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Abstract 
This paper presents an approach to automatically 

identify recurrent software failures using symptoms, in 
environments where many users run the same soft- 
ware. The approach is based on observations that 
the majority of field software failures in  such envi- 
ronments are recurrences and that failures due to a 
single fault often share common symptoms. The pa-  
per proposes the comparison of failure symptoms, such 
as stack traces and symptom strings, as a strategy for 
identifying recurrences. This diagnosis strategy is a p -  
plied using the actual field software failure data. The 
results obtained are compared with the diagnosis and 
repair logs b y  analysts. Results of such comparisons 
using the failure, diagnosis, and repair logs in two 
Tandem system software products show that between 
75% and 95% of recurrences can be identified success- 
fully b y  matching stack traces and symptom strings. 
Less than 10% of faults are misdiagnosed. These re- 
sults indicate that automatic identification of recur- 
rences based on their symptoms is possible. 

1 Introduction 
A field software failure can occur due to a known 

fault, a newly found fault, or an unidentified fault. 
Here these failures are referred to as a “recurrence,” 
“first occurrence,” or “unidentified,” respectively. 
[Lee93a] showed that about 72% of reported field soft- 
ware failures in Tandem systems are recurrences. Con- 
sidering that a quick succession of failures at a site, 
which are likely to be due to the same fault, are often 
reported in a single failure report, the actual percent- 
age of recurrences can be higher. Recurrences are not 
unique in Tandem systems. A similar situation ex- 
ists in IBM systems [Adams84] and AT&T systems 
[Levendel]. This shows that the software development 
process is not the only important factor. Recurrences 
can seriously degrade software dependability in the 
field. 

Recurrences exist for several reasons. First, design- 
ing and testing a fix of a problem can take a significant 
amount of time. In the meantime, recurrences can oc- 
cur at  the same site or at  other sites. Second, the 
installation of a fix sometimes means a planned out- 
age. This may force users to postpone the installation 
and cause recurrences. Third, a purported fix of a 
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problem can fail. Finally and probably most impor- 
tantly, users who did not experience problems due to 
a certain fault often hesitate to install an available fix 
for fear that doing so will cause new problems, as is 
sometimes the case with fixes. 

1) more failures 
than predicted based on the number of faults, 2) 
wasted resources due to repeated data collection, re- 
porting, and diagnosis of the same problem, and 3) 
delayed service to users even if solutions to problems 
are available. Preventive maintenance, which refers 
to the process of fixing a software fault in a user sys- 
tem when the fault did not cause a problem in the 
system, can potentially reduce the number of recur- 
rences. But it costs resources. Besides, faults in a fix 
can cause new problems in user systems. Based on the 
failure and shipment data in IBM products, [Adams84] 
proposed that preventive maintenance be limited to a 
small number of highly visible faults. This result and 
the above reasons for recurrence indicate that recur- 
rences will continue to be a significant part of field 
software failures. 

In this paper, we present an approach to automat- 
ically identify recurrences based on their symptoms. 
The approach is based on an observation that fail- 
ures due to the same fault often share common symp- 
toms [Lee93a]. Specifically, we propose the compar- 
ison of stack traces and symptom strings as a strat- 
egy for identifying (i.e., diagnosing) recurrences. A 
stack trace is the history of procedure calls made by 
the active process at  the time of a failure. It repre- 
sents the software function that detected a problem. 
A symptom string uniquely identifies the code loca- 
tion at  which a problem was detected. We applied 
the proposed diagnosis strategy using the failure data 
from two Tandem system software products. We then 
compared the results obtained with the actual Tandem 
diagnosis and repair logs. Results of the comparison 
showed that between 75% and 95% of recurrences can 
be identified successfully by matching stack traces and 
symptom strings. Less than 10% of faults are misdi- 
agnosed. These results indicate that recurrences can 
be identified automatically based on their symptoms. 

The diagnosis strategy is currently being imple- 
mented as an automatic diagnosis tool. The tool is 
envisioned to monitor many user systems connected 

The impact of recurrences are: 
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by an on-line alarm system. Given a failure alarm, 
the tool will extract a stack trace and a symptom 
string from the failed machine, compare these with 
those from past failures, and determine whether the 
failure is a recurrence or due to a new fault. Such 
a fully-integrated tool is not up and working at  this 
point. The benefits of developing and using such a 
diagnosis tool are 1) saving the wasted human effort 
of reporting and diagnosing the same problem repeat- 
edly and 2) identifying an available fix or a workaround 
rapidly. 

2 Related Work 
Measurements on software errors have been per- 

formed by researchers. Some recent studies are the 
following. A census of Tandem system availability 
[Gray901 has shown that,  as the reliability of hard- 
ware and maintenance improves significantly, software 
becomes the major source (62%) of outages in the 
Tandem system. [Sullivan91] investigated software de- 
fects and their impact on system availability using the 
data from the IBM/MVS system. An approach to use 
observed software defects to provide feedback on the 
development process was proposed in [Chillarege92]. 
[Lee93b] discussed a methodology for analyzing op- 
erating system fault tolerance and demonstrated the 
methodology through three case studies. 

