
Feature Launcher Service Specification Version 1.0 Introduction

OSGi Compendium Release 8.1 Page 93

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160 Feature Launcher Service
Specification

Version 1.0

160.1 Introduction
The Feature Service Specification on page 71 defines a model to design and declare Complex Applica-
tions and reusable Sub-Components that are composed of multiple bundles, configurations and oth-
er metadata. These models are, however, only descriptive and have no standard mechanism for in-
stalling them into an OSGi framework.

This specification focuses on turning these Features into a running system, by introducing the Fea-
ture Launcher and Feature Runtime. The Feature Launcher takes a Feature definition, obtains a
framework instance for it and then starts the Feature in that environment. The Feature Runtime ex-
tends this capability to a running system, enabling one or more Features to be installed, updated,
and later removed from a running OSGi framework.

The Launcher and Runtime also interact with the Configuration Admin Service, that is, they pro-
vide configuration to the system if it is present in the Feature being launched or installed.

160.1.1 Essentials

• Dynamic - The Feature Runtime dynamically adds, updates and removes Features in a running
system.

• Parameterizable - Feature installation may be customised using local parameters if the Feature
supports it.

• Zero code - The Feature Launcher can launch a framework containing an installed Feature in an
implementation independent way without a user writing any code .

160.1.2 Entities
The following entities are used in this specification:

• Feature - A Feature as defined by the Feature Service Specification on page 71
• Artifact Repository - A means of accessing the installable bytes for bundles in a Feature
• Feature Launcher - A Feature Launcher obtains an OSGi Framework instance and installs a Feature

into it.
• Framework - A running implementation of the OSGi core specification.
• Launch Properties - Framework launching properties defined in a Feature.
• Feature Parameters - Key value pairs that can be used to customise the installation of a Feature.
• Configuration - A configuration for the Configuration Admin service.
• Feature Runtime - A Feature Runtime is an OSGi service capable of installing Features into the run-

ning OSGi framework, removing installed Features from the OSGi framework, and updating an
installed Feature with a new Feature definition.

• Installed Feature - A representation of a Feature installed by the Feature Runtime.
• Installed Configuration - A representation of a Configuration installed by the Feature Runtime.

Features and Artifact Repositories Feature Launcher Service Specification Version 1.0

Page 94 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Figure 160.1 Features Entity overview

FeatureLauncher

FeatureRuntimeArtifactRepositoryFactory

ArtifactRepository Framework

InstalledFeature

InstalledConfiguration

0..n

0..n 0..n

0..n

0..n

160.2 Features and Artifact Repositories
OSGi Features exist either as JSON documents, or as runtime objects created by the Feature Service
API. The primary purpose of a Feature is to define a list of bundles and configurations that should be
installed, however the Feature provides no information about the location of the bundle artifacts. A
key challenge with installing a Feature is therefore finding the appropriate artifacts to install.

The Arti factRepository interface is designed to be implemented by users of the Feature Launcher
Service to provide a way for the Feature Launcher Service to find an installable InputStream of bytes
for a given bundle artifact using the getArt i fact(ID) method. Artifact Repository implementations
are free to use any mechanism for locating the bundle artifact data. If no artifact can be found for
the supplied ID then the implementation of the Artifact Repository should return nul l . If the Artifact
Repository throws an exception then this must be logged by the Feature Launcher Service and then
treated in the same manner as a nul l return value.

160.2.1 The Artifact Repository Factory
In order to support the Zero Code objective of this specification, and to simplify usage for most users,
the Arti factRepositoryFactory provides a factory for commonly used repository types.

160.2.1.1 Obtaining an Artifact Repository Factory

The Artifact Repository Factory is useful both for the Feature Launcher and the Feature Runtime,
and as such it must be easy to access both inside and outside an OSGi framework. The Feature
Launcher Service implementation must provide an implementation of the Artifact Repository Fac-
tory interface. A user of the Artifact Repository Factory service may use the following ways to find
an instance.

When outside OSGi:

• Using the Java ServiceLoader API to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• From configuration, and then using Class.forName , getConstructor() and newInstance()

Feature Launcher Service Specification Version 1.0 Features and Artifact Repositories

OSGi Compendium Release 8.1 Page 95

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• By hard coding the implementation and using the new operator.

When inside an OSGi framework:

• Using the OSGi service registry to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• Using the Java ServiceLoader API and the OSGi Service Loader Mediator to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• By hard coding the implementation type and using the new operator.

160.2.1.2 Local Repositories

A Local Repository is one that exists on a locally accessible file system. Note that this does not re-
quire that the file system is local, and technologies such as NFS or other network file systems would
still be considered as Local Repositories. The key aspects of a Local Repository are that:

• The root of the repository can be accessed and resolved as a java.nio.f i le .Path or f i le : URI.
• The repository uses [1] The Maven 2 Repository Layout

An Artifact Repository representing a Local Repository can be created using the
createRepository(Path) method, passing in the path to the root of the repository. A NullPointerEx-
ception must be thrown if the path is nul l and an I l legalArgumentException must be thrown if the
path does not exist, or represents a file which is not a directory.

An Artifact Repository representing a Local Repository can also be created using the
createRepository(URI ,Map) method, passing a URI using the f i le scheme which points to the root of
the repository. A NullPointerException must be thrown if the URI is nul l and an I l legalArgumentEx-
ception must be thrown if the path does not exist, or represents a file which is not a directory.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

160.2.1.3 Remote Repositories

A Remote Repository is one that exists with an accessible http or https endpoint for retrieving arti-
fact data. Note that this does not require that the repository is on a remote machine, only that the
means of accessing data is via HTTP requests. The key aspects of a Remote Repository are that:

• The root of the repository can be accessed and resolved as a http or https URI
• The repository uses [1] The Maven 2 Repository Layout

An Artifact Repository representing a Remote Repository can be created using the
createRepository(URI ,Map) method, passing in the uri to the root of the repository. A NullPointerEx-
ception must be thrown if the uri is nul l and an I l legalArgumentException must be thrown if the uri
does not use the http or https scheme.

In addition to the repository URI the user may pass configuration properties in a Map . Implemen-
tations may support custom configuration properties, but those properties should use Reverse Do-
main Name keys. Keys not using the reverse DNS naming scheme are reserved for OSGi use. Imple-
mentations must ignore any configuration property keys that they do not recognise. All implemen-
tations must support the following properties:

• REMOTE_ARTIFACT_REPOSITORY_NAME - The name for this repository
• REMOTE_ARTIFACT_REPOSITORY_USER - The user name to use for authenticating with this

repository
• REMOTE_ARTIFACT_REPOSITORY_PASSWORD - The password to use for authenticating with this

repository
• REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN - A bearer token to use when authenticating

with this repository

Common themes Feature Launcher Service Specification Version 1.0

Page 96 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED - A Boolean indicating that
SNAPSHOT versions are supported. Defaults to true

• REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED - A Boolean indicating that release ver-
sions are supported. Defaults to true

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE - A trust store to use when validating a server
certificate. May be a file system path or a data URI as defined by [2] The Data URI scheme .

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT - The format of the trust store to use
when validating a server certificate.

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD - The password to use when vali-
dating the trust store integrity.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

160.3 Common themes
This specification includes support for bootstrapping an OSGi runtime, for ongoing management
of an OSGi runtime, and for merging features. There are many concepts that apply across more than
one of these scenarios, and so they are described here.

160.3.1 Overriding Feature variables
Some Feature definitions include variables which can be used to customise their deployment. These
variables are intended to be set at the point where a Feature is installed, and may contain default val-
ues. To enable these variables to be overridden there are overloaded versions of methods which per-
mit a Map of variables to be provided. The keys in this map must be strings and the values must be
one of the types permitted by the Feature Service Specification on page 71

If a Feature declares a variable with no default value then this variable must be provided. If no value
is provided then the method must fail to launch by throwing a LaunchException

160.3.2 Setting the bundle start levels
An OSGi framework contains a number of bundles which collaborate to produce a functioning ap-
plication. There are times when some bundles require the system to have reached a certain state be-
fore they can be started. To address this use case the OSGi framework has the concept of start levels as
described in the Start Level API Specification chapter of OSGi Core Release 8..

Setting the initial start level for the OSGi framework when bootstrapping can easily be achieved us-
ing the framework launch property org.osgi .f ramework.start level .beginning as defined by the OSGi
core specification.

Controlling the start levels assigned to the bundles in a feature is managed through the use of Fea-
ture Bundle metadata. Specifically the Feature Launcher will look for a Feature Bundle metadata
property named BUNDLE_START_LEVEL_METADATA which is of type integer and has a value be-
tween 1 and 2147483647 inclusive. If the property does not exist then the default start level will
be used. If the property does exist and is not a suitable integer then launching must fail with a
LaunchException .

Setting the default start level for the bundles, and the minimum start level required for an installed
Feature is accomplished by using a Feature Extension named BUNDLE_START_LEVELS with Type
JSON . The JSON contained in this extension is used to configure the default start level for the bun-
dles, and the target start level for the framework. The schema of this JSON is as follows: ### Add
Schema in build

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",

david
Sticky Note
Maybe use Integer.MAX_INT as is done in later text?

Feature Launcher Service Specification Version 1.0 Common themes

OSGi Compendium Release 8.1 Page 97

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "$id": "http://www.osgi.org/json.schema/featurelauncher/v1.0.0/bundle-start-levels.json",
 "title": "bundle-start-levels",
 "description": "The definition of the bundle-start-levels feature extension",
 "type": "object",
 "properties": {
 "version": {
 "description": "The version of the Feature Launcher extension",
 "const": "1.0.0"
 },
 "defaultStartLevel": {
 "description": "The default start level for bundles in the feature",
 "type": "integer",
 "minimum": 1,
 "maximum": 2147483647
 },
 "minimumStartLevel": {
 "description": "The minimum required start level for the framework after feature installation",
 "type": "integer",
 "minimum": 1,
 "maximum": 2147483647
 }
 },
 "required": ["version", "defaultStartLevel", "minimumStartLevel"]
}

Setting the default start level for bundles installed by the framework is achieved using the default-
StartLevel property of the JSON extension. This must be an integer greater than zero and less than
Integer.MAX_INT , or the special marker value nul l . A nul l value is used to indicate that the default
start level for newly installed bundles is the current framework start level, or 1 if the current frame-
work start level is 0 . If the value is not valid then a LaunchException must be thrown when attempt-
ing to use the feature.

The minimum final start level for the OSGi framework required by the feature can be set using the
minimumStartLevel property. of the JSON extension. This must be an integer greater than zero and
less than Integer.MAX_INT . If the value is not valid then a LaunchException must be thrown when
attempting to use the feature. This property sets the minimum start level that the OSGi framework
must use to complete the installation of a Feature.

Finally the version property defines the version of the extension schema being used. This can be
used by the implementation to determine whether the Feature is targeting a newer version of the
specification. If the version is not understood by the implementation then a LaunchException must
be thrown when attempting to use the feature.

160.3.3 Feature Decoration
Feature Decoration is a process by which features can be pre-processed before they are installed or
updated. This gives users an opportunity to modify the feature, accept it as is, or block the operation
from proceeding. There are two types of decorator:

• Feature Decorators - called for all operations. Can re-write the bundles, configurations, variables
and extensions present in a feature.

• Feature Extension Handlers - called operations where the feature defines the named extension. Can
re-write the bundles, configurations and variables present in a feature, but not the extensions.

Both types of decorator may pass through the feature unchanged by returning the feature object
passed into them. This will cause the operation to continue as normal. Decorators may also block an
operation from proceeding by throwing an AbandonOperationException . This will cause the opera-
tion to be immediately halted, and an exception thrown to the caller who requested the operation.

160.3.3.1 Building decorated features

Feature objects are expected to be immutable, and therefore a decorator cannot, and should not,
change the feature object that is passed to them. Instead the decorator must create a new feature ob-
ject which includes the decorated content.

david
Highlight
Are all these required? I would have thought that for example you can choose to either specify defaultStartLevel or minimumStartLevel?

david
Comment on Text
I'm not sure I understand the use-case for this?

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 98 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

To enable this both types of decorator are passed two builders, the first of which implements Base-
FeatureDecorat ionBui lder and the second of which implements DecoratorBui lderFactory .

The former builder is similar to a FeatureBui lder but with three important differences:

• The builder is pre-populated with the information from the existing feature, such that immedi-
ately calling bui ld() would create a feature with identical content to the original.

• Except where explicitly stated the builder configuration methods replace content rather than
adding to it

• Only a limited subset of the feature content can be changed.

The latter builder is similar to a Bui lderFactory but it cannot create FeatureBui lder instances.

By using these two builders a decorated feature can be configured and created. This decorated fea-
ture can then be returned from the decorator. Note that the only valid way to create a decorated fea-
ture is by using the builder. Any attempt to return a feature object which is not either:

• The original feature object.
• The object returned by bui ld()

is an error and will result in the operation being abandoned.

160.3.3.2 Using Decorators

Decorators may be included using one of the relevant builder methods for a launch or runtime oper-
ation:

• withDecorator(FeatureDecorator)
• withExtensionHandler(Str ing,FeatureExtensionHandler)
• withDecorator(FeatureDecorator)
• withExtensionHandler(Str ing,FeatureExtensionHandler)

When registering a FeatureExtensionHandler the name of the extension to be handled must be
passed, and cannot be nul l . This defines the name of the extension that the Feature Extension Han-
dler will be used to process.

If multiple FeatureDecorator instances are registered then they will be called in the order that they
were added.

If multiple FeatureExtensionHandler instances are registered for the same extension name then
the earlier instances will be discarded. It is not possible to register more than one Feature Extension
Handler for a single extension.

160.4 The Feature Launcher
The FeatureLauncher is the main entry point for creating a running OSGi framework containing the
bundles and configurations defined in a Feature. As such the Feature Launcher is primarily designed
for use outside of an OSGi framework.

To support usage in a non-OSGi environment implementations of the Feature Launcher Service
must register the following implementation classes with the Java ServiceLoader API, and any neces-
sary module metadata.

• org.osgi .service.featurelauncher.FeatureLauncher
• org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

Feature Launcher Service Specification Version 1.0 The Feature Launcher

OSGi Compendium Release 8.1 Page 99

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.4.1 Obtaining and configuring a Feature Launcher
A Feature Launcher Service implementation must provide an implementation of the Feature
Launcher interface. A user of the Feature Launcher service may use the following ways to find this
class and create an instance:

• Using the Java ServiceLoader API to find instances of
org.osgi .service.featurelauncher.FeatureLauncher

• From configuration, and then using Class.forName , getConstructor() and newInstance()
• By hard coding the implementation type and using the new operator.

Once instantiated the Feature Launcher may be supplied with a Feature, either as a Read-
er providing access to the JSON text of a Feature document or a parsed Feature to create a
FeatureLauncher.LaunchBui lder . The Launch Builder can be configured in a fluent manner us-
ing the withConfigurat ion(Map) , withVariables(Map) , withFrameworkPropert ies(Map) and
withRepository(Art i factRepository) methods. Configuration properties for the Feature Launcher are
implementation specific, and any unrecognised property names should be ignored. Artifact Reposi-
tory instances may be created by the user using as described in The Art i fact Repository Factory on
page 94, or using custom implementations.

