OSGi Working Group
OSGi Compendium

Release 8.1
December 2022

500SGi

Copyright © 2000, 2024 Eclipse Foundation
LICENSE

Eclipse Foundation Specification License - v1.0

By using and/or copying this document, or the Eclipse Foundation document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, pro-
vided that you include the following on ALL copies of the document, or portions thereof, that you use:

+ link or URL to the original Eclipse Foundation document.

- All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual represen-
tation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc. <<url to this li-
cense>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided
in any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this li-
cense, except anyone may prepare and distribute derivative works and portions of this document in software
that implements the specification, in supporting materials accompanying such software, and in documentation
of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of deriva-
tive works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOEF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written prior permission. Title to copy-
right in this document will at all times remain with copyright holders.

Preface

Implementation Requirements

An implementation of a Specification: (i) must fully implement the Specification including all its required inter-
faces and functionality; (ii) must not modify, subset, superset or otherwise extend the OSG1 Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the OSGi Name Space
other than those required and authorized by the Specification. An implementation that does not satisfy limi-
tations (i)-(ii) is not considered an implementation of the Specification and must not be described as an imple-
mentation of the Specification. "OSG1 Name Space" shall mean the public class or interface declarations whose
names begin with "org.osgi" or any recognized successors or replacements thereof. An implementation of a Spec-
ification must not claim to be a compatible implementation of the Specification unless it passes the Technology
Compatibility Kit ("TCK") for the Specification.

Feedback

This specification can be downloaded from the OSGi Documentation web site:
https://docs.osgi.org/specification/
Comments about this specification can be raised at:

https://github.com/osgilosgilissues

https://docs.osgi.org/specification/
https://github.com/osgi/osgi/issues

159

159.1
159.2
159.3
159.4
159.5
159.6
159.7
159.8
159.9
159.10
159.11
159.12

159.13
160

160.1
160.2
160.3
160.4
160.5
160.6
160.7

Table of Contents

Feature Service Specification 5
31T Y Ui] 5
FatUrE. L 6
(603411 =1 £ P 8
BUNAIES. . .o 8
CONMIGUIBLIONS. . . . e ettt e e e e e e e et e e e e et et e e 10
VaablEs. . . .o e 10
EXEENSIONS. ..o e 11
Framework LAaunChing ProPerties.ttt e et ettt ettt 13
RESOUICE VEISIONING. .« . e ettt ettt et e e et e et e et e et e et e e ettt e st e et e ettt e e e eaeeaeenaeen 14
[T T 1 N 14
OTG.0SZISEIVICEABALUNE. . . . ettt e o et e e e e e e et et e e e e e e 14
Org.05g1.SerViCe.feature.annOotation.t et tin ettt ettt et et et e e 26
RETEIENCES. .. .ot e e e 26
Feature Launcher Service Specification 27
010 Y [0t 1) T N 27
Features and Artifact REPOSILOTIES.t uue ettt ettt et e et et et et e e et et et eeeaeeaeans 28
COMMON TREIMES. . . ettt ettt ettt ettt e et e e et ettt ettt ettt ettt e e e e e eeeniaeees 30
The FEAtUrE LAUNCRET. . ..ottt ettt et e e e e e e e ettt et e ettt eans 32
The FEature RUNMTIME SEIVICE. . ..t eit ettt ettt ettt ettt et et et ettt et e et e ianes 35
org.osgi.service.featurelauncher. 39
org.osgi.service.featurelauncher.iUNTIME.t iuien ettt 44

OSGi Compendium Release 8.1

Page 3

OSGi Compendium Release 8.1

Page 4

Feature Service Specification Version 1.0 Introduction

159

159.1

159.1.1

159.1.2

Feature Service Specification

\ersion 1.0

Introduction

OSGi has become a platform capable of running large applications for a variety of purposes, includ-
ing rich client applications, server-side systems and cloud and container based architectures. As
these applications are generally based on many bundles, describing each bundle individually in an
application definition becomes unwieldy once the number of bundles reaches a certain level.

When developing large scale applications it is often the case that few people know the role of every
single bundle or configuration item in the application. To keep the architecture understandable

a grouping mechanism is needed that allows for the representation of parts of the application in-

to larger entities that keep reasoning about the system manageable. In such a domain members of
teams spread across an organization will need to be able to both develop new parts for the applica-
tion as well as make tweaks or enhancements to parts developed by others such as adding configura-
tion and resources or changing one or more bundles relevant to their part of the application.

The higher level constructs that define the application should be reusable in different contexts, for
example if one team has developed a component to handle job processing, different applications
should be able to use it, and if needed tune its configuration or other aspects so that it works in each
setting without having to know each and every detail that the job processing component is built up
from.

Applications are often associated with additional resources or metadata, for example database
scripts or custom artifacts. By including these with the application definition, all the related entities
are encapsulated in a single artifact.

By combining various applications or subsystems together, systems are composed of existing,
reusable building blocks, where all these blocks can work together. Architects of these systems need
to think about components without having to dive into the individual implementation details of
each subcomponent. The Features defined in this specification can be used to model such applica-
tions. Features contain the definition of an application or component and may be composed into
larger systems.

Essentials

« Declarative - Features are declarative and can be mapped to different implementations.

. Extensible - Features are extensible with custom content to facilitate all information related to a
Feature to be co-located.

« Human Readable - No special software is needed to read or author Features.
Machine Readable - Features are easily be processed by tools.

Entities
The following entities are used in this specification:

Feature - A Feature contains a number of entities that, when provided to a launcher can be turned
into an executable system. Features are building blocks which may be assembled into larger sys-
tems.

OSGi Compendium Release 8.1 Page 5

Feature

Feature Service Specification Version 1.0

« Bundles - A Feature can contain one ore more bundles.

- Configuration - A Feature can contain configurations for the Configuration Admin service.
- Extension- A Feature can contain a number of extensions with custom content.

« Launcher- A launcher turns one or more Features into an executable system.

- Processor - A Feature processor reads Features and perform a processing operation on them, such
as validation, transformation or generation of new entities based on the Features.

- Properties - Framework launching properties can be specified in a Feature.

Figure 159.1 Features Entity overview
Bundle o.n | Feature 0..n Text Extension
0..N
Configuration JSON Extension
Variables Artifact
Extension

159.2

Feature

Features are defined by declaring JSON documents or by using the Feature API. Each Feature has a
unique ID which includes a version. It holds a number of entities, including a list of bundles, config-
urations and others. Features are extensible, that is a Feature can also contain any number of custom
entities which are related to the Feature.

Features may have dependencies on other Features. Features inherit the capabilities and require-
ments from all bundles listed in the Feature.

Once created, a Feature is immutable. Its definition cannot be modified. However it is possible to
record caching related information in a Feature through transient extensions. This cached content is
not significant for the definition of the Feature or part of its identity.

159.2.1 Identifiers
Identifiers used throughout this specification are defined using the Maven Identifier model. They
are composed of the following parts:
« GroupID
. ArtifactID
+ Version
- Type (optional)
Page 6 OSGi Compendium Release 8.1

Feature Service Specification Version 1.0 Feature

159.2.2

159.2.2.1

159.2.3

Table 159.1

. Classifier (optional)
Note that if Version has the -SNAPSHOT suffix, the identifier points at an unreleased artifact that is
under development and may still change.

For more information see [3] Apache Maven Pom Reference. The format used to specify identifiers is as
follows:

groupId ':' artifactId (':' type (':' classifier)?)? ':' version

Feature Identifier

Each Feature has a unique identifier. Apart from providing a persistent handle to the Feature, it also
provides enough information to find the Feature in an artifact repository. This identifier is defined
using the format described in Identifiers on page 6.

Identifier type

Features use as identifier type the value osgifeature.

Attributes

A Feature can have the following attributes:

Feature Attributes
Attribute Data Type Kind Description
name String Optional The short descriptive name of the Feature.
categories Array of String ~ Optional, de- The categories this Feature belongs to. The
faults to an emp- values are user-defined.
ty array
complete boolean Optional, de- Completeness of the Feature. A Feature is
faults to false complete when it has no external dependen-
cies.
description String Optional A longer description of the Feature.
docURL String Optional A location where documentation can be
found for the Feature.
license String Optional The license of the Feature. The license only
relates to the Feature itself and not to any ar-
tifacts that might be referenced by the Fea-
ture. The license follows the Bundle-License
format as specified in the Core specification.
SCM String Optional SCM information relating to the feature.
The syntax of the value follows the Bun-
dle-SCM format. See the '‘Bundle Manifest
Headers' section in the OSGi Core specifica-
tion.
vendor String Optional The vendor of the Feature.

An initial Feature without content can be declared as follows:

{

"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:1.0.0",

“name": "The ACME app",

OSGi Compendium Release 8.1 Page 7

Comments Feature Service Specification Version 1.0

"description”:
"This is the main ACME app, from where all functionality is reached."

[%
Additional Feature entities here

*/

}
159.2.4 Using the Feature API

Features can also be created, read and written using the Feature API. The main entry point for this
APIis the FeatureService. The Feature API uses the builder pattern to create entities used in Fea-
tures.

A builder instance is used to create a single entity and cannot be re-used to create a second one.
Builders are created from the BuilderFactory, which is available from the FeatureService through
getBuilderFactory().

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder (
fs.getID("org.acme", "acmeapp”, "1.0.0"));

builder. setName ("The ACME app");

builder.setDescription("This is the main ACME app,
+ "from where all functionality is reached.");

Feature f = builder.build();

The Feature API can also be useful in environments outside of an OSGi Framework where no ser-
vice registry is available, for example in a build-system environment. In such environments the Fea-
tureService can be obtained by using the java.util.ServiceLoader mechanism.

159.3 Comments

Comments in the form of [2] J[SMin (The JavaScript Minifier) comments are supported, that is, any text
on the same line after //is ignored and any text between /* %/ is ignored.

159.4 Bundles

Features list zero or more bundles that implement the functionality provided by the Feature. Bun-
dles are listed by referencing them in the bundles array so that they can be resolved from a reposito-
ry. Bundles can have metadata associated with them, such as the relative start order of the bundle in
the Feature. Custom metadata may also be provided. A single Feature can provide multiple versions
of the same bundle, if desired.

Bundles are referenced using the identifier format described in Identifiers on page 6. This means
that Bundles are referenced using their Maven coordinates. The bundles array contains JSON objects
which can contain the bundle IDs and specify optional additional metadata.

159.4.1 Bundle Metadata

Arbitrary key-value pairs can be associated with bundle entries to store custom metadata alongside
the bundle references. Reverse DNS naming should be used with the keys to avoid name clashes

Page 8 OSGi Compendium Release 8.1

Feature Service Specification Version 1.0 Bundles

when metadata is provided by multiple entities. Keys not using the reverse DNS naming scheme are
reserved for OSGi use.

Bundle metadata supports string keys and string, number or boolean values.

The following example shows a simple Feature describing a small application with its dependen-
cies:

{

"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:1.0.1",

“name": "The Acme Application”,
"license": "https://opensource.org/licenses/Apache-2.0",
“complete”: true,

"bundles”: [
{ "id": "org.osgi:org.osgi.util. function:1.1.0" },
{ "id": "org.osgi:org.osgi.util.promise:1.1.1" },
{

"id": "org.apache. commons: commons-email:1.5",

/1 This attribute is used by custom tooling to
/1 find the associated javadoc
"org.acme. javadoc.link":
"https: //commons.apache.org/proper/commons-email/javadocs/api-1.5"

3,

{ "id": "“com.acme:acmelib:1.7.2" }

]

[%
Additional Feature entities here

*/

}
159.4.2 Using the Feature API

A Feature with Bundles can be created using the Feature API as follows:

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder (
fs.getID("org.acme", "acmeapp”, "1.0.1"));

builder. setName ("The Acme Application");

builder.setlLicense("https://opensource.org/licenses/Apache-2.0");

builder.setComplete(true);

FeatureBundle bl = factory
.newBundleBuilder (fs.getIDfromMavenCoordinates (
"org.osgi:org.osgi.util. function:1.1.0"))
.build();
FeatureBundle b2 = factory
.newBundleBuilder (fs.getIDfromMavenCoordinates (
"org.osgi:org.osgi.util.promise:1.1.1"))
.build();

OSGi Compendium Release 8.1 Page 9

Configurations

Feature Service Specification Version 1.0

159.5

159.6

FeatureBundle b3 = factory
.newBundleBuilder (fs.getIDfromMavenCoordinates (
"org.apache. commons: commons-email:1.1.5"))
.addMetadata("org.acme. javadoc. link"
"https: //commons.apache.org/proper/commons-email/javadocs/api-1.5")
.build();
FeatureBundle b4 = factory
.newBundleBuilder (fs.getIDfromMavenCoordinates (
“com.acme:acmelib:1.7.2"))
.build();

builder.addBundles(bl, b2, b3, b4);
Feature f = builder.build();

Configurations

Features support configuration using the OSGi Configurator syntax, see ???. This is specified with
the configurations key in the Feature. A Launcher can apply these configurations to the Configura-
tion Admin service when starting the system.

