
DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Working Group
OSGi Compendium

Release 8.1
December 2022

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Copyright © 2000, 2024 Eclipse Foundation

LICENSE

Eclipse Foundation Specification License – v1.0
By using and/or copying this document, or the Eclipse Foundation document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, pro-
vided that you include the following on ALL copies of the document, or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.
• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual represen-

tation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc. <<url to this li-
cense>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided
in any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this li-
cense, except anyone may prepare and distribute derivative works and portions of this document in software
that implements the specification, in supporting materials accompanying such software, and in documentation
of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of deriva-
tive works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written prior permission. Title to copy-
right in this document will at all times remain with copyright holders.

Preface

Implementation Requirements
An implementation of a Specification: (i) must fully implement the Specification including all its required inter-
faces and functionality; (ii) must not modify, subset, superset or otherwise extend the OSGi Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the OSGi Name Space
other than those required and authorized by the Specification. An implementation that does not satisfy limi-
tations (i)-(ii) is not considered an implementation of the Specification and must not be described as an imple-
mentation of the Specification. "OSGi Name Space" shall mean the public class or interface declarations whose
names begin with "org.osgi" or any recognized successors or replacements thereof. An implementation of a Spec-
ification must not claim to be a compatible implementation of the Specification unless it passes the Technology
Compatibility Kit ("TCK") for the Specification.

Feedback
This specification can be downloaded from the OSGi Documentation web site:

https://docs.osgi .org/specif icat ion/
Comments about this specification can be raised at:

https://github.com/osgi/osgi/ issues

https://docs.osgi.org/specification/
https://github.com/osgi/osgi/issues

OSGi Compendium Release 8.1 Page 3

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Table of Contents

1 Introduction 5
1.1 Reader Level. 5

1.2 Version Information. 5

1.3 References. 8

1.4 Changes. 8

104 Configuration Admin Service Specification 11
104.1 Introduction. 11

104.2 Configuration Targets. 13

104.3 The Persistent Identity. 14

104.4 The Configuration Object. 17

104.5 Managed Service. 20

104.6 Managed Service Factory. 23

104.7 Configuration Admin Service. 27

104.8 Configuration Events. 32

104.9 Configuration Plugin. 33

104.10 Meta Typing. 35

104.11 Coordinator Support. 36

104.12 Capabilities. 36

104.13 Security. 37

104.14 org.osgi.service.cm. 39

104.15 org.osgi.service.cm.annotations. 59

135 Common Namespaces Specification 61
135.1 Introduction. 61

135.2 osgi.extender Namespace. 61

135.3 osgi.contract Namespace. 63

135.4 osgi.service Namespace. 65

135.5 osgi.implementation Namespace. 65

135.6 osgi.unresolvable Namespace. 66

135.7 org.osgi.namespace.contract. 66

135.8 org.osgi.namespace.extender. 67

135.9 org.osgi.namespace.service. 68

135.10 org.osgi.namespace.implementation. 68

135.11 org.osgi.namespace.unresolvable. 69

135.12 References. 70

159 Feature Service Specification 71
159.1 Introduction. 71

159.2 Feature. 72

Page 4 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

159.3 Comments. 74

159.4 Bundles. 74

159.5 Configurations. 76

159.6 Variables. 76

159.7 Extensions. 77

159.8 Framework Launching Properties. 79

159.9 Resource Versioning. 80

159.10 Capabilities. 80

159.11 org.osgi.service.feature. 80

159.12 org.osgi.service.feature.annotation. 92

159.13 References. 92

160 Feature Launcher Service Specification 93
160.1 Introduction. 93

160.2 Features and Artifact Repositories. 94

160.3 Common themes. 96

160.4 The Feature Launcher. 98

160.5 The Feature Runtime Service. 103

160.6 Capabilities. 114

160.7 Security. 115

160.8 org.osgi.service.featurelauncher. 115

160.9 org.osgi.service.featurelauncher.annotation. 119

160.10 org.osgi.service.featurelauncher.decorator. 120

160.11 org.osgi.service.featurelauncher.repository. 123

160.12 org.osgi.service.featurelauncher.runtime. 125

160.13 References. 135

Introduction Reader Level

OSGi Compendium Release 8.1 Page 5

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

1 Introduction
This compendium contains the specifications of all current OSGi services.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical experience in writing Ja-
va programs. Experience with embedded systems and server-environments is a plus. Application de-
velopers must be aware that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.2 Version Information
This document is the Compendium Specification for the OSGi Compendium Release 8.1.

1.2.1 OSGi Core Release 8
This specification is based on OSGi Core Release 8. This specification can be downloaded from:

https://docs.osgi.org/specification/

1.2.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package Version
??? - ???
??? ??? ???
104 Configuration Admin Service Specification org.osgi .service.cm

org.osgi .service.cm.annotations

Version 1.6

https://docs.osgi.org/specification/

Version Information Introduction

Page 6 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Item Package Version
??? ???

???

???

??? ??? ???
??? ??? ???
??? ??? ???
??? ??? ???
??? ???

???

???

???

???

???

??? ???

???

???

???

??? ???

???

???

???

???

???

??? ???

???

???

??? - ???
??? ??? ???
??? ??? ???
??? ???

???

???

??? - ???
??? ??? ???
??? ??? ???
??? ??? ???
??? ??? ???
135 Common Namespaces Specification org.osgi .namespace.contract

org.osgi .namespace.extender

org.osgi .namespace. implementation

org.osgi .namespace.service

org.osgi .namespace.unresolvable

Version 1.2

??? ???

???

???

??? ???

???

???

Introduction Version Information

OSGi Compendium Release 8.1 Page 7

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Item Package Version
??? ???