160.4.1.1 Thread Safety

Instances of the Feature Launcher and Launch Builder are not required to be Thread Safe, and
should not be shared between threads. Changing the configuration of a Launch Builder instance on-
ly affects that instance, and not any other instances that exist.

160.4.2 Using a Feature Launcher
Once a configured Launch Builder instance has been created the launchFramework() method can be
used to launch an OSGi framework containing the supplied Feature. The Feature Launcher will then
return a running Framework instance representing the launched OSGi framework and the Feature
that it contains. If an error occurs creating the framework, or locating and installing any of the fea-
ture bundles, then a LaunchException must be thrown.

Once the caller has received their framework instance they may carry on with other work, or they
may wait for the OSGi framework to stop using the waitForStop() method.

160.4.2.1 Providing Framework Launch Properties

Framework launch properties are key value pairs which are passed to the OSGi framework as it is
created. They can control many behaviours, including operations which happen before the frame-
work starts, meaning that is not always possible to set them after startup.

Feature definitions that require particular framework launch properties can define them using a
Feature Extension named FRAMEWORK_LAUNCHING_PROPERTIES . The Type of this Feature Exten-
sion must be TEXT , where each entry is in the form key=value All implementations of the Feature
Launcher must support this extension, and use it to populate the Framework Launch Properties.

In addition to Framework Launch properties defined inside the Feature, users of the Feature Launch-
er can add and override Framework Launch Properties using one of the withFrameworkPropert ies
method that permits a Map of framework properties to be provided. Any key value pairs defined in
this map must take precedence over those defined in the Feature. A key with a nul l value must result
in the removal of a key value pair if it is defined in the Feature.

160.4.2.2 Selecting a framework implementation

When defining a feature it is not always possible to be framework independent. Sometimes specific
framework APIs, or licensing restrictions, will require that a particular implementation is used. In
this case a Feature Extension named LAUNCH_FRAMEWORK with Type ARTIFACTS can be used to list
one or more artifacts representing OSGi framework implementations.

david
Comment on Text
I don't really have a strong opinion about this but since it's structured content, why not use a JSON extension?

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 100 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The list of artifacts is treated as a preference order, with the first listed artifact being used if avail-
able, and so on, until a framework is found. If a listed artifact is not an OSGi framework implemen-
tation then the Feature Launcher must log a warning and continue on to the next artifact in the list.
If the Kind of the feature is MANDATORY and none of the listed artifacts are available then launching
must fail with a LaunchException .

The Feature Launcher implementation may identify that an artifact is an OSGi framework imple-
mentation in any way that it chooses, however it must recognise framework implementations that
provide the Framework Launch API using the service loader pattern, as described in the Launching
and Controlling a Framework section of OSGi Core Release 8.

160.4.2.3 A simple example

The following code snippet demonstrates a simple example of using the Feature Launcher to start
an OSGi framework containing one or more bundles.

// Load the Feature Launcher
ServiceLoader<FeatureLauncher> sl = ServiceLoader.load(FeatureLauncher.class);
FeatureLauncher launcher = sl.iterator().next();

// Set up a repository
ArtifactRepository localRepo = launcher.createRepository(Paths.get("bundles"));

// Launch the framework
Framework fw = launcher
 .launch(Files.newBufferedReader(Paths.get("myfeature.json")))
 .withRepository(localRepo)
 .launchFramework();

fw.waitForStop(0);

160.4.3 The Feature Launching Process
The following section defines the process through which the Feature Launcher must locate, initial-
ize and populate an OSGi framework when launching a feature. Unless explicitly stated implemen-
tations may perform one or more parts of this process in a different order to that described in the
specification.

160.4.3.1 Feature Decoration

The first stage of launching is to determine the feature that should be launched by running the con-
figured feature decoration handlers.

First the Feature Launcher must execute any registered FeatureDecorator instances in the order that
they were registered. The feature returned by each decorator is used as input to the next.

Once the decoration is complete the Feature Launcher must iterate through the Feature Extensions
defined by the feature. For each Feature Extension the launcher must:

1. Identify the Feature Extension Handler for the named extension.
2. If no Feature Extension Handler can be found, and the extension name is one of:

• LAUNCH_FRAMEWORK
• FRAMEWORK_LAUNCHING_PROPERTIES
• BUNDLE_START_LEVELS

then create an empty Feature Extension Handler which may validate the FeatureExtension.Type
of the extension and must return the original feature.

Feature Launcher Service Specification Version 1.0 The Feature Launcher

OSGi Compendium Release 8.1 Page 101

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

3. If no Feature Extension Handler has been found or created then check the
FeatureExtension.Kind of the extension. If it is MANDATORY then the launch fails with a
LaunchException

4. Otherwise call the Feature Extension Handler, and use its result as input when calling any subse-
quent Feature Extension Handlers.

If any of the decorators throws an AbandonOperationException then the launch operation must im-
mediately fail.

160.4.3.2 Locating a framework implementation

Before a framework instance can be created the Feature Launcher must identify a suitable imple-
mentation using the following search order:

1. If any provider specific configuration has been given to the Feature Launcher implementation
then this should be used to identify the framework.

2. If the Feature declares an Extension LAUNCH_FRAMEWORK then the Feature Launcher imple-
mentation must use the first listed artifact that can be found in any configured Artifact Reposi-
tories, as described in Select ing a framework implementation on page 99.

3. If no framework implementation is found in the previous steps then the Feature Launcher
implementation must search the classpath using the Thread Context Class Loader, or, if the
Thread Context Class Loader is not set, the Class Loader which loaded the caller of the Feature
Launcher's launch method. The first suitable framework instance located is the instance that
will be used.

4. In the event that no suitable OSGi framework can be found by any of the previous steps then
the Feature Launcher implementation may provide a default framework implementation to be
used.

If no suitable OSGi framework implementation can be found then the Feature Launcher implemen-
tation must throw a LaunchException .

160.4.3.3 Creating a Framework instance

Once a suitable framework implementation has been located the Feature Launcher imple-
mentation must create and initialize a framework instance. Implementations are free to
use implementation specific mechanisms for framework implementations that they recog-
nise. The result of this initialization must be the same as if the Feature Launcher used the
org.osgi .f ramework. launch.FrameworkFactory registered by the framework implementation to cre-
ate the framework instance.

When creating the framework any framework launch properties defined in the Feature must be
used. These are defined as described in Providing Framework Launch Propert ies on page 99 and
must include any necessary variable replacement as defined by Overr iding Feature var iables on
page 96.

Once instantiated the framework must be initialised appropriately so that it has a valid BundleCon-
text . Once initialised the framework is ready for the Feature Launcher implementation to begin
populating the framework.

160.4.3.4 Installing bundles and configurations

The Feature Launcher must iterate through the list of bundles in the feature, installing them in the
same order that they are declared in the feature. If bundle start levels have been defined, as described
in Sett ing the bundle start levels on page 96, then the Feature Launcher must ensure that the
start level is correctly set for each installed bundle. If no start level metadata or extension is defined
then all bundles are installed with the framework default start level.

If the installation of a bundle fails because it is determined by the framework to be a duplicate of an
existing bundle then the Feature Launcher must treat the installation as a success. The start level of

david
Comment on Text
Do we need a new Exception type for this? Do other exceptions continue? I guess I would have thought that _any_ exception would cause it to fail...

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 102 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

such a bundle must be set to the lower of its current value and the start level defined for the feature
bundle that failed to install.

If a Feature defines one or more Feature Configurations then these cannot be guaranteed to be made
available until the Configurat ionAdmin service has been registered. A Feature Launcher implemen-
tation may provide an implementation specific way to pre-register configurations, however in gen-
eral the Feature Launcher should listen for the registration of the Configurat ionAdmin service and
immediately create the defined configurations when it becomes available. Configurations must be
created in the same order as they are defined in the Feature.

If the CONFIGURATION_TIMEOUT configuration property is set to 0 , and one or more Feature
Configurations are defined in the Feature being installed, then the implementation must throw a
LaunchException unless it is capable of pre-registering those configurations in an implementation
specific way.

160.4.3.5 Starting the framework

Once all of the the bundles listed in the feature are installed, and any necessary configuration listen-
er is registered, the implementation must start the OSGi framework. This action will automatically
start the installed bundles as defined by the initial start level of the framework, and the start levels
of the installed bundles.

The Feature Launcher implementation must delay returning control to the caller until all configu-
rations have been created, subject to the timeout defined by CONFIGURATION_TIMEOUT . The de-
fault timeout is 5000 milliseconds, and it determines the maximum length of time that the Feature
Launcher implementation should wait to begin creating the configurations. A value of -1 indicates
that the Feature Launcher implementation must not wait, and must continue immediately, even if
the configurations have not yet been created. If it is not possible to begin before the timeout expires
then a LaunchException must be thrown.

Finally, if the minimumStartLevel has been set by the BUNDLE_START_LEVELS extension then the
Feature Launcher implementation must check the current start level of the framework. If the cur-
rent start level is less than the value of minimumStartLevel then the framework's start level must be
set to this value.

Once the start process is complete the Framework instance must be returned to the caller.

The following failure modes must all result in a LaunchException being thrown:

• A bundle fails to resolve. If one of the installed bundles fails to resolve this is an error unless the
Feature is not complete. For Features that are not complete resolution failures must be logged,
but not cause a failure.

• A resolved bundle fails to start. If one of the resolved bundles fails to start this is an error unless
the bundle is a fragment or an extension bundle, which the Feature Launcher should not attempt
to start.

• A configuration cannot be created. If a configuration cannot be created then this must result in a
start failure

If a launching failure is triggered by an exception, for example a BundleException then this must be
set as the cause of the LaunchException that is thrown.

160.4.3.6 Cleanup after failure

If the Feature Launcher implementation fails to launch a feature then any intermediate objects
must be properly closed and discarded. For example if an OSGi framework instance has been created
then it must be stopped and discarded.

david
Comment on Text
Doesn't this encourage people to write fragile setups that depend on the order of configurations? Configurations are normally asynchronous and can arrive in any order, so putting any rules on the ordering of configuration can only be taken as an optimization and must not be relied on.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 103

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.5 The Feature Runtime Service
The Feature Runtime Service can be thought of as an equivalent of the Feature Launcher for an ex-
isting, running OSGi framework. The Feature Runtime Service therefore does not offer any mech-
anism for launching a framework, but instead allows one or more features to be installed into the
running framework. As an OSGi framework is a dynamic environment the Feature Runtime Service
also provides snapshots describing the currently installed Features, allows installed Features to be
updated, and allows Features to be removed from the system.

An important difference between the Feature Launcher and Feature Runtime Service is that because
the Feature Runtime Service allows multiple Features to be installed it must be able to identify and
resolve simple conflicts. For example if two Features include the same bundle at different versions
then the resolution may be to install only the higher version, or both versions.

160.5.1 Using the Feature Runtime
The Feature Runtime must be registered as a service in the service registry. Management agents that
wish to install, manage or introspect Features in the framework must obtain this service. The Fea-
ture Service Runtime service must advertise the FeatureRuntime interface.

160.5.1.1 Thread Safety

Instances of the Feature Runtime are Thread Safe, regardless of whether the service is implemented
as a singleton or otherwise. Any FeatureRuntime.Operat ionBui lder instances created by the Feature
Runtime are not thread safe and must not be shared between threads.

Despite the Operation Builders not being Thread Safe the underlying Feature Runtime must re-
main Thread Safe, specifically if two Operation Builders complete at the same time then these calls
should be handled sequentially such that there are never partially deployed Features present when
installing, updating or removing a Feature.

160.5.1.2 Introspecting the installed Features

An important role for any management agent is being able to introspect the system to discover its
current state. The Feature Runtime enables this through the getInstal ledFeatures() method, which
returns a snapshot of the current state of the system.

The returned list of snapshots contains one Instal ledFeature entry for each installed Feature, in the
order that they were installed, and may be empty if no Features have been installed. If the frame-
work was started using a Feature Launcher from the same implementation as the Feature Runtime
then the Feature Runtime may choose to represent the launched Feature in the snapshot list. If the
launched Feature is included in the snapshot list then it must set is Init ia lLaunch() to true . Launch
features cannot be removed or updated by the Feature Runtime, and any attempt to do so must
throw a FeatureRuntimeException

Each Installed Feature provides:

• The ID of the Feature from getFeatureId()
• The List of Instal ledBundle from getInstal ledBundles() listing the bundles installed by the Run-

time on behalf of the Feature.
• The List of Instal ledConfigurat ion from getInstal ledConfigurat ions() listing the configurations

installed by the feature.

The Instal ledBundle snapshots each represent a bundle installed by the Feature Runtime on behalf
of the Feature. The Installed Bundle contains the following information:

• getBundleId() - The ID of the bundle that was installed.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 104 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• getAl iases() - A Collect ion of one or more IDs that are known to correspond to this bundle. This
list will always contain the bundleId and may contain additional IDs if their attempted installa-
tion resulted in a collision.

• getBundle() - The actual bundle that was installed into the runtime.
• getStartLevel() - The calculated start level for this bundle. Note that this start level may have

been affected by other features.
• getOwningFeatures() - A List of the ids of the features which own the installed bundle. Owner-

ship of a bundle is tracked by the Feature Runtime, and it is used to identify when the same bun-
dle forms part of more than one Feature. Bundles that are owned by more than one Feature will
not be removed until all of the Features that own them are removed.

In the case where a bundle was not installed by the Feature Runtime, but later became owned by
an installed Feature, that bundle will also be owned by the EXTERNAL_FEATURE_ID to indicate
that they will not be removed if the other owning Feature is removed.

In addition to bundles Features can contain configurations. The Instal ledConfigurat ion snapshots
each represent a configuration created by the Feature Runtime on behalf of the Feature. The In-
stalled Configuration contains the following information:

• getPid() - The configuration pid of this configuration.
• getFactoryPid() - The factory pid of this configuration, or an empty Optional if the configuration

is not a factory configuration.
• getPropert ies() - The merged configuration properties that result from the full set of installed

Features contributing to this configuration. Note that there is no dynamic link to Configuration
Admin and so any configuration changes made outside the Feature Runtime will not be reflected.

• getOwningFeatures() - A List of the ids of the features which own the configuration. Ownership
of a configuration is tracked by the Feature Runtime, and it is used to identify when the same
configuration, as defined by its pid, forms part of more than one Feature. Configurations that are
owned by more than one Feature will not be removed until all of the Features that own them are
removed.

In the case where a configuration was not installed by the Feature Runtime, but lat-
er became owned by an installed Feature, that configuration will also be owned by the
EXTERNAL_FEATURE_ID to indicate that they will not be deleted if the other owning Feature is re-
moved.

160.5.1.3 Installing a feature

Installing a Feature uses one of the instal l methods present on the Feature Runtime.
These methods allow the caller to provide the Feature to be installed and return an
FeatureRuntime. Instal lOperat ionBui lder to allow the caller to configure their installation opera-
tion. Configuration of operations includes:

• Sett ing var iable overr ides on page 105.
• Sett ing the avai lable Art i fact Repositor ies on page 105
• Feature Decoration on page 97
• Adding Merging strategies on page 105

Once the operation is fully configured then the caller uses the instal l () method to begin the installa-
tion. The end result of installing a Feature is that all of the bundles listed in the Feature are installed,
all of the Feature Configurations have been created, all bundles have been marked as persistently
started, and the framework start level is at least the minimum level required by the Feature.