Itis an error to define the same PID twice in a single Feature. An entity processing the feature must
fail in this case.

Example:

{

"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:osgifeature: configs:1.0.0",
“configurations”: {
"org.apache. felix.http": {
‘org.osgi.service.http.port": 8080,
‘org.osgi.service.http.port.secure": 8443

Variables

Configurations and Framework Launching Properties support late binding of values. This enables
setting these items through a Launcher, for example to specify a database user name, server port
number or other information that may be variable between runtimes.

Variables are declared in the variables section of the Feature and they can have a default value spec-
ified. The default must be of type string, number or boolean. Variables can also be declared to not
have a default, which means that they must be provided with a value through the Launcher. This is
done by specifying null as the default in the variable declaration.

Example:
{
"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:osgifeature:configs:1.1.0",

"variables": {
"http.port": 8080,
"db.username": "scott",

Page 10

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0 Extensions

159.7

159.7.1

"db.password”: null
}

onfigurations": {
"org.acme.server.http": {
"org.osgi.service.http.port: Integer": "${http.port}"

e

"org.acme.db": {
"username": "${db.username}-user",
"password": "${db.password}"

}

}

Variables are referenced with the curly brace placeholder syntax: ${ variable-name } in the configu-
ration value or framework launching property value section. To support conversion of variables to
non-string types the configurator syntax specifying the datatype with the configuration key is used,
as in the above example.

Multiple variables can be referenced for a single configuration or framework launching property
value and variables may be combined with text. If no variable exist with the given name, then the ${
variable-name } must be retained in the value.

Extensions

Features can include custom content. This makes it possible to keep custom entities and informa-
tion relating to the Feature together with the rest of the Feature.

Custom content is provided through Feature extensions, which are in one of the following formats:

. Text- A text extension contains an array of text.
- JSON-AJSON extension contains embedded custom JSON content.
- Artifacts- A list of custom artifacts associated with the Feature.

Extensions can have a variety of consumers. For example they may be handled by a Feature Launch-
er or by an external tool which can process the extension at any point of the Feature life cycle.

Extensions are of one of the following three kinds:

- Mandatory - The entity processing this Feature must know how to handle this extension. If it can-
not handle the extension it must fail.

. Optional-This extension is optional. If the entity processing the Feature cannot handle it, the ex-
tension can be skipped or ignored. This is the default.

« Transient - This extension contains transient information which may be used to optimize the pro-
cessing of the Feature. It is not part of the Feature definition.

Extensions are specified as JSON objects under the extensions key in the Feature. A Feature can con-
tain any number of extensions, as long as the extension keys are unique. Extension keys should use
reverse domain naming to avoid name clashing of multiple extensions in a single Feature. Exten-
sions names without a reverse domain naming prefix are reserved for OSGi use.

Text Extensions

Text extensions support the addition of custom text content to the Feature. The text is provided as a
JSON array of strings.

Example:

OSGi Compendium Release 8.1 Page 11

Extensions Feature Service Specification Version 1.0
{
"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:2.0.0",
“name": "The Acme Application”,
"license”: "https://opensource.org/licenses/Apache-2.0",
"extensions": {
"org.acme.mydoc": {
“type": "text",
“text": [
"This application provides the main acme ",
"functionality."
]
}
}
}
159.7.2 JSON Extensions
Custom JSON content is added to Features by using a JSON extension. The content can either be a
JSON object or a JSON array.
The following example extension declares under which execution environment the Feature is com-
plete, using a custom JSON object.
{
"feature-resource-version": "1.0",
"id": “org.acme:acmeapp:2.1.0",
“name": "The Acme Application”,
“license": “https://opensource.org/licenses/Apache-2.0",
"extensions”: {
‘org.acme.execution-environment": {
“type": "json",
“json": {
“environment-capabilities”:
["osgi.ee; filter:=\"(&(osgi.ee=TavaSE) (version=11))\""],
"framework": “"org.osgi:core:6.0.0",
‘provided-features": ["org.acme:platform:1.1"]
}
}
}
}
159.7.3 Artifact list Extensions

Custom extensions can be used to associate artifacts that are not listed as bundles with the Feature.

For example, database definition resources may be listed as artifacts in a Feature. In the following ex-
ample, the extension org.acme.ddlfiles lists Database Definition Resources which must be handled
by the launcher agent, that is, the database must be configured when the application is run:

{

"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:2.2.0",

Page 12

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0 Framework Launching Properties

"name": "The Acme Application”,
"license": "https://opensource.org/licenses/Apache-2.0",
“complete”: true,

"bundles”: [
"org.osgi:org.osgi.util. function:1.1.0",
"org.osgi:org.osgi.util.promise:1.1.1",
“com.acme:acmelib:2.0.0"

1.

"extensions”: {
"org.acme.ddlfiles": {
"kind": "mandatory",
“type": "artifacts"
"artifacts": [
{ "id": "org.acme:appddl:1.2.1" },
{
"id": "org.acme:appddl-custom:1.0.3",
"org.acme. target": "custom-db"

}

}

As with bundle identifiers, custom artifacts are specified in an object in the artifacts list with an ex-
plicitid and optional additional metadata. The keys of the metadata should use a reverse domain
naming pattern to avoid clashes. Keys that do not use reverse domain name as a prefix are reserved
for OSGi use. Supported metadata values must be of type string, number or boolean.

159.8 Framework Launching Properties

When a Feature is launched in an OSGi framework it may be necessary to specify Framework Prop-
erties. These are provided in the Framework Launching Properties extension section of the Fea-
ture. The Launcher must be able to satisfy the specified properties. If it cannot ensure that these are
present in the running Framework the launcher must fail.

Framework Launching Properties can reference Variables as defined in Variables on page 10.
These variables are substituted before the properties are set.

Example:
{
"feature-resource-version": "1.0",
"id": "org.acme:acmeapp: osgifeature: fw-props:2.0.0",

"variables": {
"fw.storage.dir": "/tmp" // Can be overridden through the launcher

}

"extensions": {
"framework-launching-properties": {
"type": "json",
“json": {

OSGi Compendium Release 8.1 Page 13

Resource Versioning Feature Service Specification Version 1.0

159.9

159.10

159.10.1

159.11

"org.osgi. framework.system.packages.extra":
"javax.activation;version=\"1.1.1\"",
"org.osgi. framework.bootdelegation": "javax.activation",

"org.osgi.framework.storage": "${fw.storage.dir}"

Resource Versioning

Feature JSON resources are versioned to support updates to the JSON structure in the future. To de-
clare the document version of the Feature use the feature-resource-version key in the JSON docu-
ment.

{
"feature-resource-version": "1.0",
"id": "org.acme:acmeapp:1.0.0"
/%
Additional Feature entities here
*/
}

The currently supported version of the Feature JSON documents is 1.0. If no Feature Resource Ver-
sion is specified 1.0 is used as the default.

Capabilities

osgi.service Capability

The bundle providing the Feature Service must provide a capability in the osgi.service namespace
representing the services it is registering. This capability must also declare uses constraints for the
relevant service packages:

Provide-Capability: osgi.service;
objectClass:List«String>="org.osgi.service. feature.FeatureService";
uses:="org.osgi.service. feature"

This capability must follow the rules defined for the ?77?.
org.osgi.service.feature

Feature Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi.service.feature; version="[1.0,2.0)"

Page 14

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

org.osgi.service.feature

159.11.1
159.11.2
Provider Type
159.11.2.1
id
]
Returns
159.11.2.2
id
m]
Returns
159.11.2.3
pid
m]
Returns
159.11.2.4
factoryPid
name

Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.feature; version="[1.0,1.1)"

Summary

- BuilderFactory - The Builder Factory can be used to obtain builders for the various entities.

- Feature - The Feature Model Feature.

FeatureArtifact - An Artifact is an entity with an ID, for use in extensions.
FeatureArtifactBuilder - A builder for FeatureArtifact objects.
FeatureBuilder - A builder for Feature Models.

FeatureBundle - A Bundle which is part of a feature.

. FeatureBundleBuilder - A builder for Feature Model FeatureBundle objects.

. FeatureConfiguration - Represents an OSGi Configuration in the Feature Model.
FeatureConfigurationBuilder - A builder for Feature Model FeatureConfiguration objects.
FeatureConstants - Defines standard constants for the Feature specification.
FeatureExtension - A Feature Model Extension.

FeatureExtension.Kind - The kind of extension: optional, mandatory or transient.
FeatureExtension.Type - The type of extension
. FeatureExtensionBuilder - A builder for Feature Model FeatureExtension objects.

FeatureService - The Feature service is the primary entry point for interacting with the feature
model.

ID -1ID used to denote an artifact.

public interface BuilderFactory
The Builder Factory can be used to obtain builders for the various entities.

Consumers of this API must not implement this type

public FeatureArtifactBuilder newArtifactBuilder(ID id)
The artifact ID for the artifact object being built.
Obtain a new builder for Artifact objects.

The builder.

public FeatureBundleBuilder newBundleBuilder(ID id)

The ID for the bundle object being built. If the ID has no type specified, a default type of @{code jar}
is assumed.

Obtain a new builder for Bundle objects.
The builder.

public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
The persistent ID for the Configuration being built.
Obtain a new builder for Configuration objects.

The builder.

public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
The factory persistent ID for the Configuration being built.

The name of the configuration being built. The PID for the configuration will be the factoryPid + '~'
+name

OSGi Compendium Release 8.1

Page 15

org.osgi.service.feature

Feature Service Specification Version 1.0

]
Returns
159.11.2.5
name
type
kind
m]
Returns
159.11.2.6
id
u]
Returns
159.11.3
Concurrency
Provider Type
159.11.3.1
u]
Returns
159.11.3.2
]
Returns
159.11.3.3
m]
Returns
159.11.3.4
m]
Returns
159.11.3.5
m]
Returns
159.11.3.6
m]

Obtain a new builder for Factory Configuration objects.

The builder.

public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type,
FeatureExtension.Kind kind)

The extension name.

The type of extension: JSON, Text or Artifacts.

The kind of extension: Mandatory, Optional or Transient.

Obtain a new builder for Feature objects.

The builder.

public FeatureBuilder newFeatureBuilder(ID id)

The ID for the feature object being built. If the ID has no type specified, a default type of osgifeature
is assumed.

Obtain a new builder for Feature objects.

The builder.

public interface Feature
The Feature Model Feature.
Thread-safe

Consumers of this API must not implement this type

public List<FeatureBundle> getBundles()
Get the bundles.

The bundles. The returned list is unmodifiable.

public List<String> getCategories()
Get the categories.

The categories. The returned list is unmodifiable.

public Map<String, FeatureConfigurations getConfigurations()

Get the configurations. The iteration order of the returned map should follow the definition order of
the configurations in the feature.

The configurations. The returned map is unmodifiable.

public Optional<String> getDescription()
Get the description.
The description.

public Optional<String> getDocURL()
Get the documentation URL.

The documentation URL.

public Map<String, FeatureExtension> getExtensions()

Get the extensions. The iteration order of the returned map should follow the definition order of the
extensions in the feature.

Page 16

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

org.osgi.service.feature

Returns

159.11.3.7
[m]

Returns

159.11.3.8

Returns

159.11.3.9
[m]

Returns

159.11.3.10

Returns

159.11.3.11

Returns

159.11.3.12
m]

Returns

159.11.3.13
o

Returns

159.11.4

Concurrency

Provider Type

159.11.4.1

Returns

159.11.4.2
O

Returns

The extensions. The returned map is unmodifiable.

public ID getID()
Get the Feature's ID.
The ID of this Feature.

public Optional<String> getLicense()

Get the license of this Feature. The syntax of the value follows the Bundle-License header syntax. See
the 'Bundle Manifest Headers' section in the OSGi Core specification.