???

???

??? ???

???

???

???

???

???

???

??? ??? ???
??? ???

???

???

??? ??? ???
??? ???

???

???

??? ??? ???
??? ??? ???
??? ???

???

???

???

???

??? ???

???

???

??? ???

???

???

???

???

??? ???

???

???

???

??? ???

???

???

???

???

???

???

References Introduction

Page 8 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Item Package Version
??? ???

???

???

???

???

???

???

???

??? ???

???

???

??? ???1 ???
??? - ???
??? ???

???

???

???

???

??? ??? ???
159 Feature Service Specification org.osgi .service.feature Version 1.0
??? ??? ???
??? ???

???

???

??? ??? ???
??? ??? ???

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.2.3 Notes

1. This is not a Java package but contains DMT Types.

1.3 References

[1] OSGi Specifications
https://docs.osgi.org/specification/

1.4 Changes
• Updated ???.
• Updated ???.
• Updated ???.
• ??? updated for Jakarta EE and replaces the Http Whiteboard specification which is based up-

on the javax -namespace Servlet API. The old Http Service specification was also removed as it is
based upon the old version 2.1 of the javax -namespace Servlet API.

https://docs.osgi.org/specification/

Introduction Changes

OSGi Compendium Release 8.1 Page 9

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• ??? updated for Jakarta EE and replaces the JaxRS Whiteboard specification which is based upon
the javax -namespace JAX-RS API.

Changes Introduction

Page 10 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Configuration Admin Service Specification Version 1.6 Introduction

OSGi Compendium Release 8.1 Page 11

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104 Configuration Admin Service
Specification

Version 1.6

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.6

Page 12 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.6 Configuration Targets

OSGi Compendium Release 8.1 Page 13

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 14 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 17.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.6 The Persistent Identity

OSGi Compendium Release 8.1 Page 15

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 16 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8.1 Page 17

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 if ((largest == null) || (largest.length() < s.length()))
 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 14 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) ,
getFactoryConfigurat ion(Str ing,Str ing) , or createFactoryConfigurat ion(Str ing) , it becomes
bound to the location of the calling bundle. This location is obtained with the getBundleLocation()
method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) as well as the three argument version of
getFactoryConfigurat ion(Str ing,Str ing,Str ing) take a location Str ing as their last argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

The Configuration Object Configuration Admin Service Specification Version 1.6

Page 18 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):
• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 30 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 8 Fil-
ter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8.1 Page 19

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

property-name ::= public | private
public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See ???.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
33. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 15.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

Managed Service Configuration Admin Service Specification Version 1.6

Page 20 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

Configuration Admin Service Specification Version 1.6 Managed Service

OSGi Compendium Release 8.1 Page 21

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 35.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 17.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

Managed Service Configuration Admin Service Specification Version 1.6

Page 22 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8.1 Page 23

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 24 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-
gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8.1 Page 25

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 26 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 27

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 28 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two sets of methods to create a new Configuration for a
Managed Service Factory. The first set delegates the creation of the unique PID to the Configuration
Admin service. The second set allows the caller to influence the generation of the PID.

The Configurat ionAdmin class provides the following two methods which generate a unique PID
when creating a new Configuration for a Managed Service Factory. A new, unique PID is created for
the Configuration object by the Configuration Admin service. The scheme used for this PID is de-
fined by the Configuration Admin service and is unrelated to the factory PID, which is chosen by
the registering bundle.

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

The Configurat ionAdmin class provides the following two methods allowing the caller to influence
the generation of the PID when creating a new Configuration for a Managed Service Factory. The
PID for the Configuration object is generated from the provided factory PID and the provided name
by starting with the factory PID, appending a tilde (' ~ ' \u007e), and then appending the name. The
getFactoryConfigurat ion methods must atomically create and persistently store a Configuration ob-
ject if it does not yet exist.

• getFactoryConfigurat ion(Str ing,Str ing) - This method is used by a bundle with a given location
to configure its own ManagedServiceFactory objects. The first argument specifies the PID of the
targeted ManagedServiceFactory object. This factory PID can be obtained from the returned Con-
figurat ion object with the getFactoryPid() method. The second argument specifies the name of
the factory configuration. The generated PID can be obtained from the returned Configurat ion
object with the getPid() method.

• getFactoryConfigurat ion(Str ing,Str ing,Str ing) - This method is used by a management bun-
dle to configure another bundle's ManagedServiceFactory object. The first argument is the PID,
the second argument is the name, and the third is the location identifier of the targeted Man-
agedServiceFactory object. The factory PID can be obtained from the returned Configurat ion ob-
ject with getFactoryPid method. The generated PID can be obtained from the returned Configu-
rat ion object with the getPid() method.

Creating a new Configuration must not initiate a callback to the Managed Service Factory updated
method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 29

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 17.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 15.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and
Managed Service Factories. First, l istConfigurat ions(Str ing) , getConfigurat ion(Str ing) or
getFactoryConfigurat ion(Str ing,Str ing) should be used to get a Configurat ion object. The properties
can be obtained with Configurat ion.getPropert ies . When no update has occurred since this object
was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update methods in Configurat ion objects are not executed synchronously with the related tar-
get services updated method. The updated method must be called asynchronously. The Configura-
tion Admin service, however, must have updated the persistent storage before the update method
returns.

The update methods must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

Invoking the update(Dict ionary) method results in Configuration Admin service blindly updating
the Configurat ion object and performing the above outlined actions. This even happens if the updat-
ed set of properties is the same as the already existing properties in the Configurat ion object.