Start levels for the bundles in the Feature may be controlled as described in Sett ing the bundle start
levels on page 96. If any bundles are installed with a start level higher than the current frame-
work start level then they will be marked persistently started but will not start until the framework
start level is changed.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 105

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

In more complex cases, where multiple features are installed with overlapping bundles or configu-
rations then Merging strategies on page 105 will be applied to determine which bundles are in-
stalled, and what configuration properties will be used when creating or updating a configuration.

If a failure occurs during the installation of a Feature then the Feature Runtime must make every ef-
fort to return the system to its pre-existing state. After a failure no new bundles should be installed,
any altered configurations returned to their previous states, and the framework start level should be
the same as it was prior to the failed installation.

160.5.1.4 Setting the available Artifact Repositories

As with the Feature Launcher, in order to successfully locate the bundles listed in a feature the Fea-
ture Runtime must have access to one or more Artifact Repositories capable of locating the bundles.
These Artifact Repositories are configured into each Operation Builder by the user.

A configured Feature Runtime will typically include one or more pre-defined Artifact Repositories.
These pre-defined repositories are available to view via the getDefaultRepositor ies() . By default all
Operation Builders will have access to these repositories when completing. This behaviour can be
changed using the useDefaultRepositor ies(boolean) method.

Additional Artifact Repositories can be added to an Operation Builder by calling the
addRepository(Str ing,Art i factRepository) method. The supplied name is used to identify the reposi-
tory. If the supplied name is already used for an existing Artifact Repository then it will be replaced
or, if the supplied Artifact Repository is nul l , removed. A named Artifact Repository added in this
way will override a default Artifact Repository with the same name.

160.5.1.5 Setting variable overrides

As described in Overr iding Feature var iables on page 96 a feature may define zero or more over-
ridable properties which can be used to alter the deployment of the feature. These properties may
be configured into each Operation Builder by calling the withVariables(Map) method. The supplied
Map contains the keys and values that will override the variables in the Feature.

160.5.1.6 Merging strategies

Merge operations occur when two or more features reference the same, or similar, items to be in-
stalled. The purpose of a merge operation is to avoid unnecessary duplication, and to resolve con-
flicts.

Merging potentially applies whenever a Feature is installed, updated or removed, and may result in
different outcomes depending on the strategy used. All runtime merge functions therefore receive a
MergeOperationType indicating which type of operation is currently running.

160.5.1.6.1 Merging Bundles

Features may define bundles to be installed by including Feature Bundle entries. If two or more Fea-
tures include Feature Bundles which have IDs with the same group id and artifact id, but which
are not the same, then this situation requires a merge to resolve the possible conflict. Determining
whether two IDs are the same is accomplished by checking whether they return equal strings from
toStr ing() .

When a possible conflict is detected the Feature Runtime must call a RuntimeBundleMerge to iden-
tify the correct actions to take. These actions include:

• Whether to install the candidate Feature Bundle or not
• Whether to re-designate the ownership of any existing Installed Bundles
• Whether to remove any existing Feature Bundles

Although the obvious time for a bundle merge operation to occur is during an INSTALL operation,
merges may also occur during UPDATE and REMOVE operations. During an UPDATE the existing
bundles from the Feature being updated will remain available so that the updated Feature may be

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 106 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

merged into the existing runtime. During a REMOVE a merge will occur to allow Feature ownership
to be re-allocated if a shared bundle is being removed.

Merges are resolved by the mergeBundle method which receives:

• The type of the operation, one of INSTALL , UPDATE or REMOVE .
• The Feature being operated on
• The Feature Bundle which requires merging
• A Collect ion of Installed Bundles representing the currently installed bundles which have an

overlapping groupId and art i fact Id . Note that in the case of an UPDATE or REMOVE operation the
Feature being updated or removed will not be present in the collection of owning features for
any of the Installed Bundles.

• A List of RuntimeBundleMerge.FeatureBundleDefinit ion representing the existing Features
which form part of the merge operation. Note that in the case of an UPDATE or REMOVE opera-
tion the Feature Bundle being updated or removed will not be present in the list. Entries in the
list are present in the order that the Features were installed into the runtime.

The result of the merge function is a Stream of RuntimeBundleMerge.BundleMapping . Each Bun-
dle Mapping links a bundle ID to List of feature IDs. The Bundle Mapping's bundle id must only be a
bundleId found in the list of Installed Bundles or, in the case of an INSTALL or UPDATE operation, the
id of the Feature Bundle being merged. The mapped Feature ids must contain the id of every Feature
in the supplied Feature Bundle Definitions, and, in the case of an INSTALL or UPDATE operation, the
id of the Feature being merged. If the id of any Installed Bundle is not present in the returned Stream
then that bundle will be removed as part of the ongoing operation. If the same bundle id is present
more than once the the two mappings will be combined using the union of the mapped Feature ids.

A simple example of a merge strategy which combines configurations by upgrading Features to the
highest compatible version could be implemented as follows:

public Map<ID,List<ID>> mergeBundle(MergeOperationType operation,
 Feature feature, FeatureBundle toMerge,
 List<InstalledBundle> installedBundles,
 Map<FeatureBundle,Feature> existingFeatureBundles) {

 Map<ID,List<ID>> result;

 if (operation == MergeOperationType.REMOVE) {
 // Just keep everything the same
 result = installedBundles.stream()
 .filter(i -> !i.getOwningFeatures().isEmpty())
 .collect(Collectors.toMap(i -> i.getBundleId(),
 i -> i.getOwningFeatures()));
 } else {
 // Find the Installed bundles we might replace
 Version v = RuntimeMerges.getOSGiVersion(toMerge.getID());

 List<InstalledBundle> sameMajor = new ArrayList<>();
 List<InstalledBundle> differentMajor = new ArrayList<>();

 installedBundles.forEach(i -> {
 if (i.getBundle().getVersion().getMajor() == v.getMajor()) {
 sameMajor.add(i);
 } else {
 differentMajor.add(i);
 }

david
Comment on Text
The example below does not return a Stream but a Map

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 107

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 });

 // Bundles with a different major version stay the same
 result = differentMajor.stream()
 .filter(i -> !i.getOwningFeatures().isEmpty())
 .collect(Collectors.toMap(i -> i.getBundleId(),
 i -> i.getOwningFeatures()));

 // Find the biggest existing version and see if it's bigger than v
 Optional<InstalledBundle> max = sameMajor.stream()
 .max((a, b) -> a.getBundle().getVersion()
 .compareTo(b.getBundle().getVersion()))
 .filter(m -> m.getBundle().getVersion().compareTo(v) >= 0);

 // Use the old version if it's bigger, or the new if not
 ID key = max.isPresent() ? max.get().getBundleId() : toMerge.getID();

 Stream<ID> featureIds = sameMajor.stream()
 .flatMap(i -> i.getOwningFeatures().stream());

 result.put(key,
 Stream.concat(Stream.of(feature.getID()), featureIds)
 .collect(Collectors.toList()));
 }
 return result;
}

160.5.1.6.2 Merging Configurations

Features may define configurations by including Feature Configuration entries. If two or more Fea-
tures include properties for the same configuration PID then this situation requires a merge to re-
solve the conflict.

Merges are resolved by a RuntimeConfigurat ionMerge which receives:

• The type of the operation, one of INSTALL , UPDATE or REMOVE .
• The Feature being operated on
• The Feature Configuration which requires merging
• The Installed Configuration representing the current state of the configuration. Note that in

the case of an UPDATE or REMOVE operation the Feature being updated or removed will not be
present in the list of owning features.

• A List of RuntimeConfigurat ionMerge.FeatureConfigurat ionDefinit ion representing the existing
Features which form part of the merge operation. Note that in the case of an UPDATE or REMOVE
operation the Feature Configuration being updated or removed will not be present in the list. En-
tries in the list are present in the order that the Features were installed into the runtime.

The result of the merge function is a map of configuration properties that should be used to update
the configuration. If the map is nul l then the configuration should be deleted.

A simple example of a merge strategy which combines configurations by overlaying each in turn
and ignoring nul l configurations could be implemented as follows:

public Map<String,Object> mergeConfiguration(MergeOperationType operation,
 Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration,
 List<FeatureConfigurationDefinition> existingFeatureConfigurations) {

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 108 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 boolean addedSomething = false;

 Map<String,Object> result = new HashMap<>();

 for (FeatureConfigurationDefinition fcd : existingFeatureConfigurations) {
 FeatureConfiguration fc = fcd.getFeatureConfiguration();
 if(fc.getValues() != null) {
 result.putAll(fc.getValues());
 addedSomething = true;
 }
 }

 if(operation != MergeOperationType.REMOVE && toMerge.getValues() != null) {
 result.putAll(toMerge.getValues());
 addedSomething = true;
 }

 return addedSomething ? result : null;
}

160.5.1.7 Removing a Feature

Removing a feature from the Feature Runtime Service uses the remove(ID) method to uninstall and
remove a feature from the framework. Removing a feature is a comparatively simple operation, and
therefore does not require the configuration of an FeatureRuntime.Operat ionBui lder .

Once the remove method returns the feature will have been removed from the Feature Runtime,
and any links to installed bundles and configurations will have been removed. If this leaves any in-
stalled bundles or installed configurations with no owners then these will be uninstalled or deleted
from the system as appropriate.

If a failure occurs during the removal of a feature then the Feature Runtime must make every effort
to fully remove the feature, for example by continuing to remove installed bundles that no longer
have any owners. Exceptions that occur must be logged, and upon completion the Feature Runtime
must throw a FeatureRuntimeException which indicates the incomplete removal.

It is not an error to remove a feature which does not exist in the Feature Runtime and this must re-
turn without error, and without altering the state of the system. It is an error to attempt to remove
any feature that returns true for is Init ia lLaunch() , and any attempt to do so must result in a Feature-
RuntimeException .

160.5.1.8 Updating a Feature

Updating a Feature uses one of the update methods present on the Feature Runtime. These methods
allow the caller to indicate which feature should be updated, and provider the new Feature defini-
tion to replace it with. The methods return an FeatureRuntime.UpdateOperationBui lder to allow
the caller to configure their update operation. Configuration of operations includes:

• Sett ing var iable overr ides on page 105.
• Sett ing the avai lable Art i fact Repositor ies on page 105
• Feature Decoration on page 97
• Adding Merging strategies on page 105

Once the operation is fully configured then the caller uses the update() method to begin the up-
date. The end result of updating a Feature is that all of the bundles listed in the new Feature are in-
stalled, all of the Feature Configurations in the new Feature have been created, all bundles have
been marked as persistently started, and the framework start level is at least the minimum level re-
quired by the new Feature. In addition, any bundles and configurations from the old Feature that are

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 109

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

not present in the new Feature will have been removed, and any configurations present in both the
old and new Features will have been updated with new any new content.

At a high level an update operation is therefore superficially similar to performing a remove opera-
tion followed by an instal l operation. The key difference, however, is that any bundles and configu-
rations shared by both features, or identified by a merge strategy, will not be removed, and instead
will become owned by the new Feature.

As for installation, start levels for the bundles in the new Feature will be determined as described in
Sett ing the bundle start levels on page 96. If any bundles are installed with a start level high-
er than the current framework start level then they will be marked persistently started but will not
start until the framework start level is changed.

Where the feature update includes overlapping bundles or configurations then Merging strategies
on page 105 will be applied to determine which bundles are installed, and what configuration
properties will be used when creating or updating a configuration.

If a failure occurs during the update of a Feature then the Feature Runtime must make every effort
to return the system to its pre-existing state. After a failure no new bundles should be installed, any
altered configurations returned to their previous states, and the framework start level should be the
same as it was prior to the failed installation.

160.5.2 The Feature Runtime Behaviour
The following section provides normative requirements for the behaviour of the Feature Runtime
when it is used. This includes the necessary end states after installation, update and removal of Fea-
tures.

160.5.2.1 The Feature installation process

The Feature Installation process has four main phases:

• The feature decoration phase, where the Feature is decorated and validated
• The bundle installation phase, where Feature bundles are installed
• The configuration creation phase, where Feature Configurations are created
• The Feature Start phase, where Bundles are started.

The feature decoration phase must complete before any other phases can begin. The the bundle in-
stallation phase and the configuration creation phase may happen in any order, or even with inter-
leaved steps, however the Feature Start phase must not begin until the bundle installation and con-
figuration creation phases are complete.

160.5.2.1.1 Feature Decoration

The first stage of the operation is to determine the feature that should be used by running the con-
figured feature decoration handlers.

First the Feature Runtime must execute any registered FeatureDecorator instances in the order that
they were registered. The feature returned by each decorator is used as input to the next.

Once the decoration is complete the Feature Runtime must iterate through the Feature Extensions
defined by the feature. For each Feature Extension the Feature Runtime must:

1. Identify the Feature Extension Handler for the named extension.
2. If no Feature Extension Handler can be found, and the extension name is one of:

• LAUNCH_FRAMEWORK
• FRAMEWORK_LAUNCHING_PROPERTIES
• BUNDLE_START_LEVELS

then create an empty Feature Extension Handler which may validate the FeatureExtension.Type
of the extension and must return the original feature.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 110 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

3. If no Feature Extension Handler has been found or created then check the
FeatureExtension.Kind of the extension. If it is MANDATORY then the operation fails with a Fea-
tureRuntimeException

4. Otherwise call the Feature Extension Handler, and use its result as input when calling any subse-
quent Feature Extension Handlers.

If any of the decorators throws an AbandonOperationException then the operation must immedi-
ately fail.

160.5.2.1.2 Bundle Installation

When a feature is being installed the Feature Runtime identifies the bundles to be installed. The Fea-
ture Runtime also gathers the set of bundles that are already installed, and then computes the over-
lap between these. Bundles are deemed to overlap if they have the same group id, artifact id, type
and classifier but they may differ in version.

If the overlap list contains entries which overlap exactly, that is they have the same version in the
runtime and the Feature being installed, then those bundles are removed from the list of bundles
to be installed and the existing bundles are marked as owned by the Feature being installed. If the
marked bundles were not previously owned by any other feature then they also marked as owned
by the EXTERNAL_FEATURE_ID to indicate that they will not be removed if the Feature being in-
stalled is removed.

Any remaining overlap entries are processed according to the merge strategy for the feature, as de-
scribed in Merging Bundles on page 105. The final list of bundles to install, which excludes any
already installed bundles, is then installed in the same order as it was defined by the feature. Each
bundle in the feature, including bundles that were already installed, is then marked as owned by the
installing feature.

If the installation of a bundle fails because it is determined by the framework to be a duplicate of an
existing bundle then the Feature Runtime must treat the installation as a success and add the ID as
an alias for the existing Installed Bundle. The start level of such a bundle must be set to the lower of
its current value and the start level defined for the feature bundle that failed to install.

Once the installation of bundles is complete the Feature Runtime must uninstall any bundles which
were identified for removal as part of any merge processes.

160.5.2.1.3 Configuration Creation

As part of the initial Feature installation the Feature Runtime must also process and create any Fea-
ture Configurations that are defined in the Feature. Feature Configurations cannot be guaranteed to
be made available until a Configurat ionAdmin service has been registered. A Feature Runtime imple-
mentation should therefore listen for the registration of a Configurat ionAdmin service and immedi-
ately create or update any pending configurations when it becomes available. Configurations must
be created or updated in the same order as they are defined in the Feature.