The license.

public Optional<String> getName()
Get the name.

The name.

public Optional«String> getSCM()

Get the SCM information relating to the feature. The syntax of the value follows the Bundle-SCM
format. See the 'Bundle Manifest Headers' section in the OSGi Core specification.

The SCM information.

public Map<String, Object> getVariables()

Get the variables. The iteration order of the returned map should follow the definition order of the
variables in the feature. Values are of type: String, Boolean or BigDecimal for numbers. The null
JSON value is represented by a null value in the map.

The variables. The returned map is unmodifiable.

public Optional<String> getVendor()
Get the vendor.

The vendor.

public boolean isComplete()
Get whether the feature is complete or not.

Completeness value.

public interface FeatureArtifact
An Artifact is an entity with an ID, for use in extensions.
Thread-safe

Consumers of this API must not implement this type

public ID getID()
Get the artifact's ID.
The ID of this artifact.

public Map<String, Object> getMetadata()
Get the metadata for this artifact.

The metadata. The returned map is unmodifiable.

OSGi Compendium Release 8.1

Page 17

org.osgi.service.feature

Feature Service Specification Version 1.0

159.11.5

Concurrency
Provider Type
159.11.5.1
key
value
[m]
Returns
159.11.5.2
metadata

]

Returns

159.11.5.3

Returns

159.11.6

Concurrency

Provider Type

159.11.6.1
bundles
m]

Returns

159.11.6.2
categories
O

Returns

159.11.6.3
configs

]

Returns

159.11.6.4
extensions

]

public interface FeatureArtifactBuilder
A builder for FeatureArtifact objects.
Not Thread-safe

Consumers of this API must not implement this type

public FeatureArtifactBuilder addMetadata(String key, Object value)
Metadata key.

Metadata value.

Add metadata for this Artifact.

This builder.

public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)
The map with metadata.

Add metadata for this Artifact by providing a map. All metadata in the map is added to any previ-
ously provided metadata.

This builder.

public FeatureArtifact build()

Build the Artifact object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

The Feature Artifact.

public interface FeatureBuilder
A builder for Feature Models.
Not Thread-safe

Consumers of this AP must not implement this type

public FeatureBuilder addBundles(FeatureBundle... bundles)
The Bundles to add.

Add Bundles to the Feature.

This builder.

public FeatureBuilder addCategories(String... categories)
The Categories.
Adds one or more categories to the Feature.

This builder.

public FeatureBuilder addConfigurations(FeatureConfiguration... configs)
The Configurations to add.

Add Configurations to the Feature.

This builder.

public FeatureBuilder addExtensions(FeatureExtension... extensions)
The Extensions to add.

Add Extensions to the Feature

Page 18

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

org.osgi.service.feature

Returns

159.11.6.5
key
defaultValue

]

Returns

Throws

159.11.6.6
variables

]

Returns

Throws

159.11.6.7

Returns

159.11.6.8
complete
O

Returns

159.11.6.9
description
[m]

Returns

159.11.6.10
docURL
o

Returns

159.11.6.11
license
O

Returns

159.11.6.12

name

This builder.

public FeatureBuilder addVariable(String key, Object defaultValue)
The key.
The default value.

Add a variable to the Feature. If a variable with the specified key already exists it is replaced with
this one. Variable values are of type: String, Boolean or BigDecimal for numbers.

This builder.

IllegalArgumentException— if the value is of an invalid type.

public FeatureBuilder addVariables(Map<String, Object> variables)
to be added.

Add a map of variables to the Feature. Pre-existing variables with the same key in are overwritten if
these keys exist in the map. Variable values are of type: String, Boolean or BigDecimal for numbers.

This builder.

IllegalArgumentException—if a value is of an invalid type.

public Feature build()

Build the Feature. Can only be called once on a builder. After calling this method the current builder
instance cannot be used any more.

The Feature.

public FeatureBuilder setComplete(boolean complete)

If the feature is complete.

Set the Feature Complete flag. If this method is not called the complete flag defaults to false.
This builder.

public FeatureBuilder setDescription(String description)
The description.
Set the Feature Description.

This builder.

public FeatureBuilder setDocURL(String docURL)
The Documentation URL.

Set the documentation URL.

This builder.

public FeatureBuilder setLicense(String license)
The License.
Set the License.

This builder.

public FeatureBuilder setName(String name)
The Name.

Set the Feature Name.

OSGi Compendium Release 8.1

Page 19

org.osgi.service.feature

Feature Service Specification Version 1.0

Returns

159.11.6.13
scm
m]
Returns
159.11.6.14
vendor
m]

Returns

159.11.7

Concurrency
Provider Type
159.11.7.1
[m]
Returns
159.11.7.2
[m]

Returns

159.11.8

Concurrency
Provider Type
159.11.8.1
key
value
m]
Returns
159.11.8.2
metadata

[}

Returns

159.11.8.3

Returns

This builder.

public FeatureBuilder setSCM(String scm)
The SCM information.

Set the SCM information.

This builder.

public FeatureBuilder setVendor(String vendor)
The Vendor.

Set the Vendor.

This builder.

public interface FeatureBundle
A Bundle which is part of a feature.
Thread-safe

Consumers of this API must not implement this type

public ID getID()
Get the bundle's ID.
The ID of this bundle.

public Map<String, Object> getMetadata()
Get the metadata for this bundle.

The metadata. The returned map is unmodifiable.

public interface FeatureBundleBuilder
A builder for Feature Model FeatureBundle objects.
Not Thread-safe

Consumers of this API must not implement this type

public FeatureBundleBuilder addMetadata(String key, Object value)
Metadata key.

Metadata value.

Add metadata for this Bundle.

This builder.

public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)
The map with metadata.

Add metadata for this Bundle by providing a map. All metadata in the map is added to any previous-
ly provided metadata.

This builder.

public FeatureBundle build()

Build the Bundle object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

The Bundle.

Page 20

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

org.osgi.service.feature

159.11.9

Concurrency

Provider Type

159.11.9.1
m]

Returns

159.11.9.2
m]
Returns

159.11.9.3
m]

Returns

159.11.10

Concurrency

Provider Type

159.11.10.1
key

value

Returns

Throws

159.11.10.2

configValues

Returns

Throws

159.11.10.3

public interface FeatureConfiguration
Represents an OSGi Configuration in the Feature Model.
Thread-safe

Consumers of this API must not implement this type

public Optional<String> getFactoryPid()
Get the Factory PID from the configuration, if any.

The Factory PID, or null if there is none.

public String getPid()
Get the PID from the configuration.
The PID.

public Map<String, Objects getValues()
Get the configuration key-value map.

The key-value map. The returned map is unmodifiable.

public interface FeatureConfigurationBuilder
A builder for Feature Model FeatureConfiguration objects.
Not Thread-safe

Consumers of this API must not implement this type

public FeatureConfigurationBuilder addValue(String key, Object value)
The configuration key.

The configuration value. Acceptable data types are the data type supported by the Configuration Ad-
min service, which are the Primary Property Types as defined for the Filter Syntax in the OSGi Core
specification.

Add a configuration value for this Configuration object. If a value with the same key was previously
provided (regardless of case) the previous value is overwritten.

This builder.

IllegalArgumentException—if the value is of an invalid type.

public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)

The map of configuration values to add. Acceptable value types are the data type supported by the
Configuration Admin service, which are the Primary Property Types as defined for the Filter Syntax
in the OSGi Core specification.

Add a map of configuration values for this Configuration object. Values will be added to any previ-
ously provided configuration values. If a value with the same key was previously provided (regard-
less of case) the previous value is overwritten.

This builder.

IllegalArgumentException—if a value is of an invalid type or if the same key is provided in different
capitalizations (regardless of case).

public FeatureConfiguration build()

Build the Configuration object. Can only be called once on a builder. After calling this method the
current builder instance cannot be used any more.

OSGi Compendium Release 8.1

Page 21

org.osgi.service.feature

Returns

159.11.11

159.11.11.1

159.11.11.2

150.11.12

Concurrency

Provider Type

159.11.12.1
]
Returns

Throws

159.11.12.2
[m)
Returns

Throws

159.11.12.3
O

Returns

159.11.12.4
O

Returns

159.11.12.5
m]
Returns

Throws

159.11.12.6

The Configuration.

public final class FeatureConstants

Defines standard constants for the Feature specification.

public static final String FEATURE_IMPLEMENTATION = "osgi.feature”

The name of the implementation capability for the Feature specification.

public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

public interface FeatureExtension

A Feature Model Extension. Extensions can contain either Text, JSON or a list of Artifacts.
Extensions are of one of the following kinds:

- Mandatory: this extension must be processed by the runtime

Optional: this extension does not have to be processed by the runtime

Transient: this extension contains transient information such as caching data that is for opti-
mization purposes. It may be changed or removed and is not part of the feature's identity.

Thread-safe

Consumers of this AP must not implement this type

public List<FeatureArtifacts> getArtifacts()
Get the Artifacts from this extension.
The Artifacts. The returned list is unmodifiable.

IllegalStateException—If called on an extension which is not of type ARTIFACTS.

public String get]SON()
Get the JSON from this extension.
The JSON.

IllegalStateException—If called on an extension which is not of type JSON.

public FeatureExtension.Kind getKind()
Get the extension kind.

The kind.

public String getName()
Get the extension name.

The name.

public List<String> getText()
Get the Text from this extension.
The lines of text. The returned list is unmodifiable.

IllegalStateException—1If called on an extension which is not of type TEXT.

public FeatureExtension.Type getType()

Get the extension type.

Page 22

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

Feature Service Specification Version 1.0 org.osgi.service.feature

Returns

159.11.13

159.11.13.1

159.11.13.2

159.11.13.3

159.11.13.4

159.11.13.5

159.11.14

159.11.14.1

159.11.14.2

159.11.14.3

159.11.14.4

159.11.14.5

159.11.15

Concurrency

Provider Type

159.11.15.1
artifact

]

Returns

159.11.15.2

text

The type.

enum FeatureExtension.Kind

The kind of extension: optional, mandatory or transient.

MANDATORY

A mandatory extension must be processed.

OPTIONAL

An optional extension can be ignored if no processor is found.

TRANSIENT

A transient extension contains computed information which can be used as a cache to speed up op-
eration.

public static FeatureExtension.Kind valueOf(String name)

public static FeatureExtension.Kind[] values()

enum FeatureExtension.Type

The type of extension

|SON
A JSON extension.

TEXT

A plain text extension.

ARTIFACTS

An extension that is a list of artifact identifiers.

public static FeatureExtension.Type valueOf(String name)

public static FeatureExtension.Type[] values()

public interface FeatureExtensionBuilder
A builder for Feature Model FeatureExtension objects.
Not Thread-safe

Consumers of this APT must not implement this type

public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)
The artifact to add.

Add an Artifact to the extension. Can only be called for extensions of type
FeatureExtension.Type. ARTIFACTS.

This builder.

public FeatureExtensionBuilder addText(String text)
The text to be added.

OSGi Compendium Release 8.1 Page 23

org.osgi.service.feature

Feature Service Specification Version 1.0

[m}

Returns

159.11.15.3

Returns

159.11.15.4
json

O

Returns

159.11.16

Concurrency

Provider Type

159.11.16.1
[m]

Returns

159.11.16.2
groupld
artifactld
version
o

Returns

159.11.16.3
groupld
artifactld
version
type
[m]

Returns

159.11.16.4
groupld
artifactld

version

type

Add a line of text to the extension. Can only be called for extensions of type
FeatureExtension.Type. TEXT.

This builder.

public FeatureExtension build()

Build the Extension. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

The Extension.

public FeatureExtensionBuilder set]SON(String json)
The JSON to be added.

Add JSON in String form to the extension. Can only be called for extensions of type
FeatureExtension.Type.JSON.

This builder.

public interface FeatureService
The Feature service is the primary entry point for interacting with the feature model.
Thread-safe

Consumers of this API must not implement this type

public BuilderFactory getBuilderFactory()
Get a factory which can be used to build feature model entities.

A builder factory.

public ID getID(String groupld, String artifactld, String version)
The group ID (not null, not empty).

The artifact ID (not null, not empty).

The version (not null, not empty).

Obtain an ID.