To optimize configuration updates if the caller does not know whether properties of a Configura-
t ion object have changed, the updateIfDifferent(Dict ionary) method can be used. The provided dic-
tionary is compared with the existing properties. If there is no change, no action is taken. If there is
any change detected, updateIfDifferent(Dict ionary) acts exactly as update(Dict ionary) . Properties
are compared as follows:

• Scalars are compared using equals

• Arrays are compared using Arrays.equals

• Collections are compared using equals

The boolean result of updateIfDifferent(Dict ionary) is true if the Configuration object has been up-
dated.

If the Configurat ion object has the READ_ONLY attribute set, calling one of the update methods re-
sults in a ReadOnlyConfigurat ionException and the configuration is not changed.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 17. A multi-location for a Configuration enables this Configuration to be deliv-

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 30 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 30. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 17,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent
then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 31

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The delete method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

If the Configurat ion object has the READ_ONLY attribute set, calling the delete method results in a
ReadOnlyConfigurat ionException and the configuration is not deleted.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).

Configuration Events Configuration Admin Service Specification Version 1.6

Page 32 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.7.9 Configuration Attributes
The Configurat ion object supports attributes, similar to setting attributes on files in a file system.
Currently only the READ_ONLY attribute is supported.

Attributes can be set by calling the addAttr ibutes(Configurat ionAttr ibute. . .) method and
listing the attributes to be added. In the same way attributes can be removed by calling
removeAttr ibutes(Configurat ionAttr ibute. . .) . Each successful change in attributes is persisted.

A Bundle can only change the attributes if it has Configuration Permission with the ATTRIBUTE ac-
tion. Otherwise a Security Exception is thrown.

The currently set attributes can be queried using the getAttr ibutes() method.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 8.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously via the Event Admin service, if present. The
topic of a configuration event must be:

Configuration Admin Service Specification Version 1.6 Configuration Plugin

OSGi Compendium Release 8.1 Page 33

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

org/osgi/service/cm/ConfigurationEvent/<eventtype>

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 19.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Plugin Configuration Admin Service Specification Version 1.6

Page 34 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Configuration Admin Service Specification Version 1.6 Meta Typing

OSGi Compendium Release 8.1 Page 35

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.
In the event of more than one plugin having the same value of service.cmRanking , then the order in
which these are called is undefined.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made. Any modification from the
Configuration Plugin service is ignored.

>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The
calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made. Any modification from the Configuration
Plugin service is ignored.

104.9.6 Manual Invocation
The Configuration Admin service ensures that Configuration Plugin services are automati-
cally called for a Managed Service or a Managed Service Factory as outlined above. If a bundle
needs to get the configuration properties processed by the Configuration Plugin services, the
getProcessedPropert ies(ServiceReference) method provides this view.

The service reference passed into the method must either point to a Managed Service or Managed
Service Factory registered on behalf of the bundle getting the processed properties. If that service
should not be called by the Configuration Admin service, that service must be registered without a
PID service property.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

Coordinator Support Configuration Admin Service Specification Version 1.6

Page 36 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

104.11 Coordinator Support
The ??? defines a mechanism for multiple parties to collaborate on a common task without a priori
knowledge of who will collaborate in that task. The Configuration Admin service must participate
in such scenarios to coordinate with provisioning or configuration tasks.

If configurations are created, updated or deleted and an implicit coordination exists, the Configura-
tion Admin service must delay notifications until the coordination terminates. However the config-
uration changes must be persisted immediately. Updating a Managed Service or Managed Service
Factory and informing asynchronous listeners is delayed until the coordination terminates, regard-
less of whether the coordination fails or terminates regularly. Registered synchronous listeners will
be informed immediately when the change happens regardless of a coordination.

104.12 Capabilities

104.12.1 osgi.implementation Capability
The Configuration Admin implementation bundle must provide the osgi . implementation capabil-
ity with the name osgi .cm . This capability can be used by provisioning tools and during resolution
to ensure that a Configuration Admin implementation is present to manage configurations. The ca-
pability must also declare a uses constraint for the org.osgi .service.cm package and provide the ver-
sion of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.cm";
 uses:="org.osgi.service.cm";
 version:Version="1.6"

This capability must follow the rules defined for the osgi.implementation Namespace on page 65.

Bundles relying on the Configuration Admin service should require the osgi . implementation capa-
bility from the Configuration Admin Service.

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cm)(version>=1.6)(!(version>=2.0)))"

This requirement can be easily generated using the RequireConfigurat ionAdmin annotation.

104.12.2 osgi.service Capability
The bundle providing the Configuration Admin service must provide a capability in the
osgi .service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi .service.cm package:

Configuration Admin Service Specification Version 1.6 Security

OSGi Compendium Release 8.1 Page 37

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.cm.ConfigurationAdmin";
 uses:="org.osgi.service.cm"

This capability must follow the rules defined for the osgi.service Namespace on page 65.

104.13 Security

104.13.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration
• ATTRIBUTE - Can manage attributes for matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.13.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Security Configuration Admin Service Specification Version 1.6

Page 38 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to
have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE] is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.13.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 39

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14 org.osgi.service.cm

Configuration Admin Package Version 1.6.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,1.7)"

104.14.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ion.Configurat ionAttr ibute - Configuration Attributes.
• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionConstants - Defines standard constants for the Configuration Admin service.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• ReadOnlyConfigurat ionException - An Exception class to inform the client of a Configurat ion

about the read only state of a configuration object.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

104.14.2 Permissions

104.14.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

• addAttr ibutes(Configurat ionAttr ibute. . .)
• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

• removeAttr ibutes(Configurat ionAttr ibute. . .)

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 40 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

104.14.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• getFactoryConfigurat ion(Str ing,Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getFactoryConfigurat ion(Str ing,Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

104.14.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 41

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.3.1 public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to add.