If the same configuration, as identified by its configuration pid, is defined in one or more existing
installed Features then the configuration properties to be used are determined by merging the previ-
ous configuration properties with the new properties defined in the Feature, as described in Merging
Configurations on page 107. If at the point where the FeatureRuntime attempts to create or up-
date a Feature Configuration there are already configuration properties defined in Configurat ionAd-
min then these must be ignored and replaced using updateIfDifferent(Dict ionary) unless the Con-
figurat ion is marked as READ_ONLY . If a READ_ONLY configuration does exist then the Feature Run-
time must log a warning and skip that configuration.

160.5.2.1.4 Feature Start

Once all of the bundles listed by the feature are installed then the bundles' start levels are assigned
as described in Sett ing the bundle start levels on page 96. This includes any pre-existing bun-
dles and the results of any merge operations. If no start level configuration is defined in the fea-

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 111

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ture for a particular bundle then the start level for that bundle is set to the current start level of the
framework.

The Feature Runtime must then identify the lowest start level referenced in the Feature, and repeat-
edly run through the list of bundles, in the order that they are defined in the Feature, looking for
bundles which match the identified start level. For each bundle the Feature Runtime must:

• If the bundle was installed in the Bundle Installation phase then set the start level for the bundle.
• If the bundle was already installed then update the start level for the bundle if, and only if, the

new start level is lower than the existing start level.
• Mark the bundle as persistently started unless it is a fragment bundle.

The Feature Runtime must then identify the next lowest start level referenced in the Feature and re-
peat this process until all bundles have been persistently started. Once this process is complete then
the framework start level must be increased to the minimum start level required by the Feature, or
returned to the original framework start level if this is higher and was decreased as part of Merging
Bundles on page 105.

160.5.2.1.5 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being installed is already known to the Feature Runtime. This must be treated as a
failure as the configuration of the Instal lOperat ionBui lder may not be the same as the previous
installation. The Feature Runtime must make no changes and immediately throw a FeatureRun-
timeException .

• A Feature Bundle cannot be found by any configured Arti factRepository .
• A BundleException is thrown during Bundle Instal lat ion on page 110.
• A BundleException is thrown during Feature Start on page 110.
• A Feature Configuration cannot be created by the Configurat ionAdmin service.
• An Exception is thrown by any configured Arti factRepository , RuntimeBundleMerge or Run-

timeConfigurat ionMerge .

In all cases the first exception must be treated as a failure, with the installation process halting im-
mediately. The feature must then be removed from the runtime in a similar manner to calling re-
move for the feature id. Once the feature removal is complete the failure may be used in creating the
FeatureRuntimeException that must be thrown by this method.

160.5.2.2 The Feature removal process

The Feature removal process has four main phases:

• The feature removal phase, where the feature is removed from the Feature Runtime.
• The bundle stop phase, where Installed Bundles without owners are stopped.
• The configuration deletion phase, where Installed Configurations without owners are removed
• The bundle removal phase, stopped bundles are uninstalled

The the feature removal and bundle stop phases may happen in any order, or even with interleaved
steps. The same is true for the configuration deletion phase and the bundle removal phase, however
these phases must not begin until the bundle stop phase is complete.

160.5.2.2.1 Feature Removal

Feature removal is a simple operation which removes any reference to the Installed Feature from
the Feature Runtime. This includes the list of installed features, and the ownership lists of any In-
stalled Bundles or Installed configurations in the Feature Runtime. After removal is complete the ID
of the removed feature should not appear anywhere in the Feature Runtime.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 112 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Installed Bundles and Installed Configurations which have zero owners after the removal of the
feature are now considered eligible for removal. Their removal processes are described in the next
phases.

160.5.2.2.2 Bundle Stop

The Feature Runtime must identify the highest start level set by the list of Installed Features, exclud-
ing the Feature being removed. If no start level is defined by this list of features then no action is tak-
en, otherwise the framework start level is set to the newly identified start level.

The list of bundles eligible to be stopped, as determined in Feature Removal on page 111, is used
to peristently stop any remaining bundles. Bundles that are eligible for removal are stopped in the
reverse order in which they were started by Feature Start on page 110. This is accomplished by
stopping the bundles with the highest start level first, using the reverse order of declaration in the
feature where the start level is the same. If an eligible bundle is already stopped due to its start level
then it must still be persistently stopped.

160.5.2.2.3 Configuration Removal

Once the Bundle Stop on page 112 phase has completed the Feature Runtime may begin remov-
ing configurations that are eligible. As with bundles, configurations become eligible for removal if
they are no longer owned by any feature. Eligible configurations must be removed in the reverse or-
der of creation, that is the reverse order that they were listed in the feature being removed.

160.5.2.2.4 Bundle Removal

Once the Bundle Stop on page 112 phase has completed the Feature Runtime may begin unin-
stalling bundles from the OSGi framework. These bundles must only be eligible bundles identified
and stopped as part of the previous phase. Bundles are uninstalled in reverse installation order, that
is the reverse of the order in which they are listed in the feature.

If one or more bundles have been uninstalled, and once all eligible bundles have
been uninstalled, the Feature Runtime must refresh the framework wiring by calling
FrameworkWir ing.refreshBundles , passing the list of uninstalled bundles. This will cause the frame-
work to completely remove the uninstalled bundles, and any wirings that link to them.

160.5.2.2.5 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being removed is not known to the Feature Runtime. This must not be treated as a
failure, and should simply return immediately.

• One or more BundleExceptions are thrown during Bundle Stop on page 112. These exceptions
should be logged when they occur, but then ignored.

• One or more BundleExceptions are thrown during Bundle Removal on page 112. These excep-
tions should be logged when they occur, with the Feature Runtime continuing despite the errors.
Once the feature removal is complete the failures may be used in creating the FeatureRuntime-
Exception that must be thrown by this method.

• One or more Installed Configurations are missing from the Configurat ionAdmin service. These
missing configurations should be logged with a warning, but not treated as an error.

• One or more Installed Configurations cannot be deleted missing from the Configurat ionAdmin
service. These exceptions should be logged when they occur, with the Feature Runtime continu-
ing despite the errors. Once the feature removal is complete the failures may be used in creating
the FeatureRuntimeException that must be thrown by this method.

The Feature Update Process

The Feature Update Process can be viewed as an interleaved remove and installation operation, fol-
lowing the phases present in both.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 113

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• The feature decoration phase, where the new Feature is decorated and validated
• The feature removal phase, where the existing feature is removed from the Feature Runtime.
• The bundle installation phase, where the new Feature bundles are installed
• The bundle stop phase, where Installed Bundles without owners are stopped.
• The configuration creation and update phase, where the new Feature Configurations are created

or updated
• The configuration deletion phase, where Installed Configurations without owners are removed
• The Feature Start phase, where Bundles in the new feature are started.
• The bundle removal phase, stopped bundles are uninstalled

160.5.2.3.1 Decorating the new Feature

Decorating the new feature proceeds exactly as if a new feature is being installed, as described in
Feature Decoration on page 109.

160.5.2.3.2 Removing the existing Feature

Removing the existing feature proceeds exactly as if a new feature is being removed, as described in
Feature Removal on page 111.

160.5.2.3.3 Installing the new bundles

Installing the bundles from the new feature proceeds as if a new feature is being removed, as de-
scribed in Bundle Instal lat ion on page 110, but with two important differences.

The first important difference is that bundles being installed must be prevented from wiring to bun-
dles that are eligible for removal. This may be accomplished through the use of a Resolver Hook. As
the resolver may attempt to resolve bundles at any time this restriction must be enforced by the Fea-
ture Runtime until after all of the eligible bundles are uninstalled.

The second important difference is that any Installed Bundles that are eligible for removal are still
available in the runtime. This means that they must be considered when determining whether bun-
dles are already installed, or whether they need to be merged. This may lead to one or more Installed
Bundles that were eligible for removal becoming ineligible for removal as they become owned by the
new feature. Any Installed Bundles for which this is the case must be removed from the list of eligi-
ble bundles, and immediately become available for wiring by newly installed bundles.

160.5.2.3.4 Stopping the eligible bundles

Stopping the eligible bundles proceeds exactly as described in Bundle Stop on page 112. Note that
if the existing feature used start levels then this process will likely result in one or more bundles
shared between the old and new features being stopped temporarily.

Care must be taken in this phase to persistently stop all eligible bundles. Failing to do so may result
in eligible bundles being accidentally restarted in later phases.

160.5.2.3.5 Creating and Updating Configurations

Creating and updating configurations proceeds as described in Configuration Creation on page
110, but with one important difference.

Any Installed Configurations that are eligible for removal are still available in the runtime. This
means that they must be considered when determining whether they need to be merged. This may
lead to one or more Installed Configurations that were eligible for removal becoming ineligible for
removal as they become owned by the new feature. Any Installed Configurations for which this is
the case must be removed from the list of eligible configurations.

160.5.2.3.6 Removing Configurations

Removing eligible configurations proceeds exactly as described in Configuration Removal on page
112.

Capabilities Feature Launcher Service Specification Version 1.0

Page 114 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.5.2.3.7 Starting the new feature

Starting the new feature proceeds exactly as described in Feature Start on page 110. As all bun-
dles eligible for removal were persistently stopped in an earier phase they will remain stopped dur-
ing this phase, and must not be started again.

160.5.2.3.8 Uninstalling the eligible bundles

Until the Feature Runtime reaches this phase of an update it must fail by attempting to roll back to
the previous feature. Once this phase has been reached this failure mode changes, and the Feature
Runtime must retain the new Feature, attempting to continue despite failures.

Removing the eligible bundles proceeds exactly as described in Bundle Removal on page 112.

160.5.2.3.9 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being updated is not known to the Feature Runtime. This must not make any
changes and should immediately throw a FeatureRuntimeException .

• A Feature Bundle cannot be found by any configured Arti factRepository .
• A BundleException is thrown during Instal l ing the new bundles on page 113. This should re-

sult in the imediate failure of the operation, rolling back to the pre-update state, with a Feature-
RuntimeException thrown to the caller.

• A BundleException is thrown during Start ing the new feature on page 114. This should result
in the imediate failure of the operation, rolling back to the pre-update state, with a FeatureRun-
timeException thrown to the caller.

• A Feature Configuration cannot be created by the Configurat ionAdmin service. This should re-
sult in the imediate failure of the operation, rolling back to the pre-update state, with a Feature-
RuntimeException thrown to the caller.

• An Exception is thrown by any configured Arti factRepository , RuntimeBundleMerge or Run-
timeConfigurat ionMerge . This should result in the imediate failure of the operation, rolling
back to the pre-update state, with a FeatureRuntimeException thrown to the caller.

• One or more BundleExceptions are thrown during Stopping the el ig ible bundles on page 113.
These exceptions should be logged when they occur, but then ignored.

• One or more BundleExceptions are thrown during Uninstal l ing the el ig ible bundles on page
114. These exceptions should be logged when they occur, with the Feature Runtime continuing
despite the errors. Once the feature removal is complete the failures may be used in creating the
FeatureRuntimeException that must be thrown by this method.

• One or more Installed Configurations are missing from the Configurat ionAdmin service. These
missing configurations should be logged with a warning, but not treated as an error.

• One or more Installed Configurations cannot be deleted missing from the Configurat ionAdmin
service. These exceptions should be logged when they occur, with the Feature Runtime continu-
ing despite the errors. Once the feature removal is complete the failures may be used in creating
the FeatureRuntimeException that must be thrown by this method.

160.6 Capabilities
The Feature Launcher must provide the following capabilities.

160.6.1 osgi.service Capability
The bundle providing the Feature Runtime service must provide capabilities in the osgi .service
namespace representing the services it is required to register. This capability must also declare uses
constraints for the relevant service packages:

Feature Launcher Service Specification Version 1.0 Security

OSGi Compendium Release 8.1 Page 115

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.featurelauncher.runtime.FeatureRuntime";
 uses:="org.osgi.service.featurelauncher.runtime",
 osgi.service;
 objectClass:List<String>="org.osgi.service.featurelauncher.repository.ArtifactRepositoryFactory";
 uses:="org.osgi.service.featurelauncher.repository"

This capability must follow the rules defined for the osgi.service Namespace on page 65.

160.7 Security
When Java permissions are enabled, the following security procedures apply.

160.7.1 Required Permissions
Bundles that need to make use of the Feature Runtime or Artifact Repository Fac-
tory services must be granted permission to get the relevant service, for example
ServicePermission[org.osgi .service.featurelauncher.runtime.FeatureRuntime, GET] so that they
may retrieve the service and use it.

Only a bundle that provides a Feature Runtime implementation should be granted
ServicePermission[org.osgi .service.featurelauncher.runtime.FeatureRuntime, REGISTER] and
ServicePermission[org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory,
REGISTER] to register the services defined by this specification.

The Feature Runtime implementation must also be granted
ServicePermission[org.osgi .service.cm.Configurat ionAdmin, GET] , AdminPermission[*, execute] ,
AdminPermission[*, l i fecycle] , AdminPermission[*, metadata] , AdminPermission[*, resolve] , Ad-
minPermission[*, start level] , AdminPermission[*, context] , as these actions are all required to im-
plement the specification.

160.8 org.osgi.service.featurelauncher

Feature Launcher Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher; vers ion="[1.0,1.1)"

160.8.1 Summary

• FeatureLauncher - The Feature launcher is the primary entry point for launching an OSGi
framework and set of bundles.

• FeatureLauncher.LaunchBui lder - A builder for configuring and triggering the launch of an OS-
Gi framework containing the supplied feature

• FeatureLauncherConstants - Defines standard constants for the Feature Launcher specification.
• LaunchException - A LaunchException is thrown by the FeatureLauncher if it is unable to:

• Locate or start an OSGi Framework instance

org.osgi.service.featurelauncher Feature Launcher Service Specification Version 1.0

Page 116 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined

160.8.2 public interface FeatureLauncher
extends ArtifactRepositoryFactory
The Feature launcher is the primary entry point for launching an OSGi framework and set of bun-
dles. As it is a means for launching a framework it is designed to be used from outside OSGi and
therefore should be obtained using the ServiceLoader.

Provider Type Consumers of this API must not implement this type

160.8.2.1 public FeatureLauncher.LaunchBuilder launch(Feature feature)

feature the feature to launch

□ Begin launching a framework instance based on the supplied feature

Returns A running framework instance.

Throws LaunchException –

160.8.2.2 public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

jsonReader a Reader for the input Feature JSON

□ Begin launching a framework instance based on the supplied feature JSON

Returns A running framework instance.

Throws LaunchException –

160.8.3 public static interface FeatureLauncher.LaunchBuilder
A builder for configuring and triggering the launch of an OSGi framework containing the supplied
feature

LaunchBuilder instances are single use. Once they have been used to launch a framework instance
they become invalid and all methods will throw IllegalStateException

160.8.3.1 public Framework launchFramework()

□ Launch a framework instance based on the configured builder

Returns A running framework instance.

