection Fraction (%)
Consistency Checks 51

detection within DC (33)
detection outside DC (19)

Virtual Memory Protection 46
detection within DC (31)
detection outside DC (15)

Hang 3

Reason for Split

Data corruption
Different calling sequence
Data dependence

Table 6: Problem Detection Profile (DC)

#Splits Fcpdt

4 23
6 6
1 1

Common Symptom

Stack Trace
Stack Trace &

halt code

Table 7: Complete matching of Stack Traces (DC -
166 TPRs due to 59 faults)

#Joins #Splits F m s d r Scrdn

13 11 21 77

10 11 16{6} 77

to different faults were detected at different locations
in the same procedure. Using the procedure at the
TOS and associated offset increased the number of
splits appreciably because the same code location had
different offset values in different software versions.
One interesting observation here is that the number of
joins has decreased. This was because of the nonover-
lap of fault manifestation windows between different
faults in a join. Due to the code changes between the
windows, although they were detected at an identical
location, they showed different offsets.
6.2 Evaluation Using Failures in DC

Table 6 shows a breakdown of 258 failures caused by
72 unique faults in DC. Compared with the problem
detection in DB (Table I) , two observations can be
made. First, the percentage of the problems detected
by consistency checks was lower. Second, a greater
percentage of the problems was detected while exe-
cuting non-DC code. These observations corroborate
with the analysts’ suspicion that this product is less
robust. The evaluation was conducted using 166 fail-
ures that were detected while executing the DC code
and that contained stack traces. These failures oc-
curred due to 59 unique faults. The average number
of procedures in a stack trace was 3.6.

6.2.1 Matching Stack Traces

Table 7 shows the effectiveness of the diagnosis
when the complete matching of stack traces was used.
Using halt codes along with stack traces reduced the
number of joins while not increasing the number of
splits. This was because the percentage of the prob-
lems detected by consistency checks was lower. So,
the halt code, which represents how problems were
detected, became a useful common symptom. In the

Table 8: Breakdown of Splits (DC)

subsequent analysis, failures with different halt codes
were not grouped into the same symptom cluster.

In four of the ten joins in Table 7, problems caused
by different faults were detected at an identical code
location while executing the same software function.
With just code-oriented symptoms, resolution of the
joins was not possible. In the remaining six joins,
problems were detected at different locations in the
same procedure. These joins were mainly due to
big procedures that detected errors due to different
faults. The existence of big procedures is attributed
to the language’s support of subprocedures, callable
only within a procedure. The data showed that, with
the use of subprocedure traces within the procedure
at the TOS, F m i s d i a g n O S i s , m a z is reduced to 8, without
affecting Seorreet-diagnoais,m,~. This suggests that the
effectiveness of the diagnosis may be improved by rea-
sonably sizing procedures.

The maximumnumber of misdiagnoses was reduced
again to 6, considering the nonoverlap of fault man-
ifestation windows. With the complete matching of
stack traces, halt codes, and subprocedure traces in
the procedure at the TOS, at least 72% (77 out of 107)
of the recurrences could have been identified correctly,
at the cost of misdiagnosis of at most six faults. There
was no significant difference in the performance of the
complete matching of stack traces in the two prod-
ucts in terms of successful diagnosis, but the complete
matching of stack traces was more effective in DB than
in DC in terms of misdiagnosis see Table 2 and the

tained using the binomial test at the 5% significance
level. Again, a caution here is that the recurrence rate
in the data set used for DB was lower.

Table 8 shows a classification of the 11 splits in Ta-
ble 7, based on their major reasons for the splits. Data
corruption means that a fault caused corruption in a
shared data area. If such a corruption occurs, errors
can be detected while executing many software func-
tions, which is why a fault causes different stack traces.
There were two complex faults (i.e., two splits) which
caused corruption in shared data. It took a while to
diagnose the problems and, in the meantime, the faults
caused failures with 23 different stack traces. That is,
the two faults accounted for 21 Frepeated-diagnos,J,ma~.

Different calling sequence means that the differ-
ences in stack traces are attributed to different pro-
gram paths to reach and detect the same errors. Data
dependence means that depending on the actual values
of errors and the machine state, a problem is detected
at different (but typically close to each other) code
locations. In the actual case, the difference in stack
traces was one extra procedure at the TOS. This type

second row of Table 7). These o b servations were ob-

327

Common Symptom

Proc. a t the TOS
SvmDtom string

sameproc. at theTOS I ($1) (0) (+ 3) (+6)
Contain-the-other I (+2) (-1) ($5) (+6)

#Joins #Splits Fmsdz Scrdn

15 10 25 89
8 1 2 l l l f i l 83

Heuristics'

Differ- by-one
Differ-by-one & the

Table 9: Partial Matching of Stack Traces (DC)