□ Add attributes to the configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.2 public void delete() throws IOException

□ Delete this Configurat ion object.

Removes this configuration object from the persistent store. Notify asynchronously the correspond-
ing Managed Service or Managed Service Factory. A ManagedService object is notified by a call to its
updated method with a nul l properties argument. A ManagedServiceFactory object is notified by a
call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

104.14.3.3 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 42 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.3.4 public Set<Configuration.ConfigurationAttribute> getAttributes()

□ Get the attributes of this configuration.

Returns The set of attributes.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.5 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.14.3.6 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.14.3.7 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.8 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.14.3.9 public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)

reference The reference to the Managed Service or Managed Service Factory to pass to the registered Configu-
rationPlugins handling this configuration. Must not be nul l .

□ Return the processed properties of this Configurat ion object.

The Dictionary object returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case insensitive and are always
of type Str ing .

Before the properties are returned they are processed by all the registered ConfigurationPlugins han-
dling this configuration.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 43

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the processed properties for the caller or nul l . These properties must not contain
the "service.bundleLocation" property. The value of this property may be obtained from the get-
BundleLocation() method.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.10 public Dictionary<String, Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.11 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.14.3.12 public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to remove.

□ Remove attributes from this configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.13 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 44 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.14.3.14 public void update(Dictionary<String, ?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object.

Stores the properties in persistent storage after adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.14.3.15 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.14.3.16 public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

properties The new set of properties for this configuration.

□ Update the properties of this Configurat ion object if the provided properties are different than the
currently stored set. Properties are compared as follows.

• Scalars are compared using equals
• Arrays are compared using Arrays.equals
• Collections are compared using equals

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 45

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

If the new properties are not different than the current properties, no operation is performed. Other-
wise, the behavior of this method is identical to the update(Dictionary) method.

Returns If the properties are different and the configuration is updated true is returned. If the properties are
the same, fa lse is returned.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If update cannot be made persistent.

I l legalArgumentException– If the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.4 enum Configuration.ConfigurationAttribute
Configuration Attributes.

Since 1.6

104.14.4.1 READ_ONLY

The configuration is read only.

104.14.4.2 public static Configuration.ConfigurationAttribute valueOf(String name)

104.14.4.3 public static Configuration.ConfigurationAttribute[] values()

104.14.5 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 46 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-
ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.5.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

104.14.5.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.14.5.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 47

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.5.4 public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.14.5.5 public Configuration getConfiguration(String pid, String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.14.5.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 48 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.14.5.7 public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws
IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

location The bundle location string, or nul l .

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

Since 1.6

104.14.5.8 public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion object for this PID does not exist, create a new Configurat ion object for that PID,
where properties are nul l . Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 49

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

Since 1.6

104.14.5.9 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.14.6 public final class ConfigurationConstants
Defines standard constants for the Configuration Admin service.

104.14.6.1 public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"

The name of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.6.2 public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

The version of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.7 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 50 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.14.7.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.14.7.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.14.7.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.14.7.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid,
String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.14.7.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.14.7.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.14.7.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 51

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.14.7.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.14.8 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.14.8.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.14.8.2 public ConfigurationException(String property, String reason, Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.14.8.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

104.14.8.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.14.8.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.14.8.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 52 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.14.9 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.14.9.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

104.14.10 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.14.10.1 public static final String ATTRIBUTE = "attribute"

Provides permission to set or remove an attribute on the configuration. The action string "attribute".

Since 1.6

104.14.10.2 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.14.10.3 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.14.10.4 public ConfigurationPermission(String name, String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET, ATTRIBUTE (case insensitive).

□ Create a new ConfigurationPermission.

104.14.10.5 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 53

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.14.10.6 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "tar-
get", "attribute".

Returns Canonical string representation of the Configurat ionPermission actions.

104.14.10.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.14.10.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.14.10.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

Returns A new PermissionCol lect ion object.

104.14.11 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties. Any modifications made by such plugins must be ignored.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 54 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.14.11.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.14.11.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.14.11.3 public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 . Any modification from this plugin is ignored.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it. Any modifications made by the plugin before the exception is thrown are applied.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.14.12 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 55

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,
 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());
 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

If a Managed Service is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 56 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.12.1 public void updated(Dictionary<String, ?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.13 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 57

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

If a ManagedServiceFactory is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.13.1 public void deleted(String pid)

pid the PID of the service to be removed

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.14.13.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.14.13.3 public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 58 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.14 public class ReadOnlyConfigurationException
extends RuntimeException
An Exception class to inform the client of a Configurat ion about the read only state of a configura-
tion object.

Since 1.6

104.14.14.1 public ReadOnlyConfigurationException(String reason)

reason reason for failure

□ Create a ReadOnlyConfigurat ionException object.

104.14.15 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm.annotations

OSGi Compendium Release 8.1 Page 59

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Concurrency Thread-safe

104.15 org.osgi.service.cm.annotations

Configuration Admin Annotations Package Version 1.6.

This package contains annotations that can be used to require the Configuration Admin implemen-
tations

Bundles should not normally need to import this package as the annotations are only used at build-
time.

104.15.1 Summary

• RequireConfigurat ionAdmin - This annotation can be used to require the Configuration Admin
implementation.

104.15.2 @RequireConfigurationAdmin
This annotation can be used to require the Configuration Admin implementation. It can be used di-
rectly, or as a meta-annotation.