The ID.

public ID getID(String groupld, String artifactld, String version, String type)
The group ID (not null, not empty).

The artifact ID (not null, not empty).

The version (not null, not empty).

The type (not null, not empty).

Obtain an ID.

The ID.

public ID getID(String groupld, String artifactld, String version, String type, String classifier)
The group ID (not null, not empty).

The artifact ID (not null, not empty).

The version (not null, not empty).

The type (not null, not empty).

Page 24

OSGi Compendium Release 8.1

Feature Service Specification Version 1.0

org.osgi.service.feature

classifier
m]

Returns

159.11.16.5
coordinates

]

Returns

159.11.16.6
jsonReader
O
Returns

Throws

159.11.16.7
feature
jsonWriter
[m]

Throws

159.11.17

Concurrency

Provider Type

159.11.17.1

159.11.17.2
[m]

Returns

159.11.17.3
m]

Returns

The classifier (not null, not empty).
Obtain an ID.
The ID.

public ID getIDfromMavenCoordinates(String coordinates)

The Maven Coordinates.

Obtain an ID from a Maven Coordinates formatted string. The supported syntax is as follows:
groupld ":" artifactld (;" type (":' classifier)?)? ":' version

the ID.

public Feature readFeature(Reader jsonReader) throws IOException
A Reader to the JSON input

Read a Feature from J[SON

The Feature represented by the JSON

|OException— When reading fails

public void writeFeature(Feature feature, Writer jsonWriter) throws IOException
the Feature to write.

A Writer to which the Feature should be written.

Write a Feature Model to JSON

|OException—'When writing fails.

public interface ID

ID used to denote an artifact. This could be a feature model, a bundle which is part of the feature
model or some other artifact.

Artifact IDs follow the Maven convention of having:
- AgroupID
« Anartifact ID
A version
A type identifier (optional)
A classifier (optional)
Thread-safe

Consumers of this API must not implement this type

public static final String FEATURE_ID_TYPE = "osgifeature"

ID type for use with Features.

public String getArtifactld()
Get the artifact ID.
The artifact ID.

public Optional<String> getClassifier()
Get the classifier.

The classifier.

OSGi Compendium Release 8.1

Page 25

org.osgi.service.feature.annotation Feature Service Specification Version 1.0

159.11.17.4
m]

Returns

159.11.17.5
m]

Returns

159.11.17.6
O

Returns

159.11.17.7

Returns

159.12

159.12.1

159.12.2

Retention

Target

150.13
(1]
2]

3]

public String getGroupld()
Get the group ID.
The group ID.

public Optional<String> getType()
Get the type identifier.
The type identifier.

public String getVersion()
Get the version.

The version.

public String toString()
This method returns the ID using the following syntax:
groupld ":" artifactld (" type (":' classifier)?)? "' version

The string representation.

org.osgi.service.feature.annotation

Feature Annotations Package Version 1.0.
This package contains annotations that can be used to require the Feature Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

Summary

RequireFeatureService - This annotation can be used to require the Feature implementation.

(@RequireFeatureService

This annotation can be used to require the Feature implementation. It can be used directly, or as a
meta-annotation.

CLASS
TYPE, PACKAGE

References

JSON (JavaScript Object Notation)
https://www.json.org

JSMin (The JavaScript Minifier)
https://www.crockford.com/javascript/jsmin.html

Apache Maven Pom Reference
https://maven.apache.org/pom.html

Page 26

OSGi Compendium Release 8.1

https://www.json.org
https://www.crockford.com/javascript/jsmin.html
https://maven.apache.org/pom.html

Feature Launcher Service Specification Version 1.0 Introduction

160

160.1

160.1.1

160.1.2

Feature Launcher Service
Specification

\ersion 1.0

Introduction

The Feature Service Specification on page 5 defines a model to design and declare Complex Applica-
tions and reusable Sub-Components that are composed of multiple bundles, configurations and oth-
er metadata. These models are, however, only descriptive and have no standard mechanism for in-
stalling them into an OSGi framework.

This specification focuses on turning these Features into a running system, by introducing the Fea-
ture Launcher and Feature Runtime. The Feature Launcher takes a Feature definition, obtains a
framework instance for it and then starts the Feature in that environment. The Feature Runtime ex-
tends this capability toa running system, enabling one or more Features to be installed, updated,
and later removed from a running OSGi framework.

The Launcher and Runtime also interact with the Configuration Admin Service, that is, they pro-
vide configuration to the system if it is present in the Feature being launched or installed.

Essentials

« Dynamic- The Feature Runtime dynamically adds, updates and removes Features in a running
system.

« Parameterizable- Feature installation may be customised using local parameters if the Feature
supports it.

- Zero code - The Feature Launcher can launch a framework containing an installed Feature in an
implementation independent way without a user writing any code .

Entities

The following entities are used in this specification:

Feature - A Feature as defined by the Feature Service Specification on page 5
Artifact Repository - A means of accessing the installable bytes for bundles in a Feature

« Feature Launcher - A Feature Launcher obtains an OSGi Framework instance and installs a Feature
into it.

- Framework- A running implementation of the OSGi core specification.

« Launch Properties - Framework launching properties defined in a Feature.

« Feature Parameters - Key value pairs that can be used to customise the installation of a Feature.
Configuration- A configuration for the Configuration Admin service.

Feature Runtime - A Feature Runtime is an OSGi service capable of installing Features into the run-
ning OSGi framework, removing installed Features from the OSGi framework, and updating an
installed Feature with a new Feature definition.

Installed Feature - A representation of a Feature installed by the Feature Runtime.
Installed Configuration - A representation of a Configuration installed by the Feature Runtime.

OSGi Compendium Release 8.1 Page 27

Features and Artifact Repositories Feature Launcher Service Specification Version 1.0

Figure 160.1

Features Entity overview

ArtifactRepository o.n | Featurelauncher o.n Framework

ArtifactRepositoryFactory n | FeatureRuntime

160.2

160.2.1

160.2.1.1

InstalledFeature

0..n

InstalledConfiguration

Features and Artifact Repositories

OSGi Features exist either as JSON documents, or as runtime objects created by the Feature Service
API The primary purpose of a Feature is to define a list of bundles and configurations that should be
installed, however the Feature provides no information about the location of the bundle artifacts. A
key challenge with installing a Feature is therefore finding the appropriate artifacts to install.

The ArtifactRepository interface is designed to be implemented by users of the Feature Launcher
Service to provide a way for the Feature Launcher Service to find an installable InputStream of bytes
for a given bundle artifact using the getArtifact(ID) method. Artifact Repository implementations
are free to use any mechanism for locating the bundle artifact data. If no artifact can be found for
the supplied ID then the implementation of the Artifact Repository should return null. If the Artifact
Repository throws an exception then this must be logged by the Feature Launcher Service and then
treated in the same manner as a null return value.

The Artifact Repository Factory

In order to support the Zero Code objective of this specification, and to simplify usage for most users,
the ArtifactRepositoryFactory provides a factory for commonly used repository types.

Obtaining an Artifact Repository Factory

The Artifact Repository Factory is useful both for the Feature Launcher and the Feature Runtime,
and as such it must be easy to access both inside and outside an OSGi framework. The Feature
Launcher Service implementation must provide an implementation of the Artifact Repository Fac-
tory interface. A user of the Artifact Repository Factory service may use the following ways to find
an instance.

‘When outside OSGi:

Using the Java ServiceLoader API to find instances of
org.osgi.service.featurelauncher.ArtifactRepositoryFactory

From configuration, and then using Class.forName, getConstructor() and newInstance()

Page 28

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 Features and Artifact Repositories

160.2.1.2

160.2.1.3

By hard coding the implementation and using the new operator.
When inside an OSGi framework:

Using the OSGi service registry to find instances of
org.osgi.service.featurelauncher.ArtifactRepositoryFactory

Using the Java ServiceLoader API and the OSGi Service Loader Mediator to find instances of
org.osgi.service.featurelauncher.ArtifactRepositoryFactory

By hard coding the implementation type and using the new operator.

Local Repositories

A Local Repository is one that exists on a locally accessible file system. Note that this does not re-
quire that the file system is local, and technologies such as NFS or other network file systems would
still be considered as Local Repositories. The key aspects of a Local Repository are that:

The root of the repository can be accessed and resolved as a java.nio.file.Path or file: URL

The repository uses the Maven2 Repository Layout
Add bibliography link to https://maven.apache.org/repository/layout.html#maven2-reposi-
tory-layout

An Artifact Repository representing a Local Repository can be created using the
createRepository(Path) method, passing in the path to the root of the repository. A NullPointerEx-
ception must be thrown if the pathisnull and an IllegalArgumentException must be thrown if the
path does not exist, or represents a file which is not a directory.

An Artifact Repository representing a Local Repository can also be created using the
createRepository(URI,Map) method, passing a URI using the file scheme which points to the root of
the repository. A NullPointerException must be thrown if the URIisnull and an lllegalArgumentEx-
ception must be thrown if the path does not exist, or represents a file which is not a directory.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

Remote Repositories

A Remote Repository is one that exists with an accessible http or https endpoint for retrieving arti-
fact data. Note that this does not require that the repository is on a remote machine, only that the
means of accessing data is via HTTP requests. The key aspects of a Remote Repository are that:

The root of the repository can be accessed and resolved as a http or https URI

The repository uses the Maven2 Repository Layout
Add bibliography link to https://maven.apache.org/repository/layout.html#maven2-reposi-
tory-layout

An Artifact Repository representing a Remote Repository can be created using the
createRepository(URI,Map) method, passing in the uri to the root of the repository. A NullPointerEx-
ception must be thrown if the uriisnulland an IllegalArgumentException must be thrown if the uri
does not use the http or https scheme.

In addition to the repository URI the user may pass configuration properties in a Map. Implemen-
tations may support custom configuration properties, but those properties should use Reverse Do-
main Name keys. Keys not using the reverse DNS naming scheme are reserved for OSGi use. Imple-
mentations must ignore any configuration property keys that they do not recognise. All implemen-
tations must support the following properties:

REMOTE_ARTIFACT_REPOSITORY_NAME - The name for this repository

REMOTE_ARTIFACT_REPOSITORY_USER - The user name to use for authenticating with this
repository

OSGi Compendium Release 8.1 Page 29

Common themes

Feature Launcher Service Specification Version 1.0

160.3

160.3.1

160.3.2

« REMOTE_ARTIFACT_REPOSITORY_PASSWORD - The password to use for authenticating with this
repository

« REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN - A bearer token to use when authenticating
with this repository

- REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED - A Boolean indicating that
SNAPSHOT versions are supported. Defaults to true

- REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED - A Boolean indicating that release ver-
sions are supported. Defaults to true

« REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE - A trust store to use when validating a server
certificate. May be a file system path or a data URL
Add bibliography link to https://en.wikipedia.org/wiki/Data URI scheme
REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT - The format of the trust store to use
when validating a server certificate.
REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD - The password to use when vali-
dating the trust store integrity.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

Common themes

This specification includes support for bootstrapping an OSGi runtime, for ongoing management
of an OSGi runtime, and for merging features. There are many concepts that apply across more than
one of these scenarios, and so they are described here.

Overriding Feature variables

Some Feature definitions include variables which can be used to customise their deployment. These
variables are intended to be set at the point where a Feature is installed, and may contain default val-
ues. To enable these variables to be overridden there are overloaded versions of methods which per-
mit a Map of variables to be provided. The keys in this map must be strings and the values must be
one of the types permitted by the Feature Service Specification on page 5

If a Feature declares a variable with no default value then this variable must be provided. If no value
is provided then the method must fail to launch by throwing a LaunchException

Setting the bundle start levels

An OSGi framework contains a number of bundles which collaborate to produce a functioning ap-
plication. There are times when some bundles require the system to have reached a certain state be-
fore they can be started. To address this use case the OSGi framework has the concept of start levels.
#4#4 Add a link to the core specification

Setting the initial start level for the OSGi framework when bootstrapping can easily be achieved us-
ing the framework launch property org.osgi.framework.startlevel.beginning as defined by the OSGi
core specification.

Controlling the start levels assigned to the bundles in a feature is managed through the use of Fea-
ture Bundle metadata. Specifically the Feature Launcher will look for a Feature Bundle metadata
property named BUNDLE_START_LEVEL_METADATA which is of type integer and has a value be-
tween 1and 2147483647 inclusive. If the property does not exist then the default start level will
be used. If the property does exist and is not a suitable integer then launching must fail with a
LaunchException.