Symptoms of faults in computer systems have been 
studied using error logs. An information organization 
and data reduction concept, called tuple ,  for fault pre- 
diction was developed in [Tsao83]. Separation of an 
error log into transient and intermittent events, and 
failure prediction based on the shape of the interar- 
rival time function were discussed in [LinSO]. A prob- 
abilistic methodology for recognizing the symptoms of 
persistent problems was proposed and illustrated us- 
ing error data collected from an IBM 3081 and two 
CYBER systems [IyerSO]. 

Failure diagnosis attempts to locate the under- 
lying faults of failures. Symptom directed diagno- 
sis of system faults was discussed in [Maxion85]. 
[Latham861 discussed an expert system to help in 
analyzing crashes of the VMS operating system us- 
ing the crash dump files and system event logs as 
data. [Maxion931 studied the detection and discrimi- 
nation of network faults based on network traffic sig- 
natures. The recreate problem in identifying and di- 
agnosing software failures in the field was discussed in 
[Chillarege93]. 

3 Measurements 
The Tandem Nonstop' system is a message-based 

multiprocessor system designed for on-line transac- 
tion processing (OLTP). The Tandem system software 
halts the processor on which it is running when it de- 
tects a nonrecoverable error. When a processor halt 
occurs, a memory dump is taken from the halted pro- 
cessor and sent to Tandem in the form of a Tandem 
Product Report (TPR). All diagnosis actions taken by 
analysts including the log of memory dump analysis 
are appended to each TPR.  

' N o n s t o p  is a trademark o f  Tandem Computers Inc. 

Failures in two Tandem system software products 
are used in this study. One product implements the 
low-level functions to support database applications 
and is referred to as DB in this paper. The other prod- 
uct implements network communication functions and 
is referred to as DC. These products run as processes 
and serve requests from user applications. Among an- 
alysts, DB is known to be robust, while DC is known 
to be not robust. 

We first extracted all user-generated TPRs caused 
by faults in the two system software products for the 
past few years. We then extracted all preceding TPRs 
due to the same causes. During the measurement pe- 
riod, the products were modified many times due to 
bugfixes and minor enhancements. There was also a 
major revision. Both products are written in Transac- 
tion Application Language (TAL), which is similar to 
C. The size of each product is on the order of lo5 lines 
of commented source code. In this paper the terms 
processor halt and fai lure were used interchangeably. 

4 Diagnosis Strategy 
A memory dump captures the processor state at  the 

time of a failure. Given a dump, analysts investigate 
key failure symptoms such as the software funct,ion 
being executed, the apparent, reason for the halt, and 
the error pattern (see Figure 1). Based on the symp- 
toms, they attempt to identify the underlying fault by 
reasoning back through the error generation and prop- 
agation process. This diagnosis requires experience, a 
detailed knowledge of the operating system, and ex- 
tensive reasoning. Although software failure diagnosis 
is a complex task that is hard to automate, it has been 
observed that failures due to the same software fault 
often have identical stack traces [Lee93a], suggesting 
that it may be possible to identify recurrences based 
on their symptoms. 

A diagnosis strategy consists of a set of common 
symptoms and associated matching scheme to be used 
for identifying recurrences. The diagnosis strategy is 
determined once by off-line evaluation. 

Memory Dump 

Underlying Error Generation 

and Propagation 

Key Symptoms 

- Reason for halt _ _ _ _ _ _ _ _ _ _  
- Active s/w function 
- Error pattern 

Error Generation 

and Propagation 

Key Symptoms 

- Reason for halt _ _ _ _ _ _ _ _ _ _  
- Active s/w function 
- Error pattern 

I I 

Figure 1: Software Failure Diagnosis 

4.1 Common Symptoms 
A question to ask is: What are the symptoms that 

are usually shared by the failures due to the same 
fault? Such common symptoms will be useful for iden- 
tifying recurrences. Our experience shows that failures 
due to the same fault often share two types of common 
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Halt code + %00104 into PAGEFAULT 
TOS + %00365 into GETACCTENTRY 

%00220 into GETTILEOPJNPUTBUF 
%00052 into READSETUP 
%00015 into READ-RQST 
%00446 into MAINLOOP 

Figure 2: Sample Stack Trace with Offsets 

symptoms: 1) certain local and shared data (data-  
oriented symptoms) and 2 )  code that was being exe- 
cuted (code-oriented symptoms). Code-oriented symp- 
toms capture information such as the active process 
at  the time of failure, the software function being ex- 
ecuted (i.e., stack trace), and the exact code location 
where a problem was found (i.e., symptom string). 
Examples of data-oriented symptoms are the values of 
parameters passed between procedures in a stack trace 
and the state of certain local and global variables. In 
this study, we focused on the use of stack traces and 
symptom strings because we used failure reports (i.e., 
TPRs) generated by analysts, not actual dumps. Full 
data-oriented symptoms were not usually recorded in 
the failure reports, although they were available from 
the dumps. 

Figure 2 shows a stack trace extracted from a fail- 
ure. Each line represents a procedure, and the as- 
sociated number represents the offset of the code lo- 
cation (i.e., the machine instruction) that called the 
next procedure from the beginning of the procedure, 
in octal words. In Figure 2 the (system) process that 
halted the processor is normally sitting in the pro- 
cedure MAINLOOP. When the process receives a re- 
quest, it serves the request by calling necessary proce- 
dures. In this case, the process detected a nonrecov- 
erable error during the execution and halted the pro- 
cessor on which it is running. The set of procedures 
shown in Figure 2 is a stack trace for the failure. Each 
software failure has its stack trace. 