Since 1.6

Retention CLASS

Target TYPE , PACKAGE

org.osgi.service.cm.annotations Configuration Admin Service Specification Version 1.6

Page 60 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Common Namespaces Specification Version 1.2 Introduction

OSGi Compendium Release 8.1 Page 61

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

135 Common Namespaces
Specification

Version 1.2

135.1 Introduction
A key aspect of the OSGi general dependency model based on requirements and capabilities is the
concept of a Namespace. A Namespace defines the semantics of a Requirement-Capability pair. The
generic model is defined in the [3] Resources API Specification. This section defines a number of Name-
spaces that are not part of the OSGi Core Release 8 specification. Unless an attribute is specifically
overridden, all Namespaces inherit the attributes and directives of the default Namespace as defined
[4] Framework Namespaces Specification.

Each Namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O)
• Type - The data type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in [5] General Syn-

tax Definitions and [6] Common Headers.

135.1.1 Versioning
In general, capabilities in a Namespace are versioned using Semantic Versioning. See [7] Semantic
Versioning. Therefore, a capability will specify a single version and a requirement will specify a ver-
sion range. See osgi.extender Namespace for an example.

For some Namespaces, capabilities are not versioned using Semantic Versioning. The versioning
scheme used in those Namespaces will be described in the specification for the Namespace.

135.2 osgi.extender Namespace
An Extender is a bundle that uses the life cycle events from another bundle, the extendee, to extend
that bundle's functionality when that bundle is active. It can use metadata (headers, or files inside
the extendee) to control its functionality. Extendees therefore have a dependency on the Extender
that can be modeled with the osgi .extender Namespace. The definition for this Namespace can be
found in the following table and the ExtenderNamespace class.

osgi.extender Namespace Common Namespaces Specification Version 1.2

Page 62 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Table 135.1 osgi.extender Namespace

Name Kind M/O Type Syntax Description
osgi .extender CA M String symbol ic-name A symbolic name for the extender. These names

are defined in their respective specifications and
should in general use the specification top level
package name. For example, org.acme.foo . The
OSGi Working Group reserves names that start
with "osgi .".

version CA M Version version A version. This version must correspond to the
specification of the extender.

Specifications for extenders (Blueprint, Declarative Services, etc.) should specify the values for these
attributes. Extenders that provide such a capability should list the packages that they use in their
specification in the uses directive of that capability to ensure class space consistency. For example a
Declarative Services implementation could declare its capability with the following manifest head-
er:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 uses:="org.osgi.service.component";
 version:Version="1.3"

A bundle that depends on a Declarative Services implementation should require such an extender
with the following manifest header:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Extenders can extend an extendee bundle even if that bundle does not require the extender, unless
the extender's specification explicitly forbids this. It is recommended that an extender should only
extend a bundle if one of the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
of the extender and the first of these required wires is wired to the extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name of the
extender.

Otherwise, the extender should not extend the bundle.

135.2.1 Extenders and Framework Hooks
The Framework provides a number of hooks that allow groups of bundles to be scoped. For exam-
ple, the Subsystem Service Specification. An extender may want to extend the complete set of bundles
installed in the Framework even when extendee bundles are hidden from the extender. The system
bundle context provides a complete view of the bundles and services available in the Framework
even if Framework hooks are used to scope groups of bundles. The system bundle context can be
used by an extender to track all bundles installed in the Framework regardless of how Framework
hooks are used to scope groups of bundles. This is useful in scenarios where several scoped groups
contain bundles that require an extender. Instead of requiring an extender to be installed in each
scoped group of bundles, a single extender that uses the system bundle context to track extendees
can be installed to extend all scoped groups of bundles.

Common Namespaces Specification Version 1.2 osgi.contract Namespace

OSGi Compendium Release 8.1 Page 63

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

135.3 osgi.contract Namespace
Products or technologies often have a number of related APIs consisting of a large set of packages.
Some IDEs have not optimized for OSGi and requires work for each imported package. In these de-
velopment environments using modularized systems tends to require a significant amount of man-
ual effort to manage the imported packages.

The osgi .contract Namespace addresses this IDE deficiency. It allows a developer to specify a single
name and version for a contract that can then be expanded to a potentially large number of pack-
ages. For example, a developer can then specify a dependency on Java Enterprise Edition 6 contract
that can be provided by an application server.

The osgi .contract Namespace provides such a name and binds it to a set of packages with the us-
es constraint. The bundle that declares this contract must then import or export each of the listed
packages with the correct versioning. Such a bundle is called a contract bundle. The contract bundle
must ensure that it is bound to the correct versions of the packages contained within the contract it
is providing. If the contract bundle imports the packages which are specified as part of the contract
then proper matching attributes must be used to make sure it is bound to the correct versions of the
packages.

Additionally, the osgi .contract Namespace can be used in cases where API is defined by parties
that do not use Semantic Versioning. In those cases, the version of the exported package can be un-
clear and so it is difficult to specify a meaningful version range for the package import. In such cas-
es, importing the package without specifying a version range and specifying a requirement in the
osgi .contract Namespace can provide a way to create portable bundles that use the API. OSGi has
defined contract names for a number of such APIs. See [2] Portable Java Contract Definitions for more
information.

An osgi .contract capability can then be used in the following ways:

• IDEs can use the information in the uses directive to make all those packages available on the
build path. In this case the developer no longer has to specify each package separately.

• During run time the uses clause is used to enforce that all packages in the contract form a consis-
tent class space.

The uses directive will make it impossible to get wired to packages that are not valid for the con-
tract. Since the uses constrains enforce the consistency, it is in principle not necessary to version the
imported packages on client bundles since only the correctly versioned packages can be used. Con-
tracts are aggregates and therefore make clients depend on the whole and all their transitive depen-
dencies, even if the client only uses a single package of the contract.