Setting the default start level for the bundles, and the minimum start level required for an installed
Feature is accomplished by using a Feature Extension named BUNDLE_START_LEVELS with Type

Page 30

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 Common themes

JSON. The JSON contained in this extension is used to configure the default start level for the bun-
dles, and the target start level for the framework. The schema of this JSON is as follows: ### Add
Schema in build

{
"Sschema": "https://json-schema.org/draft/2020-12/schema”,
"$id": "http://www.osgi.org/sonschema/featurelauncher/bundle-start-levels/v1.0.0",
"title": "bundle-start-levels"
"description”: "The definition of the bundle-start-levels feature extension”,
“type": "object”
"properties”: {
"version": {
"description”: "The version of the Feature Launcher extension”,
“const": "1.0.0"
¥
"defaultStartLevel”: {
"description”: "The default start level for bundles in the feature",
“type": "integer",
"minimum”: 1,
"maximum": 2147483647
¥
“minimumStartLevel”: {
"description”: "The minimum required start level for the framework after feature ir
“type": "integer",
"minimum”: 1,
"maximum": 2147483647
}
b
"required": ["version", "defaultStartlLevel”, "minimumStartlLevel"]
}

Setting the default start level for bundles installed by the framework is achieved using the default-
StartLevel property of the |SON extension. This must be an integer greater than zero and less than
Integer.MAX_INT, or the special marker value null. A null value is used to indicate that the default
start level for newly installed bundles is the current framework start level, or 1 if the current frame-
work start level is o. If the value is not valid then a LaunchException must be thrown when attempt-
ing to use the feature.

The minimum final start level for the OSGi framework required by the feature can be set using the

minimumStartLevel property. of the |]SON extension. This must be an integer greater than zero and

less than Integer.MAX_INT. If the value is not valid then a LaunchException must be thrown when

attempting to use the feature. This property sets the minimum start level that the OSGi framework
must use to complete the installation of a Feature.

Finally the version property defines the version of the extension schema being used. This can be
used by the implementation to determine whether the Feature is targeting a newer version of the
specification. If the version is not understood by the implementation then a LaunchException must
be thrown when attempting to use the feature.

OSGi Compendium Release 8.1 Page 31

The Feature Launcher Feature Launcher Service Specification Version 1.0

160.4

160.4.1

160.4.1.1

160.4.2

160.4.2.1

The Feature Launcher

The FeatureLauncheris the main entry point for creating a running OSGi framework containing the
bundles and configurations defined in a Feature. As such the Feature Launcher is primarily designed
for use outside of an OSGi framework.

To support usage in a non-OSGi environment implementations of the Feature Launcher Service
must register the following implementation classes with the Java ServiceLoader API, and any neces-
sary module metadata.

. org.osgi.service.featurelauncher.FeatureLauncher
org.osgi.service.featurelauncher.ArtifactRepositoryFactory

Obtaining and configuring a Feature Launcher

A Feature Launcher Service implementation must provide an implementation of the Feature
Launcher interface. A user of the Feature Launcher service may use the following ways to find this
class and create an instance:

Using the Java ServiceLoader API to find instances of
org.osgi.service.featurelauncher.FeatureLauncher

From configuration, and then using Class.forName, getConstructor() and newInstance()
By hard coding the implementation type and using the new operator.

Once instantiated the Feature Launcher may be supplied with a Feature, either as a Read-

er providing access to the JSON text of a Feature document or a parsed Feature to create a
FeatureLauncher.LaunchBuilder. The Launch Builder can be configured in a fluent manner us-

ing the withConfiguration(Map), withVariables(Map), withFrameworkProperties(Map) and
withRepository(ArtifactRepository) methods. Configuration properties for the Feature Launcher are
implementation specific, and any unrecognised property names should be ignored. Artifact Reposi-
tory instances may be created by the user using as described in The Artifact Repository Factory on
page 28, or using custom implementations.

Thread Safety

Instances of the Feature Launcher and Launch Builder are not required to be Thread Safe, and
should not be shared between threads. Changing the configuration of a Launch Builder instance on-
ly affects that instance, and not any other instances that exist.

Using a Feature Launcher

Once a configured Launch Builder instance has been created the launchFramework() method can be
used to launch an OSGi framework containing the supplied Feature. The Feature Launcher will then
return a running Framework instance representing the launched OSGi framework and the Feature
that it contains. If an error occurs creating the framework, or locating and installing any of the fea-
ture bundles, then a LaunchException must be thrown.

Once the caller has received their framework instance they may carry on with other work, or they
may wait for the OSGi framework to stop using the waitForStop() method.

Providing Framework Launch Properties

Framework launch properties are key value pairs which are passed to the OSGi framework as it is
created. They can control many behaviours, including operations which happen before the frame-
work starts, meaning that is not always possible to set them after startup.

Feature definitions that require particular framework launch properties can define them using a
Feature Extension named FRAMEWORK_LAUNCHING_PROPERTIES. The Type of this Feature Exten-

Page 32

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 The Feature Launcher

160.4.2.2

160.4.2.3

160.4.3

160.4.3.1

sion must be TEXT, where each entry is in the form key=value All implementations of the Feature
Launcher must support this extension, and use it to populate the Framework Launch Properties.

In addition to Framework Launch properties defined inside the Feature, users of the Feature Launch-
er can add and override Framework Launch Properties using one of the withFrameworkProperties
method that permits a Map of framework properties to be provided. Any key value pairs defined in
this map must take precedence over those defined in the Feature. A key with a null value must result
in the removal of a key value pair if it is defined in the Feature.

Selecting a framework implementation

When defining a feature it is not always possible to be framework independent. Sometimes specific
framework APIs, or licensing restrictions, will require that a particular implementation is used. In
this case a Feature Extension named LAUNCH_FRAMEWORK with Type ARTIFACTS can be used to list
one or more artifacts representing OSGi framework implementations.

The list of artifacts is treated as a preference order, with the first listed artifact being used if avail-
able, and so on, until a framework is found. If a listed artifact is not an OSGi framework implemen-
tation then the Feature Launcher must log a warning and continue on to the next artifact in the list.
If the Kind of the feature is MANDATORY and none of the listed artifacts are available then launching
must fail with a LaunchException.

The Feature Launcher implementation may identify that an artifact is an OSGi framework imple-
mentation in any way that it chooses, however it must recognise framework implementations that
provide the Framework Launch API using the service loader pattern. ### Link to the framework
launch API

A simple example

The following code snippet demonstrates a simple example of using the Feature Launcher to start
an OSGi framework containing one or more bundles.

/'l Load the Feature Launcher
ServicelLoader<FeaturelLauncher> sl = Serviceloader.load(FeaturelLauncher.class);
FeatureLauncher launcher = sl.iterator().next();

/'l Set up a repository
ArtifactRepository localRepo = launcher.createRepository(Paths.get("bundles"));

/-l Launch the framework

Framework fw = launcher
.launch(Files.newBufferedReader (Paths. get("myfeature.json")))
.withRepository(localRepo)
. launchFramework () ;

fw.waitForStop(0);

The Feature Launching Process

The following section defines the process through which the Feature Launcher must locate, initial-
ize and populate an OSGi framework when launching a feature. Unless explicitly stated implemen-
tations may perform one or more parts of this process in a different order to that described in the
specification.

Locating a framework implementation

Before a framework instance can be created the Feature Launcher must identify a suitable imple-
mentation using the following search order:

OSGi Compendium Release 8.1 Page 33

The Feature Launcher Feature Launcher Service Specification Version 1.0

160.4.3.2

160.4.3.3

1. If any provider specific configuration has been given to the Feature Launcher implementation
then this should be used to identify the framework.

2. If the Feature declares an Extension LAUNCH_FRAMEWORK then the Feature Launcher imple-
mentation must use the first listed artifact that can be found in any configured Artifact Reposi-
tories, as described in Selecting a framework implementation on page 33.

Currently this only fails if the extension is mandatory

3. Ifno framework implementation is found in the previous steps then the Feature Launcher
implementation must search the classpath using the Thread Context Class Loader, or, if the
Thread Context Class Loader is not set, the Class Loader which loaded the caller of the Feature
Launcher's launch method. The first suitable framework instance located is the instance that
will be used.

4. Inthe event that no suitable OSGi framework can be found by any of the previous steps then
the Feature Launcher implementation may provide a default framework implementation to be
used.

If no suitable OSGi framework implementation can be found then the Feature Launcher implemen-
tation must throw a LaunchException.

Creating a Framework instance

Once a suitable framework implementation has been located the Feature Launcher imple-
mentation must create and initialize a framework instance. Implementations are free to

use implementation specific mechanisms for framework implementations that they recog-

nise. The result of this initialization must be the same as if the Feature Launcher used the
org.osgi.framework.launch.FrameworkFactory registered by the framework implementation to cre-
ate the framework instance.

When creating the framework any framework launch properties defined in the Feature must be
used. These are defined as described in Providing Framework Launch Properties on page 32 and
must include any necessary variable replacement as defined by Overriding Feature variables on
page 30.

Once instantiated the framework must be initialised appropriately so that it has a valid BundleCon-
text. Once initialised the framework is ready for the Feature Launcher implementation to begin
populating the framework.

Installing bundles and configurations

The Feature Launcher must iterate through the list of bundles in the feature, installing them in the
same order that they are declared in the feature. If bundle start levels have been defined, as described
in Setting the bundle start levels on page 30, then the Feature Launcher must ensure that the

start level is correctly set for each installed bundle. If no start level metadata or extension is defined
then all bundles are installed with the framework default start level.

If a Feature defines one or more Feature Configurations then these cannot be guaranteed to be made
available until the 7?7 service has been registered. A Feature Launcher implementation may pro-
vide an implementation specific way to pre-register configurations, however in general the Feature
Launcher should listen for the registration of the ConfigurationAdmin service and immediately cre-
ate the defined configurations when it becomes available. Configurations must be created in the
same order as they are defined in the Feature.

If the CONFIGURATION_TIMEOUT configuration property is set to o, and one or more Feature
Configurations are defined in the Feature being installed, then the implementation must throw a
LaunchException unless it is capable of pre-registering those configurations in an implementation
specific way.

Page 34

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

160.4.3.4

160.4.3.5

160.5

Starting the framework

Once all of the the bundles listed in the feature are installed, and any necessary configuration listen-
er is registered, the implementation must start the OSGi framework. This action will automatically
start the installed bundles as defined by the initial start level of the framework, and the start levels
of the installed bundles.

The Feature Launcher implementation must delay returning control to the caller until all configu-
rations have been created, subject to the timeout defined by CONFIGURATION_TIMEOUT. The de-
fault timeout is 5000 milliseconds, and it determines the maximum length of time that the Feature
Launcher implementation should wait to begin creating the configurations. A value of -1 indicates
that the Feature Launcher implementation must not wait, and must continue immediately, even if
the configurations have not yet been created. If it is not possible to begin before the timeout expires
then a LaunchException must be thrown.

Finally, if the minimumStartLevel has been set by the BUNDLE_START_LEVELS extension then the
Feature Launcher implementation must check the current start level of the framework. If the cur-
rent start level is less than the value of minimumStartLevel then the framework's start level must be
set to this value.

Once the start process is complete the Framework instance must be returned to the caller.

The following failure modes must all result in a LaunchException being thrown:

- A bundle fails to resolve. If one of the installed bundles fails to resolve this is an error unless the
Feature is not complete. For Features that are not complete resolution failures must be logged,
but not cause a failure.

A resolved bundle fails to start. If one of the resolved bundles fails to start this is an error unless
the bundle is a fragment or an extension bundle, which the Feature Launcher should not attempt
to start.

A configuration cannot be created. If a configuration cannot be created then this must resultin a
start failure

If a launching failure is triggered by an exception, for example a 7?7 then this must be set as the
cause of the LaunchException that is thrown.

Cleanup after failure

If the Feature Launcher implementation fails to launch a feature then any intermediate objects
must be properly closed and discarded. For example if an OSGi framework instance has been created
then it must be stopped and discarded.