The first line from the top shows an error handling 
procedure. There is an error handling procedure and 
associated halt code for each type of problem detection 
defined by software developers and system designers. 
In the sample shown in Figure 2, the error handling 
procedure shows that a page fault occurred while exe- 
cuting a code section in which a page fault is not sup- 
posed to occur. The actual stack trace consists of the 
procedure names beginning from the second line. The 
stack trace represents the software function that de- 
tected the problem. It is not necessarily related to the 
location of the underlying fault. The first procedure 
from the top, except for the error handling procedure, 
is called the procedure a t  the top of the stack (TOS) 
in this study. 

The procedure a t  the TOS and the associated offset 
(i.e., “%00365 into GET-ACCTENTRY’ in Figure 2), 
when combined with the software version information, 
uniquely identifies the code location at  which prob- 
lems were detected. The software version needs to be 
known because the procedure offset may change due 

to  bug fixes or enhancements. DB developers designed 
the code such that when errors are detected by consis- 
tency checks (i.e., explicit software checks), an ASCII 
string (called symptom string) is inserted at  the des- 
ignated location of the process stack before asserting 
a processor halt, so that analysts can read it and rec- 
ognize the location of problem detection regardless of 
software version. The symptom string consists of three 
parts that identify the source file name, the procedure 
name, and the software check that detected a problem. 

TK-PROCESS-- 
MONITOR- TKCKPT Failure 

Exercised 

NEXTREQ 

Y L  

MAINLOOP 

Figure 3: Detection near Faulty Code 

PROTOCOL r” xALL,g- 

DCTS SETOCB 

Figure 4: Detection after Corruption in Shared Data 

Two extremes exist. First, a software fault can 
cause failures with different symptoms as illustrated 
in Figure 3. The figure shows a case in which 
a problem was detected near the faulty code sec- 
tion. A circle represents a procedure call and an 
arrow represents the execution within a procedure. 
The figure shows a failure in which the base proce- 
dure MAINLOOP called the procedure NEXTREQ, 
which in turn called the procedure MONITORPRI- 
MARY. MONITORPRIMARY called the procedure 
TK-PROCESS-TK-CKPT in which a fault was ex- 
ercised and a halt was asserted. In another failure, 
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the same thing happened except that MAINLOOP 
reached MONITORPRIMARY through the procedure 
INITIALIZE. This was also shown in the figure. The 
chain of procedure calls forms a stack trace and is 
represented by a set of connected solid arrows in the 
figure. The dotted arrows represent a pair of a proce- 
dure call and return that does not explicitly appear in 
a stack trace. Because the software structure is modu- 
lar, there can be different program paths to reach the 
faulty code section. Figure 3 shows two such paths. 
Each of the paths gives a distinct stack trace. 

Figure 4 shows a case in which a wide range of 
corruption occurred in shared data. The dotted lines 
represent accesses to the shared data. The underly- 
ing fault was a developer’s misunderstanding of data 
structure. In this case, any software function can de- 
tect some of the errors and assert a halt. This would 
lead to widely different stack traces, problem detec- 
tion locations, and error patterns. Figure 4 shows two 
very different stack traces. 

The second extreme to consider is that differ- 
ent faults can cause failures with identical symp- 
toms. There was a case in which a processor 
halt was asserted while executing the procedure 
DC-LV4_PROTOCOLl which was called by the base 
procedure DCTS. The underlying fault was not pro- 
viding a routine to handle a rare but legitimate se- 
quence of events, which led the system to an inconsis- 
tent state. This failure scenario and the left-hand-side 
stack trace in Figure 4 show that different faults can 
cause identical symptoms (i.e., identical stack traces 
in this case). 

4.2 Matching - 
Once a set of common symptoms is determined, the 

next question is: How do we compare failure symp- 
toms (i.e., particular values of the common symptoms 
that were chosen to be used for the diagnosis)? Three 
types of matching can be considered: complete match- 
ing, partial matching, and weighted matching. Com- 
plete matching means that two failures are declared 
to be due to the same fault if their failure symp- 
toms (e.g., two stack traces extracted from the two 
failures) are identical. Partial matching means two 
failures are declared to be due to the same fault if 
their failure symptoms are within a certain distance 
from each other, based on a predefined measure of 
distance. Partial matching can allow us to make a 
certain tradeoff under the two extremes discussed in 
Section 4.1. This issue will be discussed further in the 
next subsection and Section 6. Weighted matching is 
necessary when using several types of common symp- 
toms. In weighted matching, a measure of similarity of 
two failures is determined by comparing their values 
of each type of common symptom. These measures 
are then combined to form an overall measure that 
represents the similarity of two failures in their symp- 
toms, based on their weights. The weights for differ- 
ent types of common symptoms can be determined by 
an iterative performance evaluation and based on the 
knowledge of software structure and functionality. 

In this study, we used the complete and partial 
matching of stack traces. Since the symptom string 

is a single piece of information, only complete match- 
ing can be used for matching symptom strings. 
4.3 Evaluation Method 

To evaluate the effectiveness of the proposed diag- 
nosis strategy under the extremes described in Sec- 
tion 4.1, we considered fault clusters and symptom 
clusters. A fault cluster consists of all failures due to 
a fault. In this study fault clusters were formed based 
on Tandem diagnosis and repair logs. Given a set of 
failures, the set of fault clusters is unique. A symptom 
cluster consists of all failures that share certain com- 
mon symptoms. As far as the diagnosis is concerned, 
failures in the same symptom cluster are regarded as 
the manifestations of the same fault. Each choice of 
common symptoms and associated matching scheme 
(i.e., each diagnosis strategy) may give a new set of 
symptom clusters. 