The recommended way of using contracts is to create a contract bundle that provides the
osgi .contract capability and imports the packages with their required version range. For example:

Provide-Capability: osgi.contract;
 osgi.contract=JavaServlet;
 version:Version=2.5;
 uses:="javax.servlet,javax.servlet.http"
Export-Package:
 javax.servlet; version="2.5",
 javax.servlet.http; version="2.5"

A contract may support multiple versions of a named contract. Such a contract must use a single ca-
pability for the contract name that specifies a list of all the versions that are supported. For example,
the JavaServlet 3.1 contract capability would be specified with the following:

Provide-Capability: osgi.contract;

osgi.contract Namespace Common Namespaces Specification Version 1.2

Page 64 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 osgi.contract=JavaServlet;
 version:List<Version>="2.5,3.0,3.1";
 uses:=
 "javax.servlet,
 javax.servlet.annotation,
 javax.servlet.descriptor,
 javax.servlet.http"
Export-Package:
 javax.servlet; version="3.1",
 javax.servlet.annotation; version="3.1",
 javax.servlet.descriptor; version="3.1",
 javax.servlet.http; version="3.1"

A client bundle that requires the Servlet 2.5 contract can then have the following manifest:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))",
Import-Package:
 javax.servlet, javax.servlet.http

The client bundle will be constrained by the contract's uses constraints and automatically gets
the correct packages. In this example, no semantic versioning is used for the contract because the
Servlet Specifications do not use semantic versioning (version 3.0 is backward compatible with 2.X).

In this model it is even possible to use the normally not recommended DynamicImport-Package
header with a wild card since also this header is constrained by the uses constraints. However, using
a full wildcard can also dynamically import packages that are not part of the contract. To prevent
these unwanted dynamic imports, the exporter could include an attribute on the exports. For exam-
ple:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))"
DynamicImport-Package:
 *;JavaServlet=contract

However, this model requires the exporter to specify an agreed attribute. The contract bundle does
not require such coordination; it also allows the package exporters to reside in different and unrelat-
ed bundles.

The definition of the osgi .contract Namespace is in the following table and in the ContractName-
space class. See [2] Portable Java Contract Definitions.

Table 135.2 osgi.contract Namespace

Name Kind M/O Type Syntax Description
osgi .contract CA M String symbol ic-name A symbolic name for the contract.
version CA O Version+ version A list of versions for the contract. A contract that

supports multiple versions must use a single ca-
pability with a version attribute that lists all ver-
sions supported.

uses CD O String package-name

(',' package-name)

For a contract, the standard uses clause is used to
indicate which packages are part of the contract.
The imports or exports of those packages link
these packages to a particular version.

135.3.1 Versioning
As the osgi .contract Namespace follows the versioning of the associated contract, capabilities in
this Namespace are not semantically versioned. The associated contracts are often versioned using

Common Namespaces Specification Version 1.2 osgi.service Namespace

OSGi Compendium Release 8.1 Page 65

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

marketing or other versioning schemes and therefore the version number cannot be used as an indi-
cation of backwards compatibility.

As a result, capabilities in the osgi .contract Namespace use a discrete versioning scheme. In such a
versioning scheme, each version is treated as separate without any implied relation to another ver-
sion. A capability lists all compatible versions. A requirement only selects a single version.

135.4 osgi.service Namespace
The Service Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that potentially can register
a specific service.

• Providing a hint to the provisioning agent that the bundle requires a given service.
• Used as template for specifications like Blueprint and Declarative Services to express their pro-

vided and referenced services in the Repository model, see the Repository Service Specification.

A bundle providing this capability indicates that it can register such a service with at least the given
custom attributes as service properties. At resolve time this is a promise since there is no guarantee
that during runtime the bundle will actually register such a service; clients must handle this with
the normal runtime dependency managers like Blueprint, Declarative Services, or others.

See the following table and the ServiceNamespace class for this Namespace definition.

Table 135.3 osgi.service Namespace

Name Kind M/O Type Syntax Description
objectClass CA M List

<Str ing>

qname

(',' qname)*

The fully qualified name of the object class of the
service.

* CA O * * Custom attributes that will be provided as service
properties if they do not conflict with the service
properties rules and are not private service prop-
erties. Private properties start with a full stop ('.'
\u002E).

135.4.1 Versioning
Capabilities in the osgi .service Namespace are not versioned. The package of a service's object class
is generally versioned and the package can be associated with the capability via the uses directive.

135.5 osgi.implementation Namespace
The Implementation Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that provides an implemen-
tation of the specified specification or contract.

• Providing uses constraints to ensure that bundles which require an implementation of a specifi-
cation or contract will be wired appropriately by the framework.

• Providing a hint to the provisioning agent that the bundle requires a given specification or con-
tract implementation.

• Used as a general capability Namespace for specifications or contracts to express their provided
function in the Repository model, see the Repository Service Specification.

osgi.unresolvable Namespace Common Namespaces Specification Version 1.2

Page 66 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A bundle providing this capability indicates that it implements a specification or contract with the
specified name and version. For example, the Asynchronous Service Specification would provide the
following capability:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async"

See the following table and the ImplementationNamespace class for this Namespace definition.

Table 135.4 osgi.implementation Namespace

Name Kind M/O Type Syntax Description
osgi . implementation CA M String symbol ic-name The symbolic name of the specification or con-

tract. The OSGi Working Group reserves names
that start with "osgi .".

version CA M Version version The version of the implemented specification or
contract.

* CA O * * Custom attributes that can be used to further
identify the implementation

135.6 osgi.unresolvable Namespace
The Unresolvable Namespace is intended to be used to mark a bundle as unresolvable:

• Preventing the bundle from resolving since it is intended for compilation use only and is not in-
tended for runtime use.