#Joins #Splits F m c d I S c r d n

(+4) (0) ($12) ($7)

of differences in stack traces could also be observed
in some data corruption cmes. For example, when a
software function accesses a corrupt data region, de-
pending on the actual values of errors and the machine
state, a problem could be detected after an additional
procedure call, after a return to t,he previous proce-
dure, or within that procedure. With this observat,ion
we added the fifth heuristic for the partial matching
of stack traces:

5. Given two st,ack traces, if one is longer than t,he
other by one and the difference is an additional
procedure at the TOS, group t.hem into the same
symptom cluster. This heuristic is called e x f m -

Table 9 shows the effectiveness of the diagnosis
when the partial matching of stack traces was used.
The numbers inside the parentheses indicate the dif-
ferences from the numbers when complete matching
is used (the second row of Table 7) . Subprocedure
traces were not used here. All heuristics increased
Scorrect-diagnosiJ,rnin, but not drastically, indicating
that the partial matching hueristics could not coni-
pletely capture the randomness in failure symptoms
caused by data corruption. This suggests that the er-
ror containment capability of software can be a fact,or
that affects the effectiveness of tht, diagnosis. The in-
creases in Fmisdiagnosis,maz were mainly due t,o short
stack traces (with length of three or less) that easily
caused joins when partial matching was used. Table (3
shows that the procedure at the TOS helped to sup-
press the increase in the number of joins in DC. too.

proc-nt- TOS.

I stack trace

6.2.2 Matching Symptom Strings

The product DC did not provide the symptom
string. Although not all TPRs recorded the failed soft-
ware version, it was possible to determine whether two
problems were detected at the same code location, us-
ing the information in TPRs (stack traces, offsets, halt
codes, and textual descriptions by analysts) and the
actual code. So, in the following evaluation, it was a.-
sumed that the symptom string existed in all failures.
We formed symptom clusters using the following three

6 14 6 70 I

2To avoid an excessive increase in the number of joins, the
differ-by-one hueristic was not applied to the stack traces of
length one, and the contain-the-other hueristic was not applied
to the stack traces of length one or two.

Contain-the-other & the
same proc. at the TOS

Extra-proc-at-TOS

~

(0) (0) ($ 3) (+4)
(+3) (-2) (t3) (+2)

Table 10: Matching Variations of the Symptom String
(DC - 166 TPRs due to 59 faults)

symptoms, listed in the increasing order of strictness:
1. Procedure at the TOS
2. Symptom string.
3. Symptom string and stack trace
Table 10 shows that, by matching the symptom

string and halt code, a t least 78% (83/107) of the re-
currences could have been identified correctly, a t the
cost of the misdiagnosis of at most six faults. For t,he
measured period, there was no significant difference
bettween the complete matching of stack traces and
t,he matching of symptom st.rings in their performance
in DC (see the second rows of Table 7 and Table 10).
Comparing Table 4 and the second row of Table 10,
the matching of sympt,om strings wa.s more effective in
DB t,han in DC in t,erms of successfiil diagnosis, but
it showed similar perfornnnce in t.he two products in
terms of misdiagnosis. These observations were again
obtained using the binomial test at the 5% significance
level.

6.2.3 Machine Code Symptom String

Now the question is: How does an automatic tool com-
parr tfhe two code locations of problem detection in
DC? It can be encouraged to implement the DB-style
symptom string in all product,s. But the percentage
of failures t,hat have t,he symptom string (i.e., t,he per-
centage of failures that, are detected by consistency
checks) seems t,o depend on 6he quality of software.
Besides, the value of the percentage can be estimat,ecl
after the software is released to the field.

Here we propose t,he use of a machine code symp-
tom string. I t is defined as the machine instructions
in the binary form, before and after the code loca-
t>ion of problem detection. Just, like a stack trace, it
always exists. (There can be rare cases in which we
cannot compare machine code symptom strings if two
det,ection locations arc a t different. edges of t,wo mem-
ory pages and the connecting pages are not available.)
A possible strategy is to use tshe DB-style syinpt,om
string if available and otherwise to use the machine
code symptom string.

7 Conclusions
In this paper, we presented an approach to au-

t,omatically identify recurrent. software failures using
symptoms, in environments where many customers
run the same software. The approach is based on
our observations that about 72% of reported field soft-
ware failures in Tandem systems are recurrences and

328

that failures due to the same fault often share common
symptoms. Specifically, we proposed the comparison
of stack traces and symptom strings as a strategy for
identifying recurrences. We applied this strategy us-
ing failures in two Tandem system software products
and compared the results obtained with actual Tan-
dem diagnosis and repair logs by analysts.

The results of the comparison showed that between
75% and 95% of recurrences can be identified success-
fully by matching stack traces and symptom strings.
Less than 10% of faults are misdiagnosed. These re-
sults indicate that automatic identification of recur-
rences using symptoms is possible. In an automated
diagnosis environment, the cost of a misdiagnosis is
the time between initial incorrect diagnosis and even-
tual correct diagnosis. The benefits of developing and
using a tool that implements such a diagnosis strat-
egy are 1) saving the wasted human effort of reporting
and diagnosing the same problem repeatedly and 2)
identifying an available fix or a workaround rapidly.
The results of the evaluation suggested that the error
containment capability of the software can be a fac-
tor that determines the effectiveness of the approach.
Proper sizing of procedures can also be a factor when
using stack traces.