(a) Join 

Symptom Cluster 1 Fault j 

(b) Split 
- C l u s t e r  m 

w Symptom Cluster o 

Figure 5: Join and Split 

A one-to-one correspondence between fault clusters 
and symptom clusters would be ideal, but hard to 
achieve. We considered two general situations to de- 
scribe the imperfectness of a diagnosis strategy: join 
and split (Figure 5). A join means that failures due to 
more than one fault are grouped into a single symp- 
tom cluster. From the perspective of the diagnosis, 
it represents the possibility of a misdiagnosis. Two 
scenarios are possible. First, a failure due to a new 
fault can be declared as a recurrence of a previously 
reported fault. Second, a recurrence of a fault can 
be declared as a recurrence of another fault. A split 
means that failures due to a single fault are divided 
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into multiple symptom clusters. From the perspective 
of the diagnosis, it represents a repeated diagnosis of 
the same fault because it means that a recurrence is 
declared as a first occurrence. 

Let’s assume that using a particular diagnosis strat- 
egy leads to N joins and M splits. Also let Ji be the 
number of unique faults involved in the i-th join, and 
Sj be the number of symptom clusters involved in the 
j - th  split. Then, the following measures of efficiency 
can be defined: 

F m s d x  E Fmisdiagnosis,mas 

E M a x i m u m  number of f au l t s  misdiagnosed 

N 

= (Ji - 1) 
i = l  

Frpdx E Frepeated-diagnosis,maz 

E M a x i m u m  number of repeated diagnoses 

M 

= E(Si - 1) 
i=l 

Scrdn Scorrect - diagnosis ,min 

E M i n .  number o f  recurrences diagnosed correctly 

= Number  of recurrences - Frpdx (3)  

The actual number of misdiagnoses can be smaller 

than Fmisdiagnosis,max for the following reasons: 
0 Overlaps in joins and splits: For example, two 

faults can generate two symptom clusters as a re- 
sult of two joins and two splits. In this case, the 
actual number of misdiagnoses is at most one, not 
two as calculated from Equation 1. 

0 Nonoverlap of fault manifestation windows: Even 
if two faults cause failures with identical symp- 
toms, if one fault appears after the other is com- 
pletely fixed in the field, there can be no misdi- 
agnosis. In this study, if the last failure due to a 
fault and the first failure due to another fault oc- 
curred more than six months apart in such cases, 
we assumed that there is no misdiagnosis. 

Frepeated-diagnosis,max and Scorrect-diagnosis,min Pro- 
vide a maximum and a minimum respectively because 
of the first reason listed above for Fmisdiagnosis,max. 

Note that partial matching uses a less strict rule 
than complete matching in building symptom clusters 
and therefore generates fewer symptom clusters. This 
means that,  when compared with complete matching, 
partial matching leads to a greater or equal number of 
joins and a lesser or equal number of splits. Therefore, 
partial matching can be used to increase the probabil- 
ity of correct diagnosis, at  the cost of increasing the 
probability of misdiagnosis. 

4.4 Cost of Misdiagnosis 
A question to ask here is: What is the cost of misdi- 

agnosis in an automated diagnosis environment? Con- 
sider that two faults (faults A and B) cause failures 
with identical symptoms. Fault A already caused a 
failure, and a fix for the fault is available. When fault 
B causes a failure for the first time, it will be treated as 
a recurrence of fault A ,  and the fix for fault A will be 
recommended by the tool. Then a concern is: What 
if fault B keeps causing failures? A similar concern 
exists in the case of an incorrect fix. Consider that a 
purported fix of fault C fails to fix the fault. When 
fault C causes another failure with identical symptoms 
at  another site, the tool will declare it as a recurrence 
of fault C and recommend the incorrect fix. As a re- 
sult, fault C may keep causing failures. 

Both of these situations can be handled by associat- 
ing each fault in the failure database with the software 
version information that is supposed to contain a fix 
for the fault. With this information, when fault B or 
C causes a failure at  a site that installed a fix for the 
fault, the tool will realize that the failure is due to an- 
other fault or due to an incorrect fix and recommend 
the diagnosis of the problem by human analysts. In 
the first situation, after a fix for fault B is made, when 
fault A or B causes a failure, the tool will recommend 
the installation of fixes for both faults A and B. In 
both situations, the cost of a misdiagnosis is the time 
between initial incorrect diagnosis and eventual cor- 
rect diagnosis. Considering the implementation of a 
diagnosis strategy as an automatic tool, more empha- 
sis can be put on reducing Fmisdiagrsosis,max than on 
increasing Scorrect-diagnosis,min. 