Throws LaunchException –

I l legalStateException– if the builder has been launched

160.8.3.2 public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Object> configuration)

configuration the configuration for this implementation

□ Configure this LaunchBuilder with the supplied properties.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.3.3 public FeatureLauncher.LaunchBuilder withDecorator(FeatureDecorator decorator)

decorator the decorator to add

□ Add a FeatureDecorator to this LaunchBuilder that will be used to decorate the feature being
launched. If called multiple times then the supplied decorators will be called in the same order that
they were added to this builder.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher

OSGi Compendium Release 8.1 Page 117

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns this

Throws NullPointerException– if the decorator is nul l

I l legalStateException– if the builder has been launched

160.8.3.4 public FeatureLauncher.LaunchBuilder withExtensionHandler(String extensionName,
FeatureExtensionHandler extensionHandler)

extensionName the name of the extension to handle

extensionHandler the extensionHandler to add

□ Add a FeatureExtensionHandler to this LaunchBuilder that will be used to process the named Fea-
tureExtension if it is found in the Feature being launched. If called multiple times for the same ex-
tensionName then later calls will replace the extensionHandler to be used.

Returns this

Throws NullPointerException– if the extension name or decorator is nul l

I l legalStateException– if the builder has been launched

160.8.3.5 public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)

frameworkProps the launch properties to use when starting the framework

□ Configure this LaunchBuilder with the supplied Framework Launch Properties.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.3.6 public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)

repository the repository to add

□ Add a repository to this LaunchBuilder that will be used to locate installable artifact data.

Returns this

Throws NullPointerException– if the repository is null

I l legalStateException– if the builder has been launched

160.8.3.7 public FeatureLauncher.LaunchBuilder withVariables(Map<String, Object> variables)

variables the variable placeholder overrides for this launch

□ Configure this LaunchBuilder with the supplied variables.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.4 public final class FeatureLauncherConstants
Defines standard constants for the Feature Launcher specification.

160.8.4.1 public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"

The name of the metadata property used to indicate the start level of the bundle to be installed. The
value must be an integer between 0 and Integer.MAX_VALUE.

160.8.4.2 public static final String BUNDLE_START_LEVELS = "bundle-start-levels"

The name for the FeatureExtension of Type.JSON which defines the start level configuration for the
bundles in the feature

org.osgi.service.featurelauncher Feature Launcher Service Specification Version 1.0

Page 118 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.8.4.3 public static final String CONFIGURATION_TIMEOUT = "configuration.timeout"

The configuration property used to set the timeout for creating configurations from FeatureConfig-
uration definitions.

The value must be a Long indicating the number of milliseconds that the implementation should
wait to be able to create configurations for the Feature. The default is 5000 .

A value of 0 means that the configurations must be created before the bundles in the feature are
started. In general this will require the Configurat ionAdmin service to be available from outside the
feature.

A value of -1 means that the implementation must not wait to create configurations and should re-
turn control to the user as soon as the bundles are started, even if the configurations have not yet
been created.

160.8.4.4 public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "osgi.featurelauncher"

The name of the implementation capability for the Feature specification.

160.8.4.5 public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

160.8.4.6 public static final String FRAMEWORK_LAUNCHING_PROPERTIES = "framework-launching-properties"

The name for the FeatureExtension of Type.TEXT which defines the framework properties that
should be used when launching the feature.

160.8.4.7 public static final String LAUNCH_FRAMEWORK = "launch-framework"

The name for the FeatureExtension which defines the framework that should be used to launch
the feature. The extension must be of Type.ARTIFACTS and contain one or more ID entries cor-
responding to OSGi framework implementations. This extension must be processed even if it is
Kind.OPTIONAL or Kind.TRANSIENT.

If more than one framework entry is provided then the list will be used as a priority order when de-
termining the framework implementation to use. If none of the frameworks are present then an er-
ror is raised and launching will be aborted.

160.8.4.8 public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"

The configuration property key used to set the bearer token when creating an ArtifactRepository us-
ing FeatureLauncher.createRepository(URI, Map)

160.8.4.9 public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = "name"

The configuration property key used to set the repository name when creating an ArtifactReposito-
ry using FeatureLauncher.createRepository(URI, Map)

160.8.4.10 public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = "password"

The configuration property key used to set the repository password when creating an ArtifactRepos-
itory using FeatureLauncher.createRepository(URI, Map)

160.8.4.11 public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"

The configuration property key used to set that release versions are enabled for an ArtifactReposito-
ry using FeatureLauncher.createRepository(URI, Map)

160.8.4.12 public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"

The configuration property key used to set that SNAPSHOT release versions are enabled for an Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.annotation

OSGi Compendium Release 8.1 Page 119

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.8.4.13 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"

The configuration property key used to set the trust store to be used when accessing a remote Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.14 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = "truststoreFormat"

The configuration property key used to set the trust store format to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.15 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD =
"truststorePassword"

The configuration property key used to set the trust store password to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.16 public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

The configuration property key used to set the repository user when creating an ArtifactRepository
using FeatureLauncher.createRepository(URI, Map)

160.8.5 public class LaunchException
extends RuntimeException
A LaunchException is thrown by the FeatureLauncher if it is unable to:

• Locate or start an OSGi Framework instance
• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined

160.8.5.1 public LaunchException(String message)

message

□ Create a LaunchException with the supplied error message

160.8.5.2 public LaunchException(String message, Throwable cause)

message

cause

□ Create a LaunchException with the supplied error message and cause

160.9 org.osgi.service.featurelauncher.annotation

Feature Annotations Package Version 1.0.

This package contains annotations that can be used to require the Feature Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

160.9.1 Summary

• RequireFeatureLauncherService - This annotation can be used to require the Feature implemen-
tation.

org.osgi.service.featurelauncher.decorator Feature Launcher Service Specification Version 1.0

Page 120 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.9.2 @RequireFeatureLauncherService
This annotation can be used to require the Feature implementation. It can be used directly, or as a
meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

160.10 org.osgi.service.featurelauncher.decorator

Feature Launcher Decorator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.decorator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.decorator; vers ion="[1.0,1.1)"

160.10.1 Summary

• AbandonOperationException - An AbandonOperationException is thrown by a FeatureDecora-
tor or FeatureExtensionHandler if it needs to prevent the operation from continuing.

• BaseFeatureDecorat ionBui lder - The BaseFeatureDecorationBuilder is used to allow a user to
customize a Feature.

• DecoratorBui lderFactory - The Builder Factory can be used to obtain builders for the various en-
tities.

• FeatureDecorator - A FeatureDecorator is used to pre-process a Feature before it is installed or
updated.

• FeatureDecorator.FeatureDecoratorBui lder - A reified builder which adds the ability to replace
the extensions for the decorated feature

• FeatureExtensionHandler - A FeatureExtensionHandler is used to check and pre-process a Fea-
ture based on its FeatureExtensions before the feature is installed or updated.

• FeatureExtensionHandler.FeatureExtensionHandlerBui lder - A reified builder which does not
permit extensions to be modified

160.10.2 public final class AbandonOperationException
extends Exception
An AbandonOperationException is thrown by a FeatureDecorator or FeatureExtensionHandler if it
needs to prevent the operation from continuing. This may be because of a problem detected in the
feature, or because an extension has determined that the feature cannot be used in the current envi-
ronment.

160.10.2.1 public AbandonOperationException(String message)

message

□ Create an AbandonOperationException with the supplied error message

160.10.2.2 public AbandonOperationException(String message, Throwable cause)

message

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.decorator

OSGi Compendium Release 8.1 Page 121

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

cause

□ Create an AbandonOperationException with the supplied error message and cause

160.10.3 public interface BaseFeatureDecorationBuilder<T extends
BaseFeatureDecorationBuilder<T>>

<T> the type of the FeatureDecorator, used to parameterize the builder return values

The BaseFeatureDecorationBuilder is used to allow a user to customize a Feature. It is pre-populated
with data from the original Feature, and calling any of the setXXX methods will replace the data in
that section.

Provider Type Consumers of this API must not implement this type

160.10.3.1 public Feature build()

□ Build the Feature. Can only be called once. After calling this method the current builder instance
cannot be used any more. and all methods will throw IllegalStateException.

Returns The Feature.

160.10.3.2 public T extends BaseFeatureDecorationBuilder<T> setBundles(List<FeatureBundle> bundles)

bundles The Bundles to add.

□ Replace the bundles in the Feature, discarding the current values.

Returns This builder.

160.10.3.3 public T extends BaseFeatureDecorationBuilder<T> setConfigurations(List<FeatureConfiguration> configs)

configs The Configurations to add.

□ Replace the Configurations in the Feature, discarding the current values.

Returns This builder.

160.10.3.4 public T extends BaseFeatureDecorationBuilder<T> setVariable(String key, Object defaultValue)

key The key.

defaultValue The default value.

□ Set or replace a single variable in the Feature. If a variable with the specified key already exists it is
replaced with this one. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

160.10.3.5 public T extends BaseFeatureDecorationBuilder<T> setVariables(Map<String, Object> variables)

variables to be added.

□ Replace all the variables in the Feature, discarding the current values. Variable values are of type:
String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type.

160.10.4 public interface DecoratorBuilderFactory
The Builder Factory can be used to obtain builders for the various entities.

This is similar to BuilderFactory but does not permit the creation of FeatureBuilder instances.

Provider Type Consumers of this API must not implement this type

org.osgi.service.featurelauncher.decorator Feature Launcher Service Specification Version 1.0

Page 122 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.10.4.1 public FeatureArtifactBuilder newArtifactBuilder(ID id)

id The artifact ID for the artifact object being built.

□ Obtain a new builder for Artifact objects.

Returns The builder.

160.10.4.2 public FeatureBundleBuilder newBundleBuilder(ID id)

id The ID for the bundle object being built. If the ID has no type specified, a default type of @{code jar}
is assumed.

□ Obtain a new builder for Bundle objects.

Returns The builder.

160.10.4.3 public FeatureConfigurationBuilder newConfigurationBuilder(String pid)

pid The persistent ID for the Configuration being built.

□ Obtain a new builder for Configuration objects.

Returns The builder.

160.10.4.4 public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)

factoryPid The factory persistent ID for the Configuration being built.

name The name of the configuration being built. The PID for the configuration will be the factoryPid + '~'
+ name

□ Obtain a new builder for Factory Configuration objects.

Returns The builder.

160.10.4.5 public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type,
FeatureExtension.Kind kind)

name The extension name.

type The type of extension: JSON, Text or Artifacts.

kind The kind of extension: Mandatory, Optional or Transient.

□ Obtain a new builder for Feature objects.

Returns The builder.

160.10.5 public interface FeatureDecorator
A FeatureDecorator is used to pre-process a Feature before it is installed or updated. This allows the
caller to potentially add or remove extensions, alter feature bundles, or edit configurations before
the feature is installed or updated.

Note that a FeatureDecorator is always called for all features and may change the feature extensions,
as well as bundles, configurations and variables.

160.10.5.1 public Feature decorate(Feature feature, FeatureDecorator.FeatureDecoratorBuilder
decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

feature the feature to be installed or updated

decoratedFeature-
Builder

a builder that can be used to produce a decorated feature with updated values

factory - a factory allowing users to create values for use with decoratedFeatureBui lder

□ Provides an opportunity to transform a feature before it is installed or updated

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.repository

OSGi Compendium Release 8.1 Page 123

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The Feature to be installed. This must either be the same instance as feature or a new object created
by calling decoratedFeatureBui lder.bui ld() . Returning any other object is an error that will cause
the install or update operation to fail

Throws AbandonOperationException– if the feature installation or update operation must not continue

160.10.6 public static interface FeatureDecorator.FeatureDecoratorBuilder
extends
BaseFeatureDecorationBuilder<FeatureDecorator.FeatureDecoratorBuilder>
A reified builder which adds the ability to replace the extensions for the decorated feature

Provider Type Consumers of this API must not implement this type

160.10.6.1 public FeatureDecorator.FeatureDecoratorBuilder setExtensions(List<FeatureExtension> extensions)

extensions The extensions to add.

□ Replace the extensions in the Feature, discarding the current values.

Returns This builder.

160.10.7 public interface FeatureExtensionHandler
A FeatureExtensionHandler is used to check and pre-process a Feature based on its FeatureExten-
sions before the feature is installed or updated. This allows the caller to potentially alter feature
bundles, or edit configurations before the feature is installed or updated.

Note that a FeatureExtensionHandler is only called for features with a matching extension called and
may only change the feature bundles or feature configurations.

160.10.7.1 public Feature handle(Feature feature, FeatureExtension extension,
FeatureExtensionHandler.FeatureExtensionHandlerBuilder decoratedFeatureBuilder,
DecoratorBuilderFactory factory) throws AbandonOperationException

feature the feature to be installed or updated

extension the feature extension which caused this handler to be called

decoratedFeature-
Builder

a builder that can be used to produce a decorated feature with updated values

factory - a factory allowing users to create values for use with decoratedFeatureBui lder

□ Provides an opportunity to transform a feature before it is installed or updated

Returns The Feature to be installed. This must either be the same instance as feature or a new object created
by calling decoratedFeatureBui lder.bui ld() . Returning any other object is an error that will cause
the install or update operation to fail

Throws AbandonOperationException– if the feature installation or update operation must not continue

160.10.8 public static interface FeatureExtensionHandler.FeatureExtensionHandlerBuilder
extends
BaseFeatureDecorationBuilder<FeatureExtensionHandler.FeatureExtensionHandlerBuilder>
A reified builder which does not permit extensions to be modified

Provider Type Consumers of this API must not implement this type

160.11 org.osgi.service.featurelauncher.repository

org.osgi.service.featurelauncher.repository Feature Launcher Service Specification Version 1.0

Page 124 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Feature Launcher Repository Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.repository; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.repository; vers ion="[1.0,1.1)"

160.11.1 Summary

• Arti factRepository - An ArtifactRepository is used to get hold of the bytes used to install an arti-
fact.

• Arti factRepositoryFactory - A ArtifactRepositoryFactory is used to create implementations of
ArtifactRepository for one of the built in repository types:
• Local File System
• HTTP repository

160.11.2 public interface ArtifactRepository
An ArtifactRepository is used to get hold of the bytes used to install an artifact. Users of this specifi-
cation may provide their own implementations for use when installing feature artifacts. Instances
must be Thread Safe.

Concurrency Thread-safe

160.11.2.1 public InputStream getArtifact(ID id)

id the id of the artifact

□ Get a stream to the bytes of an artifact

Returns an InputStream containing the bytes of the artifact or nul l if this repository does not have access to
the bytes

160.11.3 public interface ArtifactRepositoryFactory
A ArtifactRepositoryFactory is used to create implementations of ArtifactRepository for one of the
built in repository types:

• Local File System
• HTTP repository

Provider Type Consumers of this API must not implement this type

160.11.3.1 public ArtifactRepository createRepository(Path path)

path a path to the root of a Maven Repository Layout containing installable artifacts

□ Create an ArtifactRepository using the local file system

Returns an ArtifactRepository using the local file system

Throws I l legalArgumentException– if the path does not exist, or exists and is not a directory

NullPointerException– if the path is nul l

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 125

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.11.3.2 public ArtifactRepository createRepository(URI uri, Map<String, Object> props)

uri the URI for the repository. The http , https and f i le schemes must be supported by all implementa-
tions.

props the configuration properties for the remote repository. See FeatureLauncherConstants for standard
property names

□ Create an ArtifactRepository using a remote Maven repository.

Returns an ArtifactRepository using the local file system

Throws I l legalArgumentException– if the uri scheme is not supported by this implementation

NullPointerException– if the path is nul l

160.12 org.osgi.service.featurelauncher.runtime

Feature Launcher Runtime Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.runtime; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.runtime; vers ion="[1.0,1.1)"

160.12.1 Summary

• FeatureRuntime - The Feature runtime service allows features to be installed and removed dy-
namically at runtime.