The Feature Runtime Service

The Feature Runtime Service can be thought of as an equivalent of the Feature Launcher for an ex-
isting, running OSGi framework. The Feature Runtime Service therefore does not offer any mech-
anism for launching a framework, but instead allows one or more features to be installed into the
running framework. As an OSGi framework is a dynamic environment the Feature Runtime Service
also provides snapshots describing the currently installed Features, allows installed Features to be
updated, and allows Features to be removed from the system.

An important difference between the Feature Launcher and Feature Runtime Service is that because
the Feature Runtime Service allows multiple Features to be installed it must be able to identify and
resolve simple conflicts. For example if two Features include the same bundle at different versions
then the resolution may be to install only the higher version, or both versions.

OSGi Compendium Release 8.1 Page 35

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

160.5.1

160.5.1.1

160.5.1.2

160.5.1.3

Using the Feature Runtime

The Feature Runtime must be registered as a service in the service registry. Management agents that
wish to install, manage or introspect Features in the framework must obtain this service. The Fea-
ture Service Runtime service must advertise both the FeatureRuntime and ArtifactRepositoryFacto-
ry interfaces, and be registered with prototype scope.

Thread Safety

Instances of the Feature Runtime are not required to be Thread Safe, and should not be shared be-
tween threads. Changing the configuration, for example the configured Artifact Repositories, of a
Feature Runtime instance only affects that instance, and not any other instances that exist.

Despite the instances not being Thread Safe the underlying Feature Runtime must be Thread Safe,
specifically if two instances of the Feature Runtime are used to install, update or remove features at
the same time then these calls should be handled sequentially such that there are never partially de-
ployed Features present when installing, updating or removing a Feature.

Introspecting the installed Features

An important role for any management agent is being able to introspect the system to discover its
current state. The Feature Runtime enables this through the getinstalledFeatures() method, which
returns a snapshot of the current state of the system.

The returned list of snapshots contains one InstalledFeature entry for each installed Feature, in the
order that they were installed, and may be empty if no Features have been installed. If the frame-
work was started using a Feature Launcher from the same implementation as the Feature Run-

time then the Feature Runtime may choose to represent the launched Feature in the DTO list. If

the launched Feature is included in the DTO list then it must setinitialLaunch to true. Launch fea-
tures cannot be removed or updated by the Feature Runtime, and any attempt to do so must throw a
LaunchException

Each Installed Feature includes the ID of the Feature, and a Map referencing the bundles installed

by the feature. The keys of the map are the installed bundles, and the values each contain a List

of the ids of the features which own the bundle. Ownership of a bundle is tracked by the Feature
Runtime, and it is used to identify when the same bundle forms part of more than one Feature.
Bundles that are owned by more than one Feature will not be removed until all of the Features

that own them are removed. In the case where a bundle was not installed by the Feature Runtime,
but later became owned by an installed Feature, that bundle will also be owned by the virtual
org.osgi.service.featurelauncher:external:1.0.0 Feature to indicate that they will not be removed if
the other owning Feature is removed. ### Make a constant for this

In addition to bundles Features can contain configurations. The InstalledFeatureDTO therefore con-
tains a List of InstalledConfiguration snapshots, with each entry representing a configuration creat-

ed by the Feature Runtime on behalf of the Feature. The Installed Configuration contains the follow-
ing information:

- featureld-The id of the Feature for which this Installed Configuration was created.

- pid-The configuration pid of this configuration.

- factoryPid- The factory pid of this configuration, or nullif the configuration is not a factory con-
figuration.

- properties - The merged configuration properties that result from the full set of installed Fea-
tures contributing to this configuration. Note that there is no dynamic link to Configuration Ad-
min and so any configuration changes made outside the Feature Runtime will not be reflected.

Setting the available Artifact Repositories

As with the Feature Launcher, in order to successfully locate the bundles listed in a feature the Fea-
ture Runtime must have access to one or more Artifact Repositories capable of locating the bun-

Page 36

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

160.5.1.4

160.5.1.5

160.5.1.6

160.5.2

dles. A configured Feature Runtime freshly obtained from the service registry will typically include
one or more pre-defined Artifact Repositories. These pre-defined repositories will remain available
through the getDefaultRepositories() regardless of any changes made to the Artifact Repositories
available to the Feature Runtime instance held by the user.

Additional Artifact Repositories can be added by calling the
addRepository(String,ArtifactRepository) method. The supplied name is used to identify the repos-
itory, and will be used as the key when returning the Map of configured repositories from getRepos-
itories(). If the supplied name is already used for an existing Artifact Repository then it will be re-
placed.

Artifact Repositories can be removed using the addRepository(String,ArtifactRepository) method.
This can be useful in the case that the caller wants to completely clear the default Artifact Reposito-
ries and only use their directly configured instances. The default Artifact Repositories can be reset
either by discarding the Feature Runtime instance and obtaining a new prototype scoped instance,
or by clearing the existing Artifact Repositories and re-adding the defaults from getDefaultReposi-
tories.

Installing a feature

Installing a Feature uses one of the install methods present on the Feature Runtime. These meth-
ods allow the caller to provide the Feature to be installed, and also a Map of variable overrides as de-
scribed in Overriding Feature variables on page 30.The end result of installing a Feature is that
all of the bundles listed in the Feature are installed, all of the Feature Configurations have been cre-
ated, all bundles have been marked as persistently started, and the framework start level is at least
the minimum level required by the Feature.

Start levels for the bundles in the Feature may be controlled as described in Setting the bundle start
levels on page 30.If any bundles are installed with a start level higher than the current frame-

work start level then they will be marked persistently started but will not start until the framework
start level is changed.

In more complex cases, where multiple features are installed with overlapping bundles or configu-
rations then Merging strategies on page 39 will be applied to determine which bundles are in-
stalled, and what configuration properties will be used when creating or updating a configuration.

Action on failure

Removing a Feature
Bundles
Configurations
refreshing packages

Action on failure

Updating a Feature
Bundles
Configurations
refreshing packages

Action on failure

The Feature Runtime Behaviour

The following section provides normative requirements for the behaviour of the Feature Runtime
when it is used. This includes the necessary end states after installation, update and removal of Fea-
tures.

OSGi Compendium Release 8.1 Page 37

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

160.5.2.1

160.5.2.1.1

160.5.2.1.2

160.5.2.1.3

The Feature installation process

The Feature Installation process has three main phases:

The the bundle installation phase, where Feature bundles are installed
The the configuration creation phase, where Feature Configurations are created
The the Feature Start phase, where Bundles are started.

The the bundle installation phase and the configuration creation phase may happen in any order, or
even with interleaved steps, however the Feature Start phase must not begin until the bundle instal-
lation and configuration creation phases are complete.

Bundle Installation

When a feature is being installed the Feature Runtime identifies the bundles to be installed. The Fea-
ture Runtime also gathers the set of bundles that are already installed, and then computes the over-
lap between these. Bundles are deemed to overlap if they have the same group id, artifact id, type
and classifier but they may differ in version.

If the overlap list contains entries which overlap exactly, that is they have the same version in the
runtime and the Feature being installed, then those bundles are removed from the list of bundles

to be installed and the existing bundles are marked as owned by the Feature being installed. If the
marked bundles were not previously owned by any other feature then they also marked as owned
by the osgi.external Feature to indicate that they will not be removed if the Feature being installed is
removed. ### Make a constant for this

Any remaining overlap entries are processed according to the merge strategy for the feature, as de-
scribed in Merging Bundles on page 39. The final list of bundles to install, which excludes any
already installed bundles, is then installed in the same order as it was defined by the feature. Each
bundle in the feature, including bundles that were already installed, is then marked as owned by the
installing feature.

Configuration Creation

As part of the initial Feature installation the Feature Runtime must also process and create any Fea-
ture Configurations that are defined in the Feature. Feature Configurations cannot be guaranteed

to be made available until a 7?7 service has been registered. A Feature Runtime implementation
should therefore listen for the registration of a ConfigurationAdmin service and immediately create
or update any pending configurations when it becomes available. Configurations must be created or
updated in the same order as they are defined in the Feature.

If the same configuration, as identified by its configuration pid, is defined in one or more existing
installed Features then the configuration properties to be used are determined by merging the previ-
ous configuration properties with the new properties defined in the Feature, as described in Merging
Configurations on page 39. If at the point where the FeatureRuntime attempts to create or up-

date a Feature Configuration there are already configuration properties defined in ConfigurationAd-
min then these must be ignored and replaced using ??? unless the Configuration is marked as ?77. If
aREAD_ONLY configuration does exist then the Feature Runtime must log a warning and skip that
configuration.

Feature Start

Once all of the bundles listed by the feature are installed then the bundles' start levels are assigned
as described in Setting the bundle start levels on page 30. This includes any pre-existing bun-
dles and the results of any merge operations. If no start level configuration is defined in the fea-
ture for a particular bundle then the start level for that bundle is set to the current start level of the
framework.

Page 38

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher

160.5.2.1.4

160.5.3
160.5.3.1

160.5.3.2

160.6

160.6.1

The Feature Runtime must then identify the lowest start level referenced in the Feature, and repeat-
edly run through the list of bundles, in the order that they are defined in the Feature, looking for
bundles which match the identified start level. For each bundle the Feature Runtime must:

If the bundle was installed in the Bundle Installation phase then set the start level for the bundle.

If the bundle was already installed then update the start level for the bundle if, and only if, the
new start level is lower than the existing start level.

Mark the bundle as persistently started unless it is a fragment bundle.

The Feature Runtime must then identify the next lowest start level referenced in the Feature and re-
peat this process until all bundles have been persistently started. Once this process is complete then
the framework start level must be increased to the minimum start level required by the Feature.
Failure scenarios

TODO

Missing bundles

Merge failure

Missing variables

Start failures

Merging strategies
4 TODO

Merging Bundles

Bundles

Merging Configurations

Configurations
org.osgi.service.featurelauncher

Feature Launcher Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.feature; version="[1.0,2.0)"
Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.feature; version="[1.0,1.1)"

Summary

ArtifactRepository - An ArtifactRepository is used to get hold of the bytes used to install an arti-
fact.

ArtifactRepositoryFactory - A ArtifactRepositoryFactory is used to create implementations of
ArtifactRepository for one of the built in repository types:

Local File System

OSGi Compendium Release 8.1 Page 39

org.osgi.service.featurelauncher

Feature Launcher Service Specification Version 1.0

160.6.2

Concurrency
160.6.2.1

id

m]

Returns

160.6.3

Provider Type

160.6.3.1
path
O
Returns

Throws

160.6.3.2
uri

props

]

Returns

- HTTP repository

FeatureLauncher - The Feature launcher is the primary entry point for launching an OSGi
framework and set of bundles.

FeatureLauncher.LaunchBuilder - A builder for configuring and triggering the launch of an OS-
Gi framework containing the supplied feature

. FeaturelLauncherConstants - Defines standard constants for the Feature Launcher specification.
LaunchException - A LaunchException is thrown by the FeatureLauncher if it is unable to:
Locate or start an OSGi Framework instance
Locate the installable bytes of any bundle in a Feature
Install a bundle in the Feature
- Determine a value for a Feature variable that has no default value defined

public interface ArtifactRepository

An ArtifactRepository is used to get hold of the bytes used to install an artifact. Users of this specifi-
cation may provide their own implementations for use when installing feature artifacts. Instances
must be Thread Safe.

Thread-safe

public InputStream getArtifact(ID id)
the id of the artifact
Get a stream to the bytes of an artifact

an InputStream containing the bytes of the artifact or null if this repository does not have access to
the bytes

public interface ArtifactRepositoryFactory
A ArtifactRepositoryFactory is used to create implementations of ArtifactRepository for one of the

built in repository types:

Local File System
HTTP repository

Consumers of this API must not implement this type

public ArtifactRepository createRepository(Path path)

a path to the root of a Maven Repository Layout containing installable artifacts
Create an ArtifactRepository using the local file system

an ArtifactRepository using the local file system

IllegalArgumentException—if the path does not exist, or exists and is not a directory

NullPointerException—if the pathisnull

public ArtifactRepository createRepository(URI uri, Map<String, Objects props)

the URI for the repository. The http, https and file schemes must be supported by all implementa-
tions.

the configuration properties for the remote repository. See FeatureLauncherConstants for standard
property names

Create an ArtifactRepository using a remote Maven repository.

an ArtifactRepository using the local file system

Page 40

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0

org.osgi.service.featurelauncher

Throws

160.6.4

Provider Type

160.6.4.1
feature
[m]
Returns

Throws

160.6.4.2
jsonReader
o
Returns

Throws

160.6.5

160.6.5.1
[m]
Returns

Throws

160.6.5.2
configuration
o
Returns

Throws

160.6.5.3
frameworkProps
O

Returns

IllegalArgumentException—if the uri scheme is not supported by this implementation

NullPointerException—if the path is null

public interface FeatureLauncher
extends ArtifactRepositoryFactory

The Feature launcher is the primary entry point for launching an OSGi framework and set of bun-
dles. As it is a means for launching a framework it is designed to be used from outside OSGi and
therefore should be obtained using the ServiceLoader.