5 Diagnosis Environment 
Figure 6 illustrates the type of automatic diagnosis 

environment envisioned. The diagnosis tool is con- 
nected with many user systems by an on-line alarm 
system. All previously reported failure symptoms and 
the associated information such as underlying faults 
and fixes are stored in a database. On a failure alarm, 
the tool accesses the system that sent the alarm, ex- 
tracts the values of the common symptoms (i.e., a 
stack trace and a symptom string), and compares 
them with those of previously reported faults in the 
database. If a match is found in the database, it is 
declared as a recurrence of the corresponding fault; 
otherwise, it is declared to be due to a new fault. In 
the case of recurrence, it also identifies an available fix. 
After the diagnosis, the database is updated with new 
failure data. The diagnosis strategy is determined a 
priori, by off-line evaluation. The tool is built based 
on the selected diagnosis strategy. 

The environment shown in Figure 6 involves con- 
nections with many user systems and a database, and 
cooperation with other software service tools. Such 
a fully-integrated environment is not up and working 
at  this point, although some individual parts exist. 
Note that,  in such a diagnosis environment, the terms 
matching and clustering can be used interchangeably. 
That is, “found a matching symptom in the database” 
(see Figure 6) and “clustered together with a symptom 
in the database” will have identical meanings. 
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- Fault & Fix 
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I 
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I 
I Database 

Update - - - - - - - - 
No 

First 
Occurrence Recurrence 

Common Symptom 

Stack Trace 

Problem Detection Fraction (%) 

detection within DB 
detection outside DB 

detection within DB (13) 
detection outside DB 

Virtual Memory Protection 

Hane 

#Joins #Splits Fmsdz Scrdn 

2 9 2{0} 28 

Table 1: Problem Detection Profile (DB) 

I (78 TPRs, 39 faults) I 
{ }: nonoverlap of fault manifestation windows 

Figure 6: Diagnosis Environment Envisioned Table 2: Complete matching of Stack Traces (DB) 

6 Evaluation of Diagnosis Strategies 

This section evaluates the effectiveness of the pro- 
posed diagnosis strategy using the field failure data in 
two Tandem software products. The thrust of the eval- 
uation is to investigate the range of effectiveness of the 
proposed diagnosis strategy and its variations. Ideally 
we would have evaluated the strategies using all fail- 
ures. We used failures in two products due to time 
constraint. Given this limit, we selected two prod- 
ucts with widely different reputations among Tandem 
analysts in terms of their quality, hoping that an eval- 
uation using failures in the two products would give 
us a range of effectiveness. 
6.1 Evaluation Using Failures in DB 

Table 1 shows a breakdown of the 152 failures in 
DB, based on how the problems were detected. The 
numbers inside parentheses represent a further subdi- 
vision inside a class. The failures occurred due to 55 
unique faults. The table shows that about 85% per- 
cent of the problems were detected while executing 
the DB code and 72% of the problems were detected 
by the consistency checks in DB. Only the 130 failures 
detected while executing the DB code were considered 
because these failures and the failures detected outside 
DB naturally have different code-oriented symptoms. 

Using Field Data 

6.1.1 Matching Stack Traces 

Although the stack trace exists in all failures, not all 
TPRs contained stack traces. This usually happened 
when there were many recurrences due to a single 
fault. In TPRs reporting later occurrences, analysts 
sometimes just left pointers to the TPRs that ana- 
lyzed previous occurrences, rather than describing the 
detailed symptoms. Our experience shows that this 
is more likely to happen when later occurrences share 
the same symptoms with early occurrences. Out of 

130 TPRs, 78 contained stack traces. These failures 
occurred due to 39 unique faults. Note that the recur- 
rence rate in the data set became much lower than its 
actual value. The average number of procedures in a 
stack trace (i.e., the average length of a stack trace) 
was 5.7. 

Table 2 shows the effectiveness of the diagnosis 
when symptom clusters were constructed by the com- 
plete matching of stack traces. The table shows that,  
with the complete matching of stack traces, a t  least 
72% (28 out of 39) of the recurrences could have been 
identified correctly. (We think that this percentage 
would be higher if all TPRs contained stack traces.) 
The cost of using such a diagnosis is the misdiagnosis 
of a t  most two faults. In each join, two different faults 
affected the processor state in the same manner: a ta- 
ble entry was missing due to the faults. The problems 
were detected when attempting to locate a nonexist- 
ing entry. They were detected at  an identical location 
while executing the same function. So the joins were 
unavoidable with code-oriented symptoms. The data 
showed that,  in each join, the two faults had nonover- 
lapping manifestation windows. Therefore the actual 
number of misdiagnoses was zero, which is shown in- 
side a pair of braces in Table 2. Including the halt 
code in constructing symptom clusters had negligible 
effect: it  decreased Scqrrect-diagnosis,maz by one. This 
was because many failures were detected by consis- 
tency checks and had identical halt codes. 

Partial matching can reduce the number of splits a t  
the cost of increasing the number of joins. We inves- 
tigated the patterns of stack traces in the nine splits 
in Table 2. The splits were mainly due to  different 
program paths to reach the same errors. As a result, 
different stack traces causing the splits often had an 
identical procedure at  the TOS. Two common pat- 
terns of differences in the splits were: 1) stack traces 
were much different and 2) stack traces were the same 
except for minor differences in the middle. Based on 
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Heuristics #Joins #Splits 

Differ-by-one 7(+5) 5(-4) 
Differ-by-one & the same 

Contain-the-ot her 
Contain-the-other & the same 

procedure at the TOS 

procedure at the TOS 3(+1) 5(-4) 

Common Symptom 
Symptom string 
(110 TPRs, 39 faults) 

Table 3: Partial Matching of Stack Traces (DB) 

#Joins #Splits Fmadz Scrdn 

5 4 8{1} 67 

these patterns, the following heuristics were consid- 
ered for the partial matching of stack traces: 

If two stack traces with the same length differ 
from each other by no more than one procedure, 
group them-into the same symptom cluster. This 
heuristic is called differ-by-one. Note that re- 
peated applications of this heuristic can cluster 
together stack traces that differ by more than one 
procedure. 
Apply the differ-by-one heuristic only if the pro- 
cedures at  the TOS are the same. 
If one stack trace includes all procedures in the 
other without regard to their order, group them 
into the same symptom cluster. This heuristic is 
called contain-the-other. 
Apply the contain-the-other heuristic only if the 
procedures a t  the TOS are the same. 