We would like to point out several areas of fu-
ture work. First, more diagnosis strategies need to
be investigated. For example, the use of data-oriented
symptoms needs to be investigated. Second, it is nec-
essary to use failures from more software products for
the evaluation because, in real environments, many
products run together and the effects of faults can
cross the boundaries between the products. Failures
due to nonsoftware faults also need to be included,
because whether a failure is due to a software fault
is often unclear. Third, numerical results reported in
this paper are specific to the measurements. However,
the two measured products consist of many small pro-
cedures and are written in a high-level language, which
is common in many system software products around
today. Our experience shows that there are no spe-
cial requirements for the software to satisfy, for the
approach to be effective. Still, further experiments
are necessary to determine how well the numbers will
project to other system software products. Also, it
will be interesting to investigate the effectiveness of
the approach for application software products.
Acknowledgements

We thank Tandem Computers Incorporated, in par-
ticular Gil Pit t , for their assistance in conducting this
study. We also thank Ram Chillarege and Timothy
Tsai for their comments on the paper. This research
was supported in part by Tandem, in part by the Of-
fice of Naval Research under Grant N00014-91-J-1116,
and in part by NASA grant NAG-1-613. The content
of this paper does not necessarily reflect the position
or policy of the government or Tandem, and no en-
dorsement should be inferred.

References
[Adams84] E. N . Adams, “Optimizing Preventive Ser-

vice of Software Products,” IBM Journal of Re-
search and Development, Vol. 28, No. 1, Jan. 1984.

[ChillaregeSS] R. Chillarege, I . S. Bhandari, J . K.
Chaar, M. J . Halliday, D. S. Moebus, B.
K. Ray, and M.-Y. Wong, “Orthogonal Defect
Classification-A Concept for In-Process Measure-
ments,” IEEE Trans. Software Engineering, Vol.
18, No. 11, Nov. 1992, pp. 943-956.

[ChillaregeSS] R. Chillarege, B. Ray, A. Garrigan, and
D. Ruth, “The Recreate Problem in Software Fail-
ures,” Proc. Fourth Int. Symp. Software Reliability
Engineering, 1993.

[Gray901 J . Gray, “A Census of Tandem System
Availability between 1985 and 1990,” IEEE Trans.
Reliability, Vol. 39, No. 4, Oct. 1990, pp. 409-418.

[IyerSO] R. K. Iyer, L. T. Young, and Iyer, P. V., “Au-
tomatic Recognition of Intermittent Failures: An
Experimental Study of Field Data,” IEEE Trans.
Computer, Vol. 39, No. 4, Apr. 1990.

[Latham861 B. Latham and M. W. Swartwout, “CD,-
Crash Diagnostician for VMS,” Expert Systems
and Knowledge Engineering, T. Bernold(editor ,
Elsevier Science Publishers B. V. (North-Holland],
1986.

[Lee93a] I . Lee and R. K. Iyer, “Faults, Symp-
toms, and Software Fault Tolerance in the Tan-
dem GUARDIAN Operating System,” Proc. 23rd
Int. Symp. Fault- Tolerant Computing, Toulouse,
France, 1993, pp. 20-29.

[Lee93b] I . Lee, D. Tang, R. K. Iyer, and M.-C.
Hsueh, “Measurement-Based Evaluation of Oper-
ating System Fault Tolerance,” IEEE Trans. Reli-
ability, Vol. 42, No. 2, June 1993, pp. 238-249.

[Levendel] Y. Levendel, Private communications.

[Lingo] T.-T. Lin and D. P. Siewiorek, “Error Log
Analysis: Statistical Modeling and Heuristic Trend
Analysis,” IEEE Trans. Reliability, Vol. 39, No.
4,Oct. 1990, pp. 419-432.

[Maxion931 R. A. Maxion and R. T. Olszewski, “De-
tection and Discrimination of Injected Network
Faults,” Proc. 23rd Int. Symp. Fault- Tolerant
Computing, Toulouse, France, 1993, pp. 198-207.

[Maxion851 R. A. Maxion and D. P. Siewiorek,
“Symptom Based Diagnosis,” Int. Conf. Computer
Design, 1985, pp. 294-297.

[Sullivan911 M. S. Sullivan and R. Chillarege, “Soft-
ware Defects and Their Impact on System
Availability-A Study of Field Failures in Operat-
ing Systems,” Proc. 21.92 Int. Symp. Fault- Tolerant
Computing, June 1991, pp. 2-9.

[Tandem921 Smart Dumps External Specification,
Tandem Computers Inc., 1992.

[Tsao83] M. M. Tsao, Trend Analysis and Fault Pre-
diction, Ph. D. Dissertation, Department of Elec-
trical Engineering, Carnegie-Mellon University,
May 1983.

329