Consumers of this API must not implement this type

public FeatureLauncher.LaunchBuilder launch(Feature feature)

the feature to launch

Begin launching a framework instance based on the supplied feature
A running framework instance.

LaunchException—

public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

a Reader for the input Feature J[SON

Begin launching a framework instance based on the supplied feature JSON
A running framework instance.

LaunchException—

public static interface FeatureLauncher.LaunchBuilder

A builder for configuring and triggering the launch of an OSGi framework containing the supplied
feature

LaunchBuilder instances are single use. Once they have been used to launch a framework instance
they become invalid and all methods will throw IllegalStateException

public Framework launchFramework()

Launch a framework instance based on the configured builder

A running framework instance.

LaunchException—

IllegalStateException—if the builder has been launched

public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Objects configuration)
the configuration for this implementation

Configure this LaunchBuilder with the supplied properties.

this

IllegalStateException—if the builder has been launched

public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)
the launch properties to use when starting the framework
Configure this LaunchBuilder with the supplied Framework Launch Properties.

this

OSGi Compendium Release 8.1

Page 41

org.osgi.service.featurelauncher Feature Launcher Service Specification Version 1.0

Throws

160.6.5.4
repository
o
Returns

Throws

160.6.5.5
variables
o
Returns

Throws

160.6.6

160.6.6.1

160.6.6.2

160.6.6.3

160.6.6.4

160.6.6.5

160.6.6.6

IllegalStateException—if the builder has been launched

public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)

the repository to add

Add a repository to this LaunchBuilder that will be used to locate installable artifact data.
this

NullPointerException—if the repository is null

IllegalStateException—if the builder has been launched

public FeatureLauncher.LaunchBuilder withVariables(Map<String, Objects variables)
the variable placeholder overrides for this launch

Configure this LaunchBuilder with the supplied variables.

this

IllegalStateException—if the builder has been launched

public final class FeatureLauncherConstants

Defines standard constants for the Feature Launcher specification.

public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"

The name of the metadata property used to indicate the start level of the bundle to be installed. The
value must be an integer between o and Integer MAX VALUE.

public static final String BUNDLE_START_LEVELS = "bundle-start-levels"

The name for the FeatureExtension of Type.JSON which defines the start level configuration for the
bundles in the feature

public static final String CONFIGURATION_TIMEOUT = "configuration.timeout”

The configuration property used to set the timeout for creating configurations from FeatureConfig-
uration definitions.

The value must be a Long indicating the number of milliseconds that the implementation should
wait to be able to create configurations for the Feature. The default is 5000.

A value of o means that the configurations must be created before the bundles in the feature are
started. In general this will require the ConfigurationAdmin service to be available from outside the
feature.

A value of -1 means that the implementation must not wait to create configurations and should re-
turn control to the user as soon as the bundles are started, even if the configurations have not yet
been created.

public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "“osgi.featurelauncher"

The name of the implementation capability for the Feature specification.

public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

public static final String FRAMEWORK_LAUNCHING_PROPERTIES = “framework-launching-properties"

The name for the FeatureExtension of Type.TEXT which defines the framework properties that
should be used when launching the feature.

Page 42

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher

160.6.6.7

160.6.6.8

160.6.6.9

160.6.6.10

160.6.6.11

160.6.6.12

160.6.6.13

160.6.6.14

160.6.6.15

160.6.6.16

160.6.7

public static final String LAUNCH_FRAMEWORK = "launch-framework"

The name for the FeatureExtension which defines the framework that should be used to launch
the feature. The extension must be of Type. ARTIFACTS and contain one or more ID entries cor-

responding to OSGi framework implementations. This extension must be processed even if it is
Kind.OPTIONAL or Kind TRANSIENT.

If more than one framework entry is provided then the list will be used as a priority order when de-
termining the framework implementation to use. If none of the frameworks are present then an er-
ror is raised and launching will be aborted.

public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"

The configuration property key used to set the bearer token when creating an ArtifactRepository us-
ing FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = “name"

The configuration property key used to set the repository name when creating an ArtifactReposito-
ry using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = “password"

The configuration property key used to set the repository password when creating an ArtifactRepos-
itory using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"

The configuration property key used to set that release versions are enabled for an ArtifactReposito-
ry using FeatureLauncher.createRepository(URL, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"

The configuration property key used to set that SNAPSHOT release versions are enabled for an Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"

The configuration property key used to set the trust store to be used when accessing a remote Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = “truststoreFormat"

The configuration property key used to set the trust store format to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD =
“truststorePassword"

The configuration property key used to set the trust store password to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

The configuration property key used to set the repository user when creating an ArtifactRepository
using FeatureLauncher.createRepository(URI, Map)

public class LaunchException
extends RuntimeException

A LaunchException is thrown by the FeatureLauncher if it is unable to:

Locate or start an OSGi Framework instance

OSGi Compendium Release 8.1 Page 43

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

160.6.7.1
message

[m}

160.6.7.2
message
cause

]

160.7

160.7.1

160.7.2

Provider Type

160.7.2.1
name

repository

. Locate the installable bytes of any bundle in a Feature
Install a bundle in the Feature
Determine a value for a Feature variable that has no default value defined

public LaunchException(String message)

Create a LaunchException with the supplied error message

public LaunchException(String message, Throwable cause)

Create a LaunchException with the supplied error message and cause
org.osgi.service.featurelauncher.runtime

Feature Launcher Runtime Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.feature.runtime; version="[1.0,2.0)"
Example import for providers implementing the API'in this package:

Import-Package: org.osgi.service.feature.runtime; version="[1.0,1.1)"

Summary

FeatureRuntime - The Feature runtime service allows features to be installed and removed dy-
namically at runtime.

InstalledConfiguration - An InstalledConfiguration represents a configuration that has been in-
stalled as a result of one or more feature installations.

InstalledFeature - An InstalledFeature represents the current state of a feature installed by the
FeatureRuntime.

public interface FeatureRuntime
extends ArtifactRepositoryFactory

The Feature runtime service allows features to be installed and removed dynamically at runtime.

This is a Constants.SCOPE_PROTOTYPE scope service and each instance maintains a separate col-
lection of ArtifactRepository instances, allowing for additional ArtifactRepository instances to be
added in order to install a single feature.

Instances should not be shared between threads.

Consumers of this API must not implement this type

public FeatureRuntime addRepository(String name, ArtifactRepository repository)
the name to use for this repository

the repository

Page 44

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0

org.osgi.service.featurelauncher.runtime

[m}

Returns

160.7.2.2

Returns

160.7.2.3

Returns

160.7.2.4
O

Returns

160.7.2.5
feature
O
Returns

Throws

160.7.2.6
jsonReader
o
Returns

Throws

160.7.2.7
feature
variables
a
Returns

Throws

160.7.2.8
jsonReader
variables
o
Returns

Throws

Add an ArtifactRepository for use by this FeatureRuntime instance. If an ArtifactRepository is al-
ready set for the given name then it will be replaced.

this
public Map<String, ArtifactRepositorys getDefaultRepositories()

Get the default repositories for the FeatureRuntime service. These are the repositories which
would be used unless they were removed using removeRepository(String) or replaced using
addRepository(String, ArtifactRepository).

This method can be used to reset the repositories for a FeatureRuntime without having to obtain a
new instance from the service registry

the default repositories

public List<InstalledFeatures getinstalledFeatures()
Get the features that have been installed by the FeatureRuntime service

a list of installed features

public Map<String, ArtifactRepositorys getRepositories()
Get the currently used repositories for this FeatureRuntime service.

a Map of repositories where the key is the name given in addRepository(String, ArtifactRepository).

public InstalledFeature install(Feature feature)

the feature to launch

Install a feature into the runtime

An installedFeature representing the results of installing this feature

LaunchException—if installation fails

public InstalledFeature install(Reader jsonReader)

a Reader for the input Feature JSON

Install a feature into the runtime based on the supplied feature JSON
An installedFeature representing the results of installing this feature

LaunchException—if installation fails

public InstalledFeature install(Feature feature, Map<String, Object> variables)

the feature to launch

key/value pairs to set variables in the feature

Install a feature into the runtime based on the supplied feature and variables
An installedFeature representing the results of installing this feature

LaunchException—if installation fails

public InstalledFeature install(Reader jsonReader, Map<String, Object> variables)

a Reader for the input Feature JSON

key/value pairs to set variables in the feature

Install a feature into the runtime based on the supplied feature JSON and variables
An installedFeature representing the results of installing this feature

LaunchException—if installation fails

OSGi Compendium Release 8.1

Page 45

org.osgi.service.featurelauncher.runtime

Feature Launcher Service Specification Version 1.0

160.7.2.9
featureld

]

160.7.2.10
name
o

Returns

160.7.2.11
featureld
feature
m]

Returns

160.7.2.12
featureld
jsonReader
[m]

Returns

160.7.2.13
featureld
feature
variables
o

Returns

160.7.2.14
featureld
jsonReader
variables
o

Returns

160.7.3

Provider Type

160.7.3.1

public void remove(ID featureld)
the feature id

Remove an installed feature

public FeatureRuntime removeRepository(String name)

the name of the repository to remove

Remove an ArtifactRepository from this FeatureRuntime.
this

public InstalledFeature update(ID featureld, Feature feature)
the id of the feature to update

the feature to launch

Update a feature in the runtime

An installedFeature representing the results of updating this feature

public InstalledFeature update(ID featureld, Reader jsonReader)

the id of the feature to update

a Reader for the input Feature JSON

Update a feature in the runtime based on the supplied feature JSON

An installedFeature representing the results of updating this feature

public InstalledFeature update(ID featureld, Feature feature, Map<String, Objects variables)
the id of the feature to update

the feature tolaunch

key/value pairs to set variables in the feature

Update a feature in the runtime based on the supplied feature and variables

An installedFeature representing the results of updating this feature

public InstalledFeature update(ID featureld, Reader jsonReader, Map<String, Objects variables)
the id of the feature to update

a Reader for the input Feature JSON

key/value pairs to set variables in the feature

Update a feature in the runtime based on the supplied feature JSON and variables

An installedFeature representing the results of updating this feature

public final class InstalledConfiguration

An InstalledConfiguration represents a configuration that has been installed as a result of one or
more feature installations.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Consumers of this API must not implement this type

public String factoryPid

The factory PID of the configuration, or null if this is not a factory configuration

Page 46

OSGi Compendium Release 8.1

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

160.7.3.2

160.7.3.3

160.7.3.4

160.7.3.5

160.7.3.6

160.7.4

Provider Type

160.7.4.1

160.7.4.2

160.7.4.3

160.7.4.4

160.7.4.5

public ID featureld
The ID of the installed feature

public List<ID> owningFeatures

The features responsible for creating this configuration

public String pid
The PID of the configuration

public Map<String, Object> properties

The merged configuration properties for this configuration

public InstalledConfiguration()

public final class InstalledFeature
An InstalledFeature represents the current state of a feature installed by the FeatureRuntime.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Consumers of this API must not implement this type

public ID featureld
The ID of the installed feature

public boolean initialLaunch

true If this feature was installed as part of a FeatureLauncher launch operation. false if it was in-
stalled by the FeatureRuntime

public Map<Bundle, List<ID>> installedBundles

A map with keys that are the bundles installed by this feature. The values are a List of the String IDs
for each installed feature that installed the bundle

public List<InstalledConfigurations installedConfigurations

A list of the configurations that were installed by this feature

public InstalledFeature()

OSGi Compendium Release 8.1 Page 47

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 48 OSGi Compendium Release 8.1

Page 49

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1

Page 50

	OSGi Compendium
	Table of Contents
	Chapter 159. Feature Service Specification
	159.1. Introduction
	159.1.1. Essentials
	159.1.2. Entities