Table 3 shows the results of the partial matching of 
stack traces. The numbers inside the parentheses indi- 
cate the differences from the numbers when complete 
matching is used (Table 2). The table shows that the 
procedure at  the TOS is a useful common symptom. 
Including it prevented the increase in the number of 
joins appreciably. With the “differ-by-one and same 
procedure a t  the TOS” heuristic, at least 87% (34 out 
of 39) of the recurrences could have been identified 
correctly. The number of joins increased by one, but 
the actual number of misdiagnoses was still zero due 
to the nonoverlap of fault manifestation windows. The 
contain-the-other heuristic was not effective. 

6.1.2 Matching Symptom Strings 

The results in the previous subsection indicated that 
the code location at  which a problem is detected can 
be a useful common symptom. As described in Sec- 
tion 4.1,  the DB symptom string uniquely identifies 
the code location of problem detection, regardless of 
software version. In fact, DB developers have been us- 
ing this information as an aid for software failure di- 
agnosis [Tandem92]. All 110 TPRs reporting failures 
detected by the DB consistency checks (see Table 1) 
contained symptom strings. These TPRs were due to 
39 unique faults. 

Table 4 shows the effectiveness of the diagnosis 
when symptom clusters were formed using symptom 
strings. Since a symptom string is a single piece of in- 
formation, only complete matching is possible. Table 4 

Table 4: Matching Symptom Strings (DB) 

[ Common Symptom I #Joins #Splits Fmsdr Scrdn 

Procedure at the TOS 

Procedure at the TOS 
& offset 

(110 TPRs. 40 faults) 

Table 5: Matching Variations of the Symptom String 
(DB) 

shows that at least 94% (67 out of 71) of the recur- 
rences could have been identified correctly, at  the cost 
of misdiagnosis of less than eight faults. The data 
showed that the maximum number of misdiagnoses 
was actually one, considering the nonoverlap in fault 
manifestation windows. 

The hypothesis that matching symptom strings was 
as effective as the complete matching of stack traces 
in terms of successful diagnosis was rejected, indicat- 
ing that matching symptom strings was more effective 
in terms of successful diagnosis for the measured pe- 
riod in DB (see Table 2 and Table 4). The hypothesis 
was tested using the binomial test at  the 5% signifi- 
cance level, by treating the diagnosis of recurrences as 
Bernoulli  trial^.^ The hypothesis that matching symp- 
tom strings was as effective as the complete matching 
of stack traces in terms of misdiagnosis was not re- 
jected by the same test a t  the same level. A caution 
for the observations is that the two tables used for the 
comparison were generated using data sets with differ- 
ent recurrence rates, because analysts did not always 
record stack traces in TPRs. 

A limitation in using symptom strings is that the 
symptom string exists only when problems are de- 
tected by consistency checks. (This is discussed fur- 
ther in Section 6.2.) Note that a stack trace always 
exists, even in failures due to nonsoftware faults. 

We also used two variations of the symptom string 
to construct symptom clusters: 1) procedure at  the 
TOS, and 2) procedure at  the TOS and associated 
offset. These symptoms always exist. Table 5 shows 
the results. Although the three sets of TPRs used to 
generate Table 4 and Table 5 were different, we can 
make several observations. Compared to the use of 
symptom strings, using the procedure at the TOS in- 
creased Fmisdjagn,,sis,mar because some problems due 

Whether a diagnosis strategy is better than another can be 
answered by conducting a hypothesis test. We addressed such 
issues lightly because we used failures in only two products. 

326 



Problem Detection Fraction (%) 
Consistency Checks 51 

detection within DC (33) 
detection outside DC (19) 

Virtual Memory Protection 46 
detection within DC (31) 
detection outside DC (15) 

Hang 3 

Reason for Split 

Data corruption 
Different calling sequence 
Data dependence 

Table 6: Problem Detection Profile (DC) 

#Splits Fcpdt 

4 23 
6 6 
1 1 

Common Symptom 

Stack Trace 
Stack Trace & 

halt code 

Table 7: Complete matching of Stack Traces (DC - 
166 TPRs due to 59 faults) 

#Joins #Splits F m s d r  Scrdn 

13 11 21 77 

10 11 16{6} 77 

to different faults were detected at  different locations 
in the same procedure. Using the procedure at  the 
TOS and associated offset increased the number of 
splits appreciably because the same code location had 
different offset values in different software versions. 
One interesting observation here is that the number of 
joins has decreased. This was because of the nonover- 
lap of fault manifestation windows between different 
faults in a join. Due to the code changes between the 
windows, although they were detected at  an identical 
location, they showed different offsets. 
6.2 Evaluation Using Failures in DC 

Table 6 shows a breakdown of 258 failures caused by 
72 unique faults in DC. Compared with the problem 
detection in DB (Table I) ,  two observations can be 
made. First, the percentage of the problems detected 
by consistency checks was lower. Second, a greater 
percentage of the problems was detected while exe- 
cuting non-DC code. These observations corroborate 
with the analysts’ suspicion that this product is less 
robust. The evaluation was conducted using 166 fail- 
ures that were detected while executing the DC code 
and that contained stack traces. These failures oc- 
curred due to 59 unique faults. The average number 
of procedures in a stack trace was 3.6. 