• Providing a hint to the provisioning agent that the bundle must not be included in a provision-
ing solution.

For example, a bundle that must be unresolvable at runtime can include the following requirement:

Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

The filter expression in the example above always evaluates to fa lse .

See the UnresolvableNamespace class for this Namespace definition.

135.7 org.osgi.namespace.contract

Contract Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.7.1 Summary

• ContractNamespace - Contract Capability and Requirement Namespace.

Common Namespaces Specification Version 1.2 org.osgi.namespace.extender

OSGi Compendium Release 8.1 Page 67

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

135.7.2 public final class ContractNamespace
extends Namespace
Contract Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.7.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Versions of the specification of the contract. The value of this
attribute must be of type Version , Version[] , or List<Version> .

135.7.2.2 public static final String CONTRACT_NAMESPACE = "osgi.contract"

Namespace name for contract capabilities and requirements.

Also, the capability attribute used to specify the name of the contract.

135.8 org.osgi.namespace.extender

Extender Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.8.1 Summary

• ExtenderNamespace - Extender Capability and Requirement Namespace.

135.8.2 public final class ExtenderNamespace
extends Namespace
Extender Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.8.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the extender. The value of this
attribute must be of type Version .

135.8.2.2 public static final String EXTENDER_NAMESPACE = "osgi.extender"

Namespace name for extender capabilities and requirements.

Also, the capability attribute used to specify the name of the extender.

org.osgi.namespace.service Common Namespaces Specification Version 1.2

Page 68 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

135.9 org.osgi.namespace.service

Service Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.9.1 Summary

• ServiceNamespace - Service Capability and Requirement Namespace.

135.9.2 public final class ServiceNamespace
extends Namespace
Service Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

135.9.2.1 public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"

The capability attribute used to specify the types of the service. The value of this attribute must be
of type List<Str ing> .

A ServiceNamespace capability should express a uses constraint for all the packages mentioned in
the value of this attribute.

135.9.2.2 public static final String SERVICE_NAMESPACE = "osgi.service"

Namespace name for service capabilities and requirements.

135.10 org.osgi.namespace.implementation

Implementation Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

Common Namespaces Specification Version 1.2 org.osgi.namespace.unresolvable

OSGi Compendium Release 8.1 Page 69

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

135.10.1 Summary

• ImplementationNamespace - Implementation Capability and Requirement Namespace.

135.10.2 public final class ImplementationNamespace
extends Namespace
Implementation Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.10.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification or contract being implemented.
The value of this attribute must be of type Version .

135.10.2.2 public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

Namespace name for "implementation" capabilities and requirements. This is also the capability at-
tribute used to specify the name of the specification or contract being implemented.

A ImplementationNamespace capability should express a uses constraint for the appropriate pack-
ages defined by the specification/contract the packages mentioned in the value of this attribute.

135.11 org.osgi.namespace.unresolvable

Unresolvable Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.11.1 Summary

• UnresolvableNamespace - Unresolvable Capability and Requirement Namespace.

135.11.2 public final class UnresolvableNamespace
extends Namespace
Unresolvable Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.11.2.1 public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"

An unresolvable filter expression.

References Common Namespaces Specification Version 1.2

Page 70 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

This can be used as the filter expression for an UnresolvableNamespace requirement.

 @Requirement(namespace = UnresolvableNamespace.UNRESOLVABLE_NAMESPACE,
 filter = UnresolvableNamespace.UNRESOLVABLE_FILTER)

135.11.2.2 public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

Namespace name for "unresolvable" capabilities and requirements.

This is typically used as follows to prevent a bundle from being resolvable.

 Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

135.12 References

[1] Specification References
https://docs.osgi.org/reference/

[2] Portable Java Contract Definitions
https://docs.osgi.org/reference/portable-java-contracts.html

[3] Resources API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespaces Specification
OSGi Core, Chapter 8 Framework Namespaces Specification

[5] General Syntax Definitions
OSGi Core, General Syntax Definitions

[6] Common Headers
OSGi Core, Chapter 3, Common Header Syntax

[7] Semantic Versioning
OSGi Core, Chapter 3, Semantic Versioning

https://docs.osgi.org/reference/
https://docs.osgi.org/reference/portable-java-contracts.html

Feature Service Specification Version 1.0 Introduction

OSGi Compendium Release 8.1 Page 71

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

159 Feature Service Specification

Version 1.0

159.1 Introduction
OSGi has become a platform capable of running large applications for a variety of purposes, includ-
ing rich client applications, server-side systems and cloud and container based architectures. As
these applications are generally based on many bundles, describing each bundle individually in an
application definition becomes unwieldy once the number of bundles reaches a certain level.

When developing large scale applications it is often the case that few people know the role of every
single bundle or configuration item in the application. To keep the architecture understandable
a grouping mechanism is needed that allows for the representation of parts of the application in-
to larger entities that keep reasoning about the system manageable. In such a domain members of
teams spread across an organization will need to be able to both develop new parts for the applica-
tion as well as make tweaks or enhancements to parts developed by others such as adding configura-
tion and resources or changing one or more bundles relevant to their part of the application.

The higher level constructs that define the application should be reusable in different contexts, for
example if one team has developed a component to handle job processing, different applications
should be able to use it, and if needed tune its configuration or other aspects so that it works in each
setting without having to know each and every detail that the job processing component is built up
from.

Applications are often associated with additional resources or metadata, for example database
scripts or custom artifacts. By including these with the application definition, all the related entities
are encapsulated in a single artifact.

By combining various applications or subsystems together, systems are composed of existing,
reusable building blocks, where all these blocks can work together. Architects of these systems need
to think about components without having to dive into the individual implementation details of
each subcomponent. The Features defined in this specification can be used to model such applica-
tions. Features contain the definition of an application or component and may be composed into
larger systems.

159.1.1 Essentials

• Declarative - Features are declarative and can be mapped to different implementations.
• Extensible - Features are extensible with custom content to facilitate all information related to a

Feature to be co-located.
• Human Readable - No special software is needed to read or author Features.
• Machine Readable - Features are easily be processed by tools.

159.1.2 Entities
The following entities are used in this specification:

• Feature - A Feature contains a number of entities that, when provided to a launcher can be turned
into an executable system. Features are building blocks which may be assembled into larger sys-
tems.

Feature Feature Service Specification Version 1.0

Page 72 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Bundles - A Feature can contain one ore more bundles.
• Configuration - A Feature can contain configurations for the Configuration Admin service.
• Extension - A Feature can contain a number of extensions with custom content.
• Launcher - A launcher turns one or more Features into an executable system.
• Processor - A Feature processor reads Features and perform a processing operation on them, such

as validation, transformation or generation of new entities based on the Features.
• Properties - Framework launching properties can be specified in a Feature.

Figure 159.1 Features Entity overview

Feature

Variables

Configuration

Bundle

Artifact
Extension

Text Extension

JSON Extension

0..n

0..n

0..n

159.2 Feature
Features are defined by declaring JSON documents or by using the Feature API . Each Feature has a
unique ID which includes a version. It holds a number of entities, including a list of bundles, config-
urations and others. Features are extensible, that is a Feature can also contain any number of custom
entities which are related to the Feature.

Features may have dependencies on other Features. Features inherit the capabilities and require-
ments from all bundles listed in the Feature.

Once created, a Feature is immutable. Its definition cannot be modified. However it is possible to
record caching related information in a Feature through transient extensions. This cached content is
not significant for the definition of the Feature or part of its identity.

159.2.1 Identifiers
Identifiers used throughout this specification are defined using the Maven Identifier model. They
are composed of the following parts:

• Group ID
• Artifact ID
• Version
• Type (optional)

Feature Service Specification Version 1.0 Feature

OSGi Compendium Release 8.1 Page 73

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Classifier (optional)

Note that if Version has the -SNAPSHOT suffix, the identifier points at an unreleased artifact that is
under development and may still change.

For more information see [3] Apache Maven Pom Reference. The format used to specify identifiers is as
follows:

groupId ':' artifactId (':' type (':' classifier)?)? ':' version

159.2.2 Feature Identifier
Each Feature has a unique identifier. Apart from providing a persistent handle to the Feature, it also
provides enough information to find the Feature in an artifact repository. This identifier is defined
using the format described in Identifiers on page 72.

159.2.2.1 Identifier type

Features use as identifier type the value osgifeature .

159.2.3 Attributes
A Feature can have the following attributes:

Table 159.1 Feature Attributes

Attribute Data Type Kind Description
name String Optional The short descriptive name of the Feature.
categories Array of String Optional, de-

faults to an emp-
ty array

The categories this Feature belongs to. The
values are user-defined.

complete boolean Optional, de-
faults to fa lse

Completeness of the Feature. A Feature is
complete when it has no external dependen-
cies.

description String Optional A longer description of the Feature.
docURL String Optional A location where documentation can be

found for the Feature.
license String Optional The license of the Feature. The license only

relates to the Feature itself and not to any ar-
tifacts that might be referenced by the Fea-
ture. The license follows the Bundle-License
format as specified in the Core specification.

SCM String Optional SCM information relating to the feature.
The syntax of the value follows the Bun-
dle-SCM format. See the 'Bundle Manifest
Headers' section in the OSGi Core specifica-
tion.

vendor String Optional The vendor of the Feature.

An initial Feature without content can be declared as follows:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.0",

 "name": "The ACME app",

Comments Feature Service Specification Version 1.0

Page 74 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "description":
 "This is the main ACME app, from where all functionality is reached."

 /*
 Additional Feature entities here
 ...
 */
}

159.2.4 Using the Feature API
Features can also be created, read and written using the Feature API. The main entry point for this
API is the FeatureService . The Feature API uses the builder pattern to create entities used in Fea-
tures.

A builder instance is used to create a single entity and cannot be re-used to create a second one.
Builders are created from the Bui lderFactory , which is available from the FeatureService through
getBui lderFactory() .

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder(
 fs.getID("org.acme", "acmeapp", "1.0.0"));
builder.setName("The ACME app");
builder.setDescription("This is the main ACME app, "
 + "from where all functionality is reached.");

Feature f = builder.build();

The Feature API can also be useful in environments outside of an OSGi Framework where no ser-
vice registry is available, for example in a build-system environment. In such environments the Fea-
tureService can be obtained by using the java.ut i l .ServiceLoader mechanism.

159.3 Comments
Comments in the form of [2] JSMin (The JavaScript Minifier) comments are supported, that is, any text
on the same line after // is ignored and any text between /* */ is ignored.

159.4 Bundles
Features list zero or more bundles that implement the functionality provided by the Feature. Bun-
dles are listed by referencing them in the bundles array so that they can be resolved from a reposito-
ry. Bundles can have metadata associated with them, such as the relative start order of the bundle in
the Feature. Custom metadata may also be provided. A single Feature can provide multiple versions
of the same bundle, if desired.

Bundles are referenced using the identifier format described in Identifiers on page 72. This means
that Bundles are referenced using their Maven coordinates. The bundles array contains JSON objects
which can contain the bundle IDs and specify optional additional metadata.

159.4.1 Bundle Metadata
Arbitrary key-value pairs can be associated with bundle entries