	159.2. Feature
	159.2.1. Identifiers
	159.2.2. Feature Identifier
	159.2.2.1. Identifier type

	159.2.3. Attributes
	159.2.4. Using the Feature API

	159.3. Comments
	159.4. Bundles
	159.4.1. Bundle Metadata
	159.4.2. Using the Feature API

	159.5. Configurations
	159.6. Variables
	159.7. Extensions
	159.7.1. Text Extensions
	159.7.2. JSON Extensions
	159.7.3. Artifact list Extensions

	159.8. Framework Launching Properties
	159.9. Resource Versioning
	159.10. Capabilities
	159.10.1. osgi.service Capability

	159.11. org.osgi.service.feature
	159.11.1. Summary
	159.11.2. public interface BuilderFactory
	159.11.2.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	159.11.2.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	159.11.2.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	159.11.2.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	159.11.2.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)
	159.11.2.6. public FeatureBuilder newFeatureBuilder(ID id)

	159.11.3. public interface Feature
	159.11.3.1. public List<FeatureBundle> getBundles()
	159.11.3.2. public List<String> getCategories()
	159.11.3.3. public Map<String, FeatureConfiguration> getConfigurations()
	159.11.3.4. public Optional<String> getDescription()
	159.11.3.5. public Optional<String> getDocURL()
	159.11.3.6. public Map<String, FeatureExtension> getExtensions()
	159.11.3.7. public ID getID()
	159.11.3.8. public Optional<String> getLicense()
	159.11.3.9. public Optional<String> getName()
	159.11.3.10. public Optional<String> getSCM()
	159.11.3.11. public Map<String, Object> getVariables()
	159.11.3.12. public Optional<String> getVendor()
	159.11.3.13. public boolean isComplete()

	159.11.4. public interface FeatureArtifact
	159.11.4.1. public ID getID()
	159.11.4.2. public Map<String, Object> getMetadata()

	159.11.5. public interface FeatureArtifactBuilder
	159.11.5.1. public FeatureArtifactBuilder addMetadata(String key, Object value)
	159.11.5.2. public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)
	159.11.5.3. public FeatureArtifact build()

	159.11.6. public interface FeatureBuilder
	159.11.6.1. public FeatureBuilder addBundles(FeatureBundle... bundles)
	159.11.6.2. public FeatureBuilder addCategories(String... categories)
	159.11.6.3. public FeatureBuilder addConfigurations(FeatureConfiguration... configs)
	159.11.6.4. public FeatureBuilder addExtensions(FeatureExtension... extensions)
	159.11.6.5. public FeatureBuilder addVariable(String key, Object defaultValue)
	159.11.6.6. public FeatureBuilder addVariables(Map<String, Object> variables)
	159.11.6.7. public Feature build()
	159.11.6.8. public FeatureBuilder setComplete(boolean complete)
	159.11.6.9. public FeatureBuilder setDescription(String description)
	159.11.6.10. public FeatureBuilder setDocURL(String docURL)
	159.11.6.11. public FeatureBuilder setLicense(String license)
	159.11.6.12. public FeatureBuilder setName(String name)
	159.11.6.13. public FeatureBuilder setSCM(String scm)
	159.11.6.14. public FeatureBuilder setVendor(String vendor)

	159.11.7. public interface FeatureBundle
	159.11.7.1. public ID getID()
	159.11.7.2. public Map<String, Object> getMetadata()

	159.11.8. public interface FeatureBundleBuilder
	159.11.8.1. public FeatureBundleBuilder addMetadata(String key, Object value)
	159.11.8.2. public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)
	159.11.8.3. public FeatureBundle build()

	159.11.9. public interface FeatureConfiguration
	159.11.9.1. public Optional<String> getFactoryPid()
	159.11.9.2. public String getPid()
	159.11.9.3. public Map<String, Object> getValues()

	159.11.10. public interface FeatureConfigurationBuilder
	159.11.10.1. public FeatureConfigurationBuilder addValue(String key, Object value)
	159.11.10.2. public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)
	159.11.10.3. public FeatureConfiguration build()

	159.11.11. public final class FeatureConstants
	159.11.11.1. public static final String FEATURE_IMPLEMENTATION = "osgi.feature"
	159.11.11.2. public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

	159.11.12. public interface FeatureExtension
	159.11.12.1. public List<FeatureArtifact> getArtifacts()
	159.11.12.2. public String getJSON()
	159.11.12.3. public FeatureExtension.Kind getKind()
	159.11.12.4. public String getName()
	159.11.12.5. public List<String> getText()
	159.11.12.6. public FeatureExtension.Type getType()

	159.11.13. enum FeatureExtension.Kind
	159.11.13.1. MANDATORY
	159.11.13.2. OPTIONAL
	159.11.13.3. TRANSIENT
	159.11.13.4. public static FeatureExtension.Kind valueOf(String name)
	159.11.13.5. public static FeatureExtension.Kind[] values()

	159.11.14. enum FeatureExtension.Type
	159.11.14.1. JSON
	159.11.14.2. TEXT
	159.11.14.3. ARTIFACTS
	159.11.14.4. public static FeatureExtension.Type valueOf(String name)
	159.11.14.5. public static FeatureExtension.Type[] values()

	159.11.15. public interface FeatureExtensionBuilder
	159.11.15.1. public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)
	159.11.15.2. public FeatureExtensionBuilder addText(String text)
	159.11.15.3. public FeatureExtension build()
	159.11.15.4. public FeatureExtensionBuilder setJSON(String json)

	159.11.16. public interface FeatureService
	159.11.16.1. public BuilderFactory getBuilderFactory()
	159.11.16.2. public ID getID(String groupId, String artifactId, String version)
	159.11.16.3. public ID getID(String groupId, String artifactId, String version, String type)
	159.11.16.4. public ID getID(String groupId, String artifactId, String version, String type, String classifier)
	159.11.16.5. public ID getIDfromMavenCoordinates(String coordinates)
	159.11.16.6. public Feature readFeature(Reader jsonReader) throws IOException
	159.11.16.7. public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

	159.11.17. public interface ID
	159.11.17.1. public static final String FEATURE_ID_TYPE = "osgifeature"
	159.11.17.2. public String getArtifactId()
	159.11.17.3. public Optional<String> getClassifier()
	159.11.17.4. public String getGroupId()
	159.11.17.5. public Optional<String> getType()
	159.11.17.6. public String getVersion()
	159.11.17.7. public String toString()

	159.12. org.osgi.service.feature.annotation
	159.12.1. Summary
	159.12.2. @RequireFeatureService

	159.13. References

	Chapter 160. Feature Launcher Service Specification
	160.1. Introduction
	160.1.1. Essentials
	160.1.2. Entities

	160.2. Features and Artifact Repositories
	160.2.1. The Artifact Repository Factory
	160.2.1.1. Obtaining an Artifact Repository Factory
	160.2.1.2. Local Repositories
	160.2.1.3. Remote Repositories

	160.3. Common themes
	160.3.1. Overriding Feature variables
	160.3.2. Setting the bundle start levels

	160.4. The Feature Launcher
	160.4.1. Obtaining and configuring a Feature Launcher
	160.4.1.1. Thread Safety

	160.4.2. Using a Feature Launcher
	160.4.2.1. Providing Framework Launch Properties
	160.4.2.2. Selecting a framework implementation
	160.4.2.3. A simple example

	160.4.3. The Feature Launching Process
	160.4.3.1. Locating a framework implementation
	160.4.3.2. Creating a Framework instance
	160.4.3.3. Installing bundles and configurations
	160.4.3.4. Starting the framework
	160.4.3.5. Cleanup after failure

	160.5. The Feature Runtime Service
	160.5.1. Using the Feature Runtime
	160.5.1.1. Thread Safety
	160.5.1.2. Introspecting the installed Features
	160.5.1.3. Setting the available Artifact Repositories
	160.5.1.4. Installing a feature
	160.5.1.5. Removing a Feature
	160.5.1.6. Updating a Feature

	160.5.2. The Feature Runtime Behaviour
	160.5.2.1. The Feature installation process
	160.5.2.1.1. Bundle Installation
	160.5.2.1.2. Configuration Creation
	160.5.2.1.3. Feature Start
	160.5.2.1.4. Failure scenarios

	160.5.3. Merging strategies
	160.5.3.1. Merging Bundles
	160.5.3.2. Merging Configurations

	160.6. org.osgi.service.featurelauncher
	160.6.1. Summary
	160.6.2. public interface ArtifactRepository
	160.6.2.1. public InputStream getArtifact(ID id)

	160.6.3. public interface ArtifactRepositoryFactory
	160.6.3.1. public ArtifactRepository createRepository(Path path)
	160.6.3.2. public ArtifactRepository createRepository(URI uri, Map<String, Object> props)

	160.6.4. public interface FeatureLauncher extends ArtifactRepositoryFactory
	160.6.4.1. public FeatureLauncher.LaunchBuilder launch(Feature feature)
	160.6.4.2. public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

	160.6.5. public static interface FeatureLauncher.LaunchBuilder
	160.6.5.1. public Framework launchFramework()
	160.6.5.2. public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Object> configuration)
	160.6.5.3. public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)
	160.6.5.4. public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)
	160.6.5.5. public FeatureLauncher.LaunchBuilder withVariables(Map<String, Object> variables)

	160.6.6. public final class FeatureLauncherConstants
	160.6.6.1. public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"
	160.6.6.2. public static final String BUNDLE_START_LEVELS = "bundle-start-levels"
	160.6.6.3. public static final String CONFIGURATION_TIMEOUT = "configuration.timeout"
	160.6.6.4. public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "osgi.featurelauncher"
	160.6.6.5. public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"
	160.6.6.6. public static final String FRAMEWORK_LAUNCHING_PROPERTIES = "framework-launching-properties"
	160.6.6.7. public static final String LAUNCH_FRAMEWORK = "launch-framework"
	160.6.6.8. public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"
	160.6.6.9. public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = "name"
	160.6.6.10. public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = "password"
	160.6.6.11. public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"
	160.6.6.12. public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"
	160.6.6.13. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"
	160.6.6.14. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = "truststoreFormat"
	160.6.6.15. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD = "truststorePassword"
	160.6.6.16. public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

	160.6.7. public class LaunchException extends RuntimeException
	160.6.7.1. public LaunchException(String message)
	160.6.7.2. public LaunchException(String message, Throwable cause)

	160.7. org.osgi.service.featurelauncher.runtime
	160.7.1. Summary
	160.7.2. public interface FeatureRuntime extends ArtifactRepositoryFactory
	160.7.2.1. public FeatureRuntime addRepository(String name, ArtifactRepository repository)
	160.7.2.2. public Map<String, ArtifactRepository> getDefaultRepositories()
	160.7.2.3. public List<InstalledFeature> getInstalledFeatures()
	160.7.2.4. public Map<String, ArtifactRepository> getRepositories()
	160.7.2.5. public InstalledFeature install(Feature feature)
	160.7.2.6. public InstalledFeature install(Reader jsonReader)
	160.7.2.7. public InstalledFeature install(Feature feature, Map<String, Object> variables)
	160.7.2.8. public InstalledFeature install(Reader jsonReader, Map<String, Object> variables)
	160.7.2.9. public void remove(ID featureId)
	160.7.2.10. public FeatureRuntime removeRepository(String name)
	160.7.2.11. public InstalledFeature update(ID featureId, Feature feature)
	160.7.2.12. public InstalledFeature update(ID featureId, Reader jsonReader)
	160.7.2.13. public InstalledFeature update(ID featureId, Feature feature, Map<String, Object> variables)
	160.7.2.14. public InstalledFeature update(ID featureId, Reader jsonReader, Map<String, Object> variables)

	160.7.3. public final class InstalledConfiguration
	160.7.3.1. public String factoryPid
	160.7.3.2. public ID featureId
	160.7.3.3. public List<ID> owningFeatures
	160.7.3.4. public String pid
	160.7.3.5. public Map<String, Object> properties
	160.7.3.6. public InstalledConfiguration()

	160.7.4. public final class InstalledFeature
	160.7.4.1. public ID featureId
	160.7.4.2. public boolean initialLaunch
	160.7.4.3. public Map<Bundle, List<ID>> installedBundles
	160.7.4.4. public List<InstalledConfiguration> installedConfigurations
	160.7.4.5. public InstalledFeature()