6.2.1 Matching Stack Traces 

Table 7 shows the effectiveness of the diagnosis 
when the complete matching of stack traces was used. 
Using halt codes along with stack traces reduced the 
number of joins while not increasing the number of 
splits. This was because the percentage of the prob- 
lems detected by consistency checks was lower. So, 
the halt code, which represents how problems were 
detected, became a useful common symptom. In the 

Table 8: Breakdown of Splits (DC) 

subsequent analysis, failures with different halt codes 
were not grouped into the same symptom cluster. 

In four of the ten joins in Table 7, problems caused 
by different faults were detected at  an identical code 
location while executing the same software function. 
With just code-oriented symptoms, resolution of the 
joins was not possible. In the remaining six joins, 
problems were detected at  different locations in the 
same procedure. These joins were mainly due to 
big procedures that detected errors due to different 
faults. The existence of big procedures is attributed 
to the language’s support of subprocedures, callable 
only within a procedure. The data showed that,  with 
the use of subprocedure traces within the procedure 
at  the TOS, F m i s d i a g n O S i s , m a z  is reduced to 8, without 
affecting Seorreet-diagnoais,m,~. This suggests that the 
effectiveness of the diagnosis may be improved by rea- 
sonably sizing procedures. 

The maximumnumber of misdiagnoses was reduced 
again to 6, considering the nonoverlap of fault man- 
ifestation windows. With the complete matching of 
stack traces, halt codes, and subprocedure traces in 
the procedure at  the TOS, at  least 72% (77 out of 107) 
of the recurrences could have been identified correctly, 
at  the cost of misdiagnosis of at  most six faults. There 
was no significant difference in the performance of the 
complete matching of stack traces in the two prod- 
ucts in terms of successful diagnosis, but the complete 
matching of stack traces was more effective in DB than 
in DC in terms of misdiagnosis see Table 2 and the 

tained using the binomial test at  the 5% significance 
level. Again, a caution here is that the recurrence rate 
in the data set used for DB was lower. 

Table 8 shows a classification of the 11 splits in  Ta- 
ble 7, based on their major reasons for the splits. Data 
corruption means that a fault caused corruption in a 
shared data area. If such a corruption occurs, errors 
can be detected while executing many software func- 
tions, which is why a fault causes different stack traces. 
There were two complex faults (i.e., two splits) which 
caused corruption in shared data. It took a while to 
diagnose the problems and, in the meantime, the faults 
caused failures with 23 different stack traces. That is, 
the two faults accounted for 21 Frepeated-diagnos,J,ma~. 

Different calling sequence means that the differ- 
ences in stack traces are attributed to different pro- 
gram paths to reach and detect the same errors. Data 
dependence means that depending on the actual values 
of errors and the machine state, a problem is detected 
at different (but typically close to each other) code 
locations. In the actual case, the difference in stack 
traces was one extra procedure at the TOS. This type 

second row of Table 7). These o b servations were ob- 
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Common Symptom 

Proc. a t  the TOS 
SvmDtom string 

sameproc. at theTOS I ($1) (0)  ( + 3 )  (+6)  
Contain-the-other I (+2)  ( -1)  ($5) (+6)  

#Joins #Splits Fmsdz Scrdn 

15 10 25 89 
8 1 2  l l l f i l  83  

Heuristics' 

Differ- by-one 
Differ-by-one & the 

Table 9: Partial Matching of Stack Traces (DC) 

#Joins #Splits F m c d I  S c r d n  

(+4) (0) ($12) ($7) 

of differences in stack traces could also be observed 
in some data corruption cmes. For example, when a 
software function accesses a corrupt data region, de- 
pending on the actual values of errors and the machine 
state, a problem could be detected after an additional 
procedure call, after a return to t,he previous proce- 
dure, or within that procedure. With this observat,ion 
we added the fifth heuristic for the partial matching 
of stack traces: 

5. Given two st,ack traces, if one is longer than t,he 
other by one and the difference is an additional 
procedure at  the TOS, group t.hem into the same 
symptom cluster. This heuristic is called e x f m -  

Table 9 shows the effectiveness of the diagnosis 
when the partial matching of stack traces was used. 
The numbers inside the parentheses indicate the dif- 
ferences from the numbers when complete matching 
is used (the second row of Table 7) .  Subprocedure 
traces were not used here. All heuristics increased 
Scorrect-diagnosiJ,rnin,  but not drastically, indicating 
that the partial matching hueristics could not coni- 
pletely capture the randomness in failure symptoms 
caused by data corruption. This suggests that the er- 
ror containment capability of software can be a fact,or 
that  affects the effectiveness of tht, diagnosis. The in- 
creases in Fmisdiagnosis,maz were mainly due t,o short 
stack traces (with length of three or less) that easily 
caused joins when partial matching was used. Table (3 
shows that the procedure at  the TOS helped to sup- 
press the increase in the number of joins in DC. too. 

proc-nt- TOS. 