• FeatureRuntime. Instal lOperat ionBui lder - The OperationBuilder for a
FeatureRuntime.install(Feature) operation.

• FeatureRuntime.Operat ionBui lder - An OperationBuilder is used to configure the installation or
update of a Feature by the FeatureRuntime.

• FeatureRuntime.UpdateOperationBui lder - The OperationBuilder for a
FeatureRuntime.install(Feature) operation.

• FeatureRuntimeConstants - Defines standard constants for the Feature Runtime.
• FeatureRuntimeException - A FeatureRuntimeException is thrown by the FeatureRuntime if it

is unable to:
• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined
• Successfully merge a feature with the existing environment

• Instal ledBundle - An InstalledBundle represents a configuration that has been installed as a re-
sult of one or more feature installations.

• Instal ledConfigurat ion - An InstalledConfiguration represents a configuration that has been in-
stalled as a result of one or more feature installations.

• Instal ledFeature - An InstalledFeature represents the current state of a feature installed by the
FeatureRuntime.

• MergeOperationType - An MergeOperationType represents the type of operation that is in
flight

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 126 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• RuntimeBundleMerge - Merge operations occur when two or more features reference the same
(or similar) items to be installed.

• RuntimeBundleMerge.BundleMapping - A BundleMapping is used to define that a bundle
should be (or remain) installed and which Features should own it

• RuntimeBundleMerge.FeatureBundleDefinit ion - A FeatureBundleDefinition is used to show
which FeatureBundle(s) are being merged, and the Feature that they relate to.

• RuntimeConfigurat ionMerge - Merge operations occur when two or more features reference the
same (or similar) items to be installed.

• RuntimeConfigurat ionMerge.FeatureConfigurat ionDefinit ion - A FeatureConfigurationDefini-
tion is used to show which FeatureConfiguration(s) are being merged, and the Feature that they
relate to.

• RuntimeMerges - Merge operations occur when two or more features reference the same (or
similar) items to be installed.

160.12.2 public interface FeatureRuntime
extends ArtifactRepositoryFactory
The Feature runtime service allows features to be installed and removed dynamically at runtime.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

160.12.2.1 public Map<String, ArtifactRepository> getDefaultRepositories()

□ Get the default repositories for the FeatureRuntime service. These are the repositories which are
used by default when installing or updating features.

This method can be used to select a subset of the default repositories when using an Opera-
tionBuilder, or to query for instances manually.

Returns the default repositories

160.12.2.2 public List<InstalledFeature> getInstalledFeatures()

□ Get the features that have been installed by the FeatureRuntime service

Returns a list of installed features

160.12.2.3 public FeatureRuntime.InstallOperationBuilder install(Feature feature)

feature the feature to launch

□ Install a feature into the runtime

Returns An OperationBuilder that can be used to set up the installation of this feature

Throws LaunchException– if installation fails

160.12.2.4 public FeatureRuntime.InstallOperationBuilder install(Reader jsonReader)

jsonReader a Reader for the input Feature JSON

□ Install a feature into the runtime based on the supplied feature JSON

Returns An installedFeature representing the results of installing this feature

Throws LaunchException– if installation fails

160.12.2.5 public void remove(ID featureId)

featureId the feature id

□ Remove an installed feature

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 127

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.12.2.6 public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Feature feature)

featureId the id of the feature to update

feature the feature to launch

□ Update a feature in the runtime

Returns An installedFeature representing the results of updating this feature

160.12.2.7 public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Reader jsonReader)

featureId the id of the feature to update

jsonReader a Reader for the input Feature JSON

□ Update a feature in the runtime based on the supplied feature JSON

Returns An installedFeature representing the results of updating this feature

160.12.3 public static interface FeatureRuntime.InstallOperationBuilder
extends
FeatureRuntime.OperationBuilder<FeatureRuntime.InstallOperationBuilder>
The OperationBuilder for a FeatureRuntime.install(Feature) operation. Instances are not thread safe
and must not be shared.

160.12.3.1 public InstalledFeature install()

□ An alias for the complete() method

Returns the installed feature

160.12.4 public static interface FeatureRuntime.OperationBuilder<T extends
FeatureRuntime.OperationBuilder<T>>

<T>

An OperationBuilder is used to configure the installation or update of a Feature by the FeatureRun-
time. Instances are not thread safe and must not be shared.

Once the complete() method is called the operation will be run by the feature runtime and the oper-
ation builder will be invalidated, with all methods throwing IllegalStateException.

160.12.4.1 public T extends FeatureRuntime.OperationBuilder<T> addRepository(String name, ArtifactRepository
repository)

name the name to use for this repository

repository the repository

□ Add an ArtifactRepository for use by this OperationBuilder instance. If an ArtifactRepository is al-
ready set for the given name then it will be replaced. Passing a nul l ArtifactRepository will remove
the repository from this operation.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.4.2 public InstalledFeature complete() throws FeatureRuntimeException

□ Complete the operation by installing or updating the feature

Returns An InstalledFeature representing the result of the operation

Throws FeatureRuntimeException– if an error occurs

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 128 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

I l legalStateException– if the builder has been completed already

160.12.4.3 public T extends FeatureRuntime.OperationBuilder<T> useDefaultRepositories(boolean include)

include

□ Include the default repositories when completing this operation. This value defaults to true . If any
ArtifactRepository added using addRepository(String, ArtifactRepository) has the same name as a
default repository then the added repository will override the default repository.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.4.4 public T extends FeatureRuntime.OperationBuilder<T> withBundleMerge(RuntimeBundleMerge merge)

merge

□ Use The supplied RuntimeBundleMerge to resolve any bundle merge operations that are required to
complete the operation

Returns this

160.12.4.5 public T extends FeatureRuntime.OperationBuilder<T>
withConfigurationMerge(RuntimeConfigurationMerge merge)

merge

□ Use The supplied RuntimeConfigurationMerge to resolve any configuration merge operations that
are required to complete the operation

Returns this

160.12.4.6 public T extends FeatureRuntime.OperationBuilder<T> withDecorator(FeatureDecorator decorator)

decorator the decorator to add

□ Add a FeatureDecorator to this OperationBuilder that will be used to decorate the feature. If called
multiple times then the supplied decorators will be called in the same order that they were added to
this builder.

Returns this

Throws NullPointerException– if the decorator is nul l

I l legalStateException– if the builder has been launched

160.12.4.7 public T extends FeatureRuntime.OperationBuilder<T> withExtensionHandler(String extensionName,
FeatureExtensionHandler extensionHandler)

extensionName the name of the extension to handle

extensionHandler the extensionHandler to add

□ Add a FeatureExtensionHandler to this OperationBuilder that will be used to process the named Fea-
tureExtension if it is found in the Feature. If called multiple times for the same extensionName then
later calls will replace the extensionHandler to be used.

Returns this

Throws NullPointerException– if the extension name or decorator is nul l

I l legalStateException– if the builder has been launched

160.12.4.8 public T extends FeatureRuntime.OperationBuilder<T> withVariables(Map<String, Object> variables)

variables the variable placeholder overrides for this launch

□ Configure this OperationBuilder with the supplied variables.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 129

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.5 public static interface FeatureRuntime.UpdateOperationBuilder
extends
FeatureRuntime.OperationBuilder<FeatureRuntime.UpdateOperationBuilder>
The OperationBuilder for a FeatureRuntime.install(Feature) operation. Instances are not thread safe
and must not be shared.

160.12.5.1 public InstalledFeature update()

□ An alias for the complete() method

Returns the updated feature

160.12.6 public final class FeatureRuntimeConstants
Defines standard constants for the Feature Runtime.

160.12.6.1 public static final String EXTERNAL_FEATURE_ID = "org.osgi.service.featurelauncher:external:1.0.0"

The ID of the virtual external feature representing ownership of a bundle or configuration that was
deployed by another management agent.

160.12.7 public class FeatureRuntimeException
extends RuntimeException
A FeatureRuntimeException is thrown by the FeatureRuntime if it is unable to:

• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined
• Successfully merge a feature with the existing environment

160.12.7.1 public FeatureRuntimeException(String message)

message

□ Create a LaunchException with the supplied error message

160.12.7.2 public FeatureRuntimeException(String message, Throwable cause)

message

cause

□ Create a LaunchException with the supplied error message and cause

160.12.8 public interface InstalledBundle
An InstalledBundle represents a configuration that has been installed as a result of one or more fea-
ture installations.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Provider Type Consumers of this API must not implement this type

160.12.8.1 public Collection<ID> getAliases()

□ Get any known IDs which correspond to the same bundle

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 130 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns an immutable collection of aliases for this bundle. Always includes the id returned by getBundleId()

160.12.8.2 public Bundle getBundle()

□ The actual bundle installed in the framework

Returns the Bundle installed for this getBundleId()

160.12.8.3 public ID getBundleId()

□ Get the ID of the bundle that has been installed

Returns the id of the bundle that was installed

160.12.8.4 public List<ID> getOwningFeatures()

□ The features responsible for this bundle being installed, in installation order

Returns A list of Feature IDs

160.12.8.5 public int getStartLevel()

□ The start level for this bundle

Returns the start level

160.12.9 public interface InstalledConfiguration
An InstalledConfiguration represents a configuration that has been installed as a result of one or
more feature installations.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Provider Type Consumers of this API must not implement this type

160.12.9.1 public Optional<String> getFactoryPid()

□ Get the factory PID of the configuration

Returns the factory PID of this configuration, or an empty optional if this is not a factory configuration

160.12.9.2 public List<ID> getOwningFeatures()

□ The features responsible for creating this configuration, in installation order

Returns A list of Feature IDs

160.12.9.3 public String getPid()

□ Get the PID of the configuration

Returns the full PID of this configuration

160.12.9.4 public Map<String, Object> getProperties()

□ Get the merged configuration properties for this configuration

Returns The properties associated with this configuration, may be nul l if the configuration should not be cre-
ated

160.12.10 public interface InstalledFeature
An InstalledFeature represents the current state of a feature installed by the FeatureRuntime.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 131

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Provider Type Consumers of this API must not implement this type

160.12.10.1 public ID getFeatureId()

Returns The ID of the installed feature

160.12.10.2 public List<InstalledBundle> getInstalledBundles()

□ Get the bundles installed by this feature

Returns A List of the bundles installed by this feature, in the order they were declared by the feature

160.12.10.3 public List<InstalledConfiguration> getInstalledConfigurations()

□ Get the configurations installed by this feature

Returns A List of the configurations installed by this feature, in the order they were declared by the feature

160.12.10.4 public boolean isInitialLaunch()

□ Is this a feature installed by FeatureLauncher

Returns true If this feature was installed as part of a FeatureLauncher launch operation. fa lse if it was in-
stalled by the FeatureRuntime

160.12.11 enum MergeOperationType
An MergeOperationType represents the type of operation that is in flight

160.12.11.1 INSTALL

An install operation adds a feature to the runtime

160.12.11.2 UPDATE

An update operation replaces one feature with another

160.12.11.3 REMOVE

A remove operation removes a feature from the runtime

160.12.11.4 public static MergeOperationType valueOf(String name)

160.12.11.5 public static MergeOperationType[] values()

160.12.12 public interface RuntimeBundleMerge
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeBundleMerge is to resolve possible conflicts between FeatureBundle en-
tries and determine which bundle(s) should be installed as a result.

Merge operations happen in one of three scenarios, indicated by the MergeOperationType:

• INSTALL - a feature is being installed
• UPDATE - a feature is being updated
• REMOVE - a feature is being removed

When any merge operation occurs the merge function will be provided with the Feature being oper-
ated upon, the FeatureBundle which needs to be merged, a List of the InstalledBundles representing

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 132 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

the currently installed bundles applicable to the merge, and a List of FeatureBundleDefinitions rep-
resenting the FeatureBundles and installed features participating in the merge. All Installed Bundle
and Feature Bundle objects will have the same group id and artifact id.

If an UPDATE or REMOVE operation is underway then the Feature being updated or removed will
already have been removed from any Installed Bundles and from the list of Feature Bundle Defini-
tions. For an UPDATE this may result in one or more Installed Bundles having an empty list of own-
ing features, and the list of existing installed Feature Bundle Definitions being empty.

The returned result from the merge function must be a full mapping of installed Bundle IDs
to Lists of owning Feature ids. This is returned as a Stream of BundleMappings. The combined
BundleMapping.owningFeatures in the stream must contain all of the Feature ids from the list of
Feature Bundle Definitions, and in the case of an INSTALL or UPDATE operation also the Feature be-
ing operated upon. The entries in the returned stream must only contain BundleMapping.bundleIds
from the list of Installed Bundles, and in the case of an INSTALL or UPDATE operation the Feature
Bundle being merged

.

It is an error for any value in the returned stream to be nul l , or to have fields set to nul l or an empty
list. In the case of a REMOVE operation it is an error to include the Feature id being operated upon in
the returned Bundle Mappings.

160.12.12.1 public Stream<RuntimeBundleMerge.BundleMapping> mergeBundle(MergeOperationType
operation, Feature feature, FeatureBundle toMerge, Collection<InstalledBundle> installedBundles,
List<RuntimeBundleMerge.FeatureBundleDefinition> existingFeatureBundles)

operation - the type of the operation triggering the merge.

feature The feature being operated upon

toMerge The FeatureBundle in feature that requires merging

installedBundles A read only list of bundles that have been installed as part of previous installations. This list will al-
ways contain at least one entry.

existingFeature-
Bundles

An immutable list of FeatureBundleDefinitions which are part of this merge operation. The entries
are in the same order as the Features were installed.

This list may be empty in the case of an UPDATE operation. Note that multiple Feature Bundle Defin-
itions may refer to the same bundle ID, or aliases of a single InstalledBundle.

□ Calculate the bundles that should be installed at the end of a given operation.

Bundle Merge operations occur when two or more features reference a bundle with the same group
id and artifact id, and the purpose of this method is to identify which bundles should be/remain in-
stalled, and which features they should be owned by.

The returned result from the merge function must be a full mapping of installed Bundle IDs to Lists
of owning Features. It is an error for the stream to contain a BundleMapping.bundleId which is not
the ID of an entry in in the instal ledBundle list or, in the case of an INSTALL or UPDATE operation,
the ID of the toMerge Feature Bundle.

The combined BundleMapping.owningFeatures in the stream must contain all of the Features from
the List of Feature Bundle Definitions, and in the case of an INSTALL or UPDATE operation also the
Feature being operated upon. In the case of a REMOVE operation it is an error to include the Feature
being operated upon in the returned stream.

It is an error for any entry in the returned stream to be, or contain, nul l or an empty list.

Returns An unordered Stream of BundleMapping entries linking a bundle id to List of owning Feature ids.
Each Bundle Mapping represents a bundle that should be installed as a result of this operation. Note
that every Feature id must appear in the combined BundleMapping.owningFeatures and that the
BundleMapping.bundleId may only contain IDs from toMerge or one of the keys from the instal led-

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 133

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Bundles list. If two BundleMapping entries use the same bundle id, or alias, then this is not an error
and these mappings will be combined by the implementation.

160.12.13 public static final class RuntimeBundleMerge.BundleMapping
A BundleMapping is used to define that a bundle should be (or remain) installed and which Features
should own it

160.12.13.1 public final ID bundleId

The ID of the bundle to be installed

160.12.13.2 public final List<ID> owningFeatures

The List of features which own the bundle

160.12.13.3 public BundleMapping(ID bundleId, List<ID> owningFeatures)

bundleId

owningFeatures

□ Create a new BundleMapping

160.12.14 public static interface RuntimeBundleMerge.FeatureBundleDefinition
A FeatureBundleDefinition is used to show which FeatureBundle(s) are being merged, and the Fea-
ture that they relate to.

160.12.14.1 public Feature getFeature()

Returns The Feature containing the FeatureBundle

160.12.14.2 public FeatureBundle getFeatureBundle()

Returns The FeatureBundle being merged

160.12.15 public interface RuntimeConfigurationMerge
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeConfigurationMerge is to resolve possible conflicts between FeatureCon-
figuration entries and determine what configuration should be created as a result.

Merge operations happen in one of three scenarios, indicated by the MergeOperationType:

• INSTALL - a feature is being installed
• UPDATE - a feature is being updated
• REMOVE - a feature is being removed

When any merge operation occurs the merge function will be provided with the Feature being op-
erated upon, the FeatureConfiguration which needs to be merged, the InstalledConfiguration repre-
senting the current configuration, and a list of FeatureConfigurationDefinitions representing the in-
stalled features participating in the merge. All Feature Configurations will have the same PID.

If an UPDATE or REMOVE operation is underway then the Feature being updated or re-
moved will already have been removed from the Installed Configuration and the list
of existing Feature Configuration Definitions. For an UPDATE this may result in the
InstalledConfiguration.getOwningFeatures() being an empty list, and the map of existing installed
Feature Configurations being empty.

The returned result from the merge function is a map of configuration properties that should be
used to complete the operation. This may be null if the configuration should be deleted.

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 134 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.12.15.1 public Map<String, Object> mergeConfiguration(MergeOperationType operation,
Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration,
List<RuntimeConfigurationMerge.FeatureConfigurationDefinition> existingFeatureConfigurations)

operation - the type of the operation triggering the merge.

feature The feature being operated upon

toMerge The FeatureConfiguration in feature that requires merging

configuration The existing configuration that has been installed as part of previous installations. This will repre-
sent a configuration with the same PID as toMerge .

Note that this value will be nul l if the configuration does not exist to differentiate it from an empty
configuration dictionary

existingFeature-
Configurations

An immutable list of FeatureConfigurationDefinitions which are part of this merge operation. The
entries are in the same order as the Features were installed.

This list may be empty in the case of an UPDATE operation. Note that all Feature Configuration De-
finitions will refer to the same PID, and this will match the PID of toMerge . An immutable map of
existing Feature Configurations which are part of this merge operation. The keys in the map are the
Feature Configurations involved in the merge and the values are the Features which contain the Fea-
ture Configuration.

□ Calculate the configuration that should be used at the end of a given operation.

Configuration merge operations occur when two or more features define the same configuration,
where configuration identity is determined by the PID of the configuration. The purpose of this
function is to determine what configuration properties should be used after the merge has finished.

Returns A map of configuration properties to use. Returning nul l indicates that the configuration should be
deleted.

160.12.16 public static interface
RuntimeConfigurationMerge.FeatureConfigurationDefinition
A FeatureConfigurationDefinition is used to show which FeatureConfiguration(s) are being merged,
and the Feature that they relate to.

160.12.16.1 public Feature getFeature()

Returns The Feature containing the FeatureConfiguration

160.12.16.2 public FeatureConfiguration getFeatureConfiguration()

Returns The FeatureBundle being merged

160.12.17 public final class RuntimeMerges
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeMerges is to provide common merge strategies in an easy to construct
way.

160.12.17.1 public RuntimeMerges()

160.12.17.2 public static Version getOSGiVersion(ID id)

id

□ Attempts to turn the version String from an ID into an OSGi version

Feature Launcher Service Specification Version 1.0 References

OSGi Compendium Release 8.1 Page 135

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Note that this parsing is more lenient than Version.parseVersion(String). It treats the first three seg-
ments separated by . characters as possible integers. If they are integers then they represent the ma-
jor, minor and micro segments of an OSGi version. If any non-numeric segments are encountered, or
the end of the string, then the remaining version segments are 0 . Any remaining content from the
input version string is used as the qualifier.

Returns An OSGi version which attempts to replicate the version from the ID

160.12.17.3 public static RuntimeBundleMerge preferExistingBundles()

□ The preferExistingBundles() merge strategy tries to reduce the number of new installations by ap-
plying semantic versioning rules. The new bundle is only installed if it has:

• A different major version from all installed bundles
• A higher minor version than all other installed bundles with the same major version

Returns the prefer existing merge strategy

160.12.17.4 public static RuntimeConfigurationMerge replaceExistingProperties()

□ The replaceExistingProperties() merge strategy simply replaces any existing configuration values
with the new values from the new FeatureConfiguration.

Removal is more complex and relies on the fact that the exist ingFeatureConfigurat ions are in instal-
lation order. This means that we can descend the list looking for the previous configuration proper-
ties and apply them

Returns the replace existing merge strategy

160.13 References

[1] The Maven 2 Repository Layout
https://maven.apache.org/repository/layout.html#maven2-repository-layout

[2] The Data URI scheme
https://en.wikipedia.org/wiki/Data_URI_scheme

https://maven.apache.org/repository/layout.html#maven2-repository-layout
https://en.wikipedia.org/wiki/Data_URI_scheme

References Feature Launcher Service Specification Version 1.0

Page 136 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1 Page 137

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

Page 138 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

End Of Document

	OSGi Compendium
	Table of Contents
	Chapter 1. Introduction
	1.1. Reader Level
	1.2. Version Information
	1.2.1. OSGi Core Release 8
	1.2.2. Component Versions
	1.2.3. Notes

	1.3. References
	1.4. Changes

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration
	104.7.9. Configuration Attributes

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order
	104.9.6. Manual Invocation

	104.10. Meta Typing
	104.11. Coordinator Support
	104.12. Capabilities
	104.12.1. osgi.implementation Capability
	104.12.2. osgi.service Capability

	104.13. Security
	104.13.1. Configuration Permission
	104.13.2. Permissions Summary
	104.13.3. Configuration and Permission Administration

	104.14. org.osgi.service.cm
	104.14.1. Summary
	104.14.2. Permissions
	104.14.2.1. Configuration
	104.14.2.2. ConfigurationAdmin
	104.14.2.3. ManagedService
	104.14.2.4. ManagedServiceFactory

	104.14.3. public interface Configuration
	104.14.3.1. public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.2. public void delete() throws IOException
	104.14.3.3. public boolean equals(Object other)
	104.14.3.4. public Set<Configuration.ConfigurationAttribute> getAttributes()
	104.14.3.5. public String getBundleLocation()
	104.14.3.6. public long getChangeCount()
	104.14.3.7. public String getFactoryPid()
	104.14.3.8. public String getPid()
	104.14.3.9. public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)
	104.14.3.10. public Dictionary<String, Object> getProperties()
	104.14.3.11. public int hashCode()
	104.14.3.12. public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.13. public void setBundleLocation(String location)
	104.14.3.14. public void update(Dictionary<String, ?> properties) throws IOException
	104.14.3.15. public void update() throws IOException
	104.14.3.16. public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

	104.14.4. enum Configuration.ConfigurationAttribute
	104.14.4.1. READ_ONLY
	104.14.4.2. public static Configuration.ConfigurationAttribute valueOf(String name)
	104.14.4.3. public static Configuration.ConfigurationAttribute[] values()

	104.14.5. public interface ConfigurationAdmin
	104.14.5.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.14.5.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.14.5.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.14.5.4. public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
	104.14.5.5. public Configuration getConfiguration(String pid, String location) throws IOException
	104.14.5.6. public Configuration getConfiguration(String pid) throws IOException
	104.14.5.7. public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws IOException
	104.14.5.8. public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
	104.14.5.9. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.14.6. public final class ConfigurationConstants
	104.14.6.1. public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
	104.14.6.2. public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

	104.14.7. public class ConfigurationEvent
	104.14.7.1. public static final int CM_DELETED = 2
	104.14.7.2. public static final int CM_LOCATION_CHANGED = 3
	104.14.7.3. public static final int CM_UPDATED = 1
	104.14.7.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid, String pid)
	104.14.7.5. public String getFactoryPid()
	104.14.7.6. public String getPid()
	104.14.7.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.14.7.8. public int getType()

	104.14.8. public class ConfigurationException extends Exception
	104.14.8.1. public ConfigurationException(String property, String reason)
	104.14.8.2. public ConfigurationException(String property, String reason, Throwable cause)
	104.14.8.3. public Throwable getCause()
	104.14.8.4. public String getProperty()
	104.14.8.5. public String getReason()
	104.14.8.6. public Throwable initCause(Throwable cause)

	104.14.9. public interface ConfigurationListener
	104.14.9.1. public void configurationEvent(ConfigurationEvent event)

	104.14.10. public final class ConfigurationPermission extends BasicPermission
	104.14.10.1. public static final String ATTRIBUTE = "attribute"
	104.14.10.2. public static final String CONFIGURE = "configure"
	104.14.10.3. public static final String TARGET = "target"
	104.14.10.4. public ConfigurationPermission(String name, String actions)
	104.14.10.5. public boolean equals(Object obj)
	104.14.10.6. public String getActions()
	104.14.10.7. public int hashCode()
	104.14.10.8. public boolean implies(Permission p)
	104.14.10.9. public PermissionCollection newPermissionCollection()

	104.14.11. public interface ConfigurationPlugin
	104.14.11.1. public static final String CM_RANKING = "service.cmRanking"
	104.14.11.2. public static final String CM_TARGET = "cm.target"
	104.14.11.3. public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

	104.14.12. public interface ManagedService
	104.14.12.1. public void updated(Dictionary<String, ?> properties) throws ConfigurationException

	104.14.13. public interface ManagedServiceFactory
	104.14.13.1. public void deleted(String pid)
	104.14.13.2. public String getName()
	104.14.13.3. public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

	104.14.14. public class ReadOnlyConfigurationException extends RuntimeException
	104.14.14.1. public ReadOnlyConfigurationException(String reason)

	104.14.15. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.15. org.osgi.service.cm.annotations
	104.15.1. Summary
	104.15.2. @RequireConfigurationAdmin

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. osgi.unresolvable Namespace
	135.7. org.osgi.namespace.contract
	135.7.1. Summary
	135.7.2. public final class ContractNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.8. org.osgi.namespace.extender
	135.8.1. Summary
	135.8.2. public final class ExtenderNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.8.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.9. org.osgi.namespace.service
	135.9.1. Summary
	135.9.2. public final class ServiceNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.9.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.10. org.osgi.namespace.implementation
	135.10.1. Summary
	135.10.2. public final class ImplementationNamespace extends Namespace
	135.10.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.10.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.11. org.osgi.namespace.unresolvable
	135.11.1. Summary
	135.11.2. public final class UnresolvableNamespace extends Namespace
	135.11.2.1. public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"
	135.11.2.2. public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

	135.12. References

	Chapter 159. Feature Service Specification
	159.1. Introduction
	159.1.1. Essentials
	159.1.2. Entities

	159.2. Feature
	159.2.1. Identifiers
	159.2.2. Feature Identifier
	159.2.2.1. Identifier type

	159.2.3. Attributes
	159.2.4. Using the Feature API

	159.3. Comments
	159.4. Bundles
	159.4.1. Bundle Metadata
	159.4.2. Using the Feature API

	159.5. Configurations
	159.6. Variables
	159.7. Extensions
	159.7.1. Text Extensions
	159.7.2. JSON Extensions
	159.7.3. Artifact list Extensions

	159.8. Framework Launching Properties
	159.9. Resource Versioning
	159.10. Capabilities
	159.10.1. osgi.service Capability

	159.11. org.osgi.service.feature
	159.11.1. Summary
	159.11.2. public interface BuilderFactory
	159.11.2.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	159.11.2.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	159.11.2.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	159.11.2.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	159.11.2.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)
	159.11.2.6. public FeatureBuilder newFeatureBuilder(ID id)

	159.11.3. public interface Feature
	159.11.3.1. public List<FeatureBundle> getBundles()
	159.11.3.2. public List<String> getCategories()
	159.11.3.3. public Map<String, FeatureConfiguration> getConfigurations()
	159.11.3.4. public Optional<String> getDescription()
	159.11.3.5. public Optional<String> getDocURL()
	159.11.3.6. public Map<String, FeatureExtension> getExtensions()
	159.11.3.7. public ID getID()
	159.11.3.8. public Optional<String> getLicense()
	159.11.3.9. public Optional<String> getName()
	159.11.3.10. public Optional<String> getSCM()
	159.11.3.11. public Map<String, Object> getVariables()
	159.11.3.12. public Optional<String> getVendor()
	159.11.3.13. public boolean isComplete()

	159.11.4. public interface FeatureArtifact
	159.11.4.1. public ID getID()
	159.11.4.2. public Map<String, Object> getMetadata()

	159.11.5. public interface FeatureArtifactBuilder
	159.11.5.1. public FeatureArtifactBuilder addMetadata(String key, Object value)
	159.11.5.2. public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)
	159.11.5.3. public FeatureArtifact build()

	159.11.6. public interface FeatureBuilder
	159.11.6.1. public FeatureBuilder addBundles(FeatureBundle... bundles)
	159.11.6.2. public FeatureBuilder addCategories(String... categories)
	159.11.6.3. public FeatureBuilder addConfigurations(FeatureConfiguration... configs)
	159.11.6.4. public FeatureBuilder addExtensions(FeatureExtension... extensions)
	159.11.6.5. public FeatureBuilder addVariable(String key, Object defaultValue)
	159.11.6.6. public FeatureBuilder addVariables(Map<String, Object> variables)
	159.11.6.7. public Feature build()
	159.11.6.8. public FeatureBuilder setComplete(boolean complete)
	159.11.6.9. public FeatureBuilder setDescription(String description)
	159.11.6.10. public FeatureBuilder setDocURL(String docURL)
	159.11.6.11. public FeatureBuilder setLicense(String license)
	159.11.6.12. public FeatureBuilder setName(String name)
	159.11.6.13. public FeatureBuilder setSCM(String scm)
	159.11.6.14. public FeatureBuilder setVendor(String vendor)

	159.11.7. public interface FeatureBundle
	159.11.7.1. public ID getID()
	159.11.7.2. public Map<String, Object> getMetadata()

	159.11.8. public interface FeatureBundleBuilder
	159.11.8.1. public FeatureBundleBuilder addMetadata(String key, Object value)
	159.11.8.2. public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)
	159.11.8.3. public FeatureBundle build()

	159.11.9. public interface FeatureConfiguration
	159.11.9.1. public Optional<String> getFactoryPid()
	159.11.9.2. public String getPid()
	159.11.9.3. public Map<String, Object> getValues()

	159.11.10. public interface FeatureConfigurationBuilder
	159.11.10.1. public FeatureConfigurationBuilder addValue(String key, Object value)
	159.11.10.2. public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)
	159.11.10.3. public FeatureConfiguration build()

	159.11.11. public final class FeatureConstants
	159.11.11.1. public static final String FEATURE_IMPLEMENTATION = "osgi.feature"
	159.11.11.2. public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

	159.11.12. public interface FeatureExtension
	159.11.12.1. public List<FeatureArtifact> getArtifacts()
	159.11.12.2. public String getJSON()
	159.11.12.3. public FeatureExtension.Kind getKind()
	159.11.12.4. public String getName()
	159.11.12.5. public List<String> getText()
	159.11.12.6. public FeatureExtension.Type getType()

	159.11.13. enum FeatureExtension.Kind
	159.11.13.1. MANDATORY
	159.11.13.2. OPTIONAL
	159.11.13.3. TRANSIENT
	159.11.13.4. public static FeatureExtension.Kind valueOf(String name)
	159.11.13.5. public static FeatureExtension.Kind[] values()

	159.11.14. enum FeatureExtension.Type
	159.11.14.1. JSON
	159.11.14.2. TEXT
	159.11.14.3. ARTIFACTS
	159.11.14.4. public static FeatureExtension.Type valueOf(String name)
	159.11.14.5. public static FeatureExtension.Type[] values()

	159.11.15. public interface FeatureExtensionBuilder
	159.11.15.1. public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)
	159.11.15.2. public FeatureExtensionBuilder addText(String text)
	159.11.15.3. public FeatureExtension build()
	159.11.15.4. public FeatureExtensionBuilder setJSON(String json)

	159.11.16. public interface FeatureService
	159.11.16.1. public BuilderFactory getBuilderFactory()
	159.11.16.2. public ID getID(String groupId, String artifactId, String version)
	159.11.16.3. public ID getID(String groupId, String artifactId, String version, String type)
	159.11.16.4. public ID getID(String groupId, String artifactId, String version, String type, String classifier)
	159.11.16.5. public ID getIDfromMavenCoordinates(String coordinates)
	159.11.16.6. public Feature readFeature(Reader jsonReader) throws IOException
	159.11.16.7. public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

	159.11.17. public interface ID
	159.11.17.1. public static final String FEATURE_ID_TYPE = "osgifeature"
	159.11.17.2. public String getArtifactId()
	159.11.17.3. public Optional<String> getClassifier()
	159.11.17.4. public String getGroupId()
	159.11.17.5. public Optional<String> getType()
	159.11.17.6. public String getVersion()
	159.11.17.7. public String toString()

	159.12. org.osgi.service.feature.annotation
	159.12.1. Summary
	159.12.2. @RequireFeatureService

	159.13. References

	Chapter 160. Feature Launcher Service Specification
	160.1. Introduction
	160.1.1. Essentials
	160.1.2. Entities

	160.2. Features and Artifact Repositories
	160.2.1. The Artifact Repository Factory
	160.2.1.1. Obtaining an Artifact Repository Factory
	160.2.1.2. Local Repositories
	160.2.1.3. Remote Repositories

	160.3. Common themes
	160.3.1. Overriding Feature variables
	160.3.2. Setting the bundle start levels
	160.3.3. Feature Decoration
	160.3.3.1. Building decorated features
	160.3.3.2. Using Decorators

	160.4. The Feature Launcher
	160.4.1. Obtaining and configuring a Feature Launcher
	160.4.1.1. Thread Safety

	160.4.2. Using a Feature Launcher
	160.4.2.1. Providing Framework Launch Properties
	160.4.2.2. Selecting a framework implementation
	160.4.2.3. A simple example

	160.4.3. The Feature Launching Process
	160.4.3.1. Feature Decoration
	160.4.3.2. Locating a framework implementation
	160.4.3.3. Creating a Framework instance
	160.4.3.4. Installing bundles and configurations
	160.4.3.5. Starting the framework
	160.4.3.6. Cleanup after failure

	160.5. The Feature Runtime Service
	160.5.1. Using the Feature Runtime
	160.5.1.1. Thread Safety
	160.5.1.2. Introspecting the installed Features
	160.5.1.3. Installing a feature
	160.5.1.4. Setting the available Artifact Repositories
	160.5.1.5. Setting variable overrides
	160.5.1.6. Merging strategies
	160.5.1.6.1. Merging Bundles
	160.5.1.6.2. Merging Configurations

	160.5.1.7. Removing a Feature
	160.5.1.8. Updating a Feature

	160.5.2. The Feature Runtime Behaviour
	160.5.2.1. The Feature installation process
	160.5.2.1.1. Feature Decoration
	160.5.2.1.2. Bundle Installation
	160.5.2.1.3. Configuration Creation
	160.5.2.1.4. Feature Start
	160.5.2.1.5. Failure scenarios

	160.5.2.2. The Feature removal process
	160.5.2.2.1. Feature Removal
	160.5.2.2.2. Bundle Stop
	160.5.2.2.3. Configuration Removal
	160.5.2.2.4. Bundle Removal
	160.5.2.2.5. Failure scenarios

	160.5.2.3.
	160.5.2.3.1. Decorating the new Feature
	160.5.2.3.2. Removing the existing Feature
	160.5.2.3.3. Installing the new bundles
	160.5.2.3.4. Stopping the eligible bundles
	160.5.2.3.5. Creating and Updating Configurations
	160.5.2.3.6. Removing Configurations
	160.5.2.3.7. Starting the new feature
	160.5.2.3.8. Uninstalling the eligible bundles
	160.5.2.3.9. Failure scenarios

	160.6. Capabilities
	160.6.1. osgi.service Capability

	160.7. Security
	160.7.1. Required Permissions

	160.8. org.osgi.service.featurelauncher
	160.8.1. Summary
	160.8.2. public interface FeatureLauncher extends ArtifactRepositoryFactory
	160.8.2.1. public FeatureLauncher.LaunchBuilder launch(Feature feature)
	160.8.2.2. public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

	160.8.3. public static interface FeatureLauncher.LaunchBuilder
	160.8.3.1. public Framework launchFramework()
	160.8.3.2. public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Object> configuration)
	160.8.3.3. public FeatureLauncher.LaunchBuilder withDecorator(FeatureDecorator decorator)
	160.8.3.4. public FeatureLauncher.LaunchBuilder withExtensionHandler(String extensionName, FeatureExtensionHandler extensionHandler)
	160.8.3.5. public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)
	160.8.3.6. public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)
	160.8.3.7. public FeatureLauncher.LaunchBuilder withVariables(Map<String, Object> variables)

	160.8.4. public final class FeatureLauncherConstants
	160.8.4.1. public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"
	160.8.4.2. public static final String BUNDLE_START_LEVELS = "bundle-start-levels"
	160.8.4.3. public static final String CONFIGURATION_TIMEOUT = "configuration.timeout"
	160.8.4.4. public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "osgi.featurelauncher"
	160.8.4.5. public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"
	160.8.4.6. public static final String FRAMEWORK_LAUNCHING_PROPERTIES = "framework-launching-properties"
	160.8.4.7. public static final String LAUNCH_FRAMEWORK = "launch-framework"
	160.8.4.8. public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"
	160.8.4.9. public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = "name"
	160.8.4.10. public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = "password"
	160.8.4.11. public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"
	160.8.4.12. public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"
	160.8.4.13. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"
	160.8.4.14. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = "truststoreFormat"
	160.8.4.15. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD = "truststorePassword"
	160.8.4.16. public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

	160.8.5. public class LaunchException extends RuntimeException
	160.8.5.1. public LaunchException(String message)
	160.8.5.2. public LaunchException(String message, Throwable cause)

	160.9. org.osgi.service.featurelauncher.annotation
	160.9.1. Summary
	160.9.2. @RequireFeatureLauncherService

	160.10. org.osgi.service.featurelauncher.decorator
	160.10.1. Summary
	160.10.2. public final class AbandonOperationException extends Exception
	160.10.2.1. public AbandonOperationException(String message)
	160.10.2.2. public AbandonOperationException(String message, Throwable cause)

	160.10.3. public interface BaseFeatureDecorationBuilder<T extends BaseFeatureDecorationBuilder<T>>
	160.10.3.1. public Feature build()
	160.10.3.2. public T extends BaseFeatureDecorationBuilder<T> setBundles(List<FeatureBundle> bundles)
	160.10.3.3. public T extends BaseFeatureDecorationBuilder<T> setConfigurations(List<FeatureConfiguration> configs)
	160.10.3.4. public T extends BaseFeatureDecorationBuilder<T> setVariable(String key, Object defaultValue)
	160.10.3.5. public T extends BaseFeatureDecorationBuilder<T> setVariables(Map<String, Object> variables)

	160.10.4. public interface DecoratorBuilderFactory
	160.10.4.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	160.10.4.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	160.10.4.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	160.10.4.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	160.10.4.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)

	160.10.5. public interface FeatureDecorator
	160.10.5.1. public Feature decorate(Feature feature, FeatureDecorator.FeatureDecoratorBuilder decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

	160.10.6. public static interface FeatureDecorator.FeatureDecoratorBuilder extends BaseFeatureDecorationBuilder<FeatureDecorator.FeatureDecoratorBuilder>
	160.10.6.1. public FeatureDecorator.FeatureDecoratorBuilder setExtensions(List<FeatureExtension> extensions)

	160.10.7. public interface FeatureExtensionHandler
	160.10.7.1. public Feature handle(Feature feature, FeatureExtension extension, FeatureExtensionHandler.FeatureExtensionHandlerBuilder decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

	160.10.8. public static interface FeatureExtensionHandler.FeatureExtensionHandlerBuilder extends BaseFeatureDecorationBuilder<FeatureExtensionHandler.FeatureExtensionHandlerBuilder>

	160.11. org.osgi.service.featurelauncher.repository
	160.11.1. Summary
	160.11.2. public interface ArtifactRepository
	160.11.2.1. public InputStream getArtifact(ID id)

	160.11.3. public interface ArtifactRepositoryFactory
	160.11.3.1. public ArtifactRepository createRepository(Path path)
	160.11.3.2. public ArtifactRepository createRepository(URI uri, Map<String, Object> props)

	160.12. org.osgi.service.featurelauncher.runtime
	160.12.1. Summary
	160.12.2. public interface FeatureRuntime extends ArtifactRepositoryFactory
	160.12.2.1. public Map<String, ArtifactRepository> getDefaultRepositories()
	160.12.2.2. public List<InstalledFeature> getInstalledFeatures()
	160.12.2.3. public FeatureRuntime.InstallOperationBuilder install(Feature feature)
	160.12.2.4. public FeatureRuntime.InstallOperationBuilder install(Reader jsonReader)
	160.12.2.5. public void remove(ID featureId)
	160.12.2.6. public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Feature feature)
	160.12.2.7. public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Reader jsonReader)

	160.12.3. public static interface FeatureRuntime.InstallOperationBuilder extends FeatureRuntime.OperationBuilder<FeatureRuntime.InstallOperationBuilder>
	160.12.3.1. public InstalledFeature install()

	160.12.4. public static interface FeatureRuntime.OperationBuilder<T extends FeatureRuntime.OperationBuilder<T>>
	160.12.4.1. public T extends FeatureRuntime.OperationBuilder<T> addRepository(String name, ArtifactRepository repository)
	160.12.4.2. public InstalledFeature complete() throws FeatureRuntimeException
	160.12.4.3. public T extends FeatureRuntime.OperationBuilder<T> useDefaultRepositories(boolean include)
	160.12.4.4. public T extends FeatureRuntime.OperationBuilder<T> withBundleMerge(RuntimeBundleMerge merge)
	160.12.4.5. public T extends FeatureRuntime.OperationBuilder<T> withConfigurationMerge(RuntimeConfigurationMerge merge)
	160.12.4.6. public T extends FeatureRuntime.OperationBuilder<T> withDecorator(FeatureDecorator decorator)
	160.12.4.7. public T extends FeatureRuntime.OperationBuilder<T> withExtensionHandler(String extensionName, FeatureExtensionHandler extensionHandler)
	160.12.4.8. public T extends FeatureRuntime.OperationBuilder<T> withVariables(Map<String, Object> variables)

	160.12.5. public static interface FeatureRuntime.UpdateOperationBuilder extends FeatureRuntime.OperationBuilder<FeatureRuntime.UpdateOperationBuilder>
	160.12.5.1. public InstalledFeature update()

	160.12.6. public final class FeatureRuntimeConstants
	160.12.6.1. public static final String EXTERNAL_FEATURE_ID = "org.osgi.service.featurelauncher:external:1.0.0"

	160.12.7. public class FeatureRuntimeException extends RuntimeException
	160.12.7.1. public FeatureRuntimeException(String message)
	160.12.7.2. public FeatureRuntimeException(String message, Throwable cause)

	160.12.8. public interface InstalledBundle
	160.12.8.1. public Collection<ID> getAliases()
	160.12.8.2. public Bundle getBundle()
	160.12.8.3. public ID getBundleId()
	160.12.8.4. public List<ID> getOwningFeatures()
	160.12.8.5. public int getStartLevel()

	160.12.9. public interface InstalledConfiguration
	160.12.9.1. public Optional<String> getFactoryPid()
	160.12.9.2. public List<ID> getOwningFeatures()
	160.12.9.3. public String getPid()
	160.12.9.4. public Map<String, Object> getProperties()

	160.12.10. public interface InstalledFeature
	160.12.10.1. public ID getFeatureId()
	160.12.10.2. public List<InstalledBundle> getInstalledBundles()
	160.12.10.3. public List<InstalledConfiguration> getInstalledConfigurations()
	160.12.10.4. public boolean isInitialLaunch()

	160.12.11. enum MergeOperationType
	160.12.11.1. INSTALL
	160.12.11.2. UPDATE
	160.12.11.3. REMOVE
	160.12.11.4. public static MergeOperationType valueOf(String name)
	160.12.11.5. public static MergeOperationType[] values()

	160.12.12. public interface RuntimeBundleMerge
	160.12.12.1. public Stream<RuntimeBundleMerge.BundleMapping> mergeBundle(MergeOperationType operation, Feature feature, FeatureBundle toMerge, Collection<InstalledBundle> installedBundles, List<RuntimeBundleMerge.FeatureBundleDefinition> existingFeatureBundles)

	160.12.13. public static final class RuntimeBundleMerge.BundleMapping
	160.12.13.1. public final ID bundleId
	160.12.13.2. public final List<ID> owningFeatures
	160.12.13.3. public BundleMapping(ID bundleId, List<ID> owningFeatures)

	160.12.14. public static interface RuntimeBundleMerge.FeatureBundleDefinition
	160.12.14.1. public Feature getFeature()
	160.12.14.2. public FeatureBundle getFeatureBundle()

	160.12.15. public interface RuntimeConfigurationMerge
	160.12.15.1. public Map<String, Object> mergeConfiguration(MergeOperationType operation, Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration, List<RuntimeConfigurationMerge.FeatureConfigurationDefinition> existingFeatureConfigurations)

	160.12.16. public static interface RuntimeConfigurationMerge.FeatureConfigurationDefinition
	160.12.16.1. public Feature getFeature()
	160.12.16.2. public FeatureConfiguration getFeatureConfiguration()

	160.12.17. public final class RuntimeMerges
	160.12.17.1. public RuntimeMerges()
	160.12.17.2. public static Version getOSGiVersion(ID id)
	160.12.17.3. public static RuntimeBundleMerge preferExistingBundles()
	160.12.17.4. public static RuntimeConfigurationMerge replaceExistingProperties()

	160.13. References