I stack trace 

6.2.2 Matching Symptom Strings 

The product DC did not provide the symptom 
string. Although not all TPRs recorded the failed soft- 
ware version, it was possible to determine whether two 
problems were detected at  the same code location, us- 
ing the information in TPRs (stack traces, offsets, halt 
codes, and textual descriptions by analysts) and the 
actual code. So, in the following evaluation, it was a.- 
sumed that the symptom string existed in all failures. 
We formed symptom clusters using the following three 

6 14 6 70 I 

2To avoid an excessive increase in the number of joins, the 
differ-by-one hueristic was not applied to the stack traces of 
length one, and the contain-the-other hueristic was not applied 
to the stack traces of length one or two. 

Contain-the-other & the 
same proc. at the TOS 

Extra-proc-at-TOS 

~ 

(0)  ( 0 )  ( $ 3 )  (+4) 
(+3) (-2) (t3) (+2)  

Table 10: Matching Variations of the Symptom String 
(DC - 166 TPRs due to 59 faults) 

symptoms, listed in the increasing order of strictness: 
1. Procedure at  the TOS 
2. Symptom string. 
3.  Symptom string and stack trace 
Table 10 shows that,  by matching the symptom 

string and halt code, a t  least 78% (83/107) of the re- 
currences could have been identified correctly, a t  the 
cost of the misdiagnosis of at most six faults. For t,he 
measured period, there was no significant difference 
bettween the complete matching of stack traces and 
t,he matching of symptom st.rings in their performance 
in DC (see the second rows of Table 7 and Table 10).  
Comparing Table 4 and the second row of Table 10, 
the matching of sympt,om strings wa.s more effective in 
DB t,han in DC in t,erms of successfiil diagnosis, but 
it showed similar perfornnnce in t.he two products in 
terms of misdiagnosis. These observations were again 
obtained using the binomial test at  the 5% significance 
level. 

6.2.3 Machine Code Symptom String 

Now the question is: How does an automatic tool com- 
parr tfhe two code locations of problem detection in 
DC? It can be encouraged to implement the DB-style 
symptom string in all product,s. But the percentage 
of failures t,hat have t,he symptom string (i.e., t,he per- 
centage of failures that, are detected by consistency 
checks) seems t,o depend on 6he quality of software. 
Besides, the value of the percentage can be estimat,ecl 
after the software is released to the field. 

Here we propose t,he use of a machine code symp- 
tom string. I t  is defined as the machine instructions 
in the binary form, before and after the code loca- 
t>ion of problem detection. Just, like a stack trace, it 
always exists. (There can be rare cases in which we 
cannot compare machine code symptom strings if two 
det,ection locations arc a t  different. edges of t,wo mem- 
ory pages and the connecting pages are not available.) 
A possible strategy is to use tshe DB-style syinpt,om 
string if available and otherwise to use the machine 
code symptom string. 

7 Conclusions 
In this paper, we presented an approach to au- 

t,omatically identify recurrent. software failures using 
symptoms, in environments where many customers 
run the same software. The approach is based on 
our observations that about 72% of reported field soft- 
ware failures in Tandem systems are recurrences and 
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that failures due to the same fault often share common 
symptoms. Specifically, we proposed the comparison 
of stack traces and symptom strings as a strategy for 
identifying recurrences. We applied this strategy us- 
ing failures in two Tandem system software products 
and compared the results obtained with actual Tan- 
dem diagnosis and repair logs by analysts. 

The results of the comparison showed that between 
75% and 95% of recurrences can be identified success- 
fully by matching stack traces and symptom strings. 
Less than 10% of faults are misdiagnosed. These re- 
sults indicate that automatic identification of recur- 
rences using symptoms is possible. In an automated 
diagnosis environment, the cost of a misdiagnosis is 
the time between initial incorrect diagnosis and even- 
tual correct diagnosis. The benefits of developing and 
using a tool that implements such a diagnosis strat- 
egy are 1) saving the wasted human effort of reporting 
and diagnosing the same problem repeatedly and 2) 
identifying an available fix or a workaround rapidly. 
The results of the evaluation suggested that the error 
containment capability of the software can be a fac- 
tor that determines the effectiveness of the approach. 
Proper sizing of procedures can also be a factor when 
using stack traces. 

We would like to point out several areas of fu- 
ture work. First, more diagnosis strategies need to 
be investigated. For example, the use of data-oriented 
symptoms needs to be investigated. Second, it is nec- 
essary to use failures from more software products for 
the evaluation because, in real environments, many 
products run together and the effects of faults can 
cross the boundaries between the products. Failures 
due to nonsoftware faults also need to be included, 
because whether a failure is due to a software fault 
is often unclear. Third, numerical results reported in 
this paper are specific to the measurements. However, 
the two measured products consist of many small pro- 
cedures and are written in a high-level language, which 
is common in many system software products around 
today. Our experience shows that there are no spe- 
cial requirements for the software to satisfy, for the 
approach to be effective. Still, further experiments 
are necessary to determine how well the numbers will 
project to other system software products. Also, it 
will be interesting to investigate the effectiveness of 
the approach for application software products. 
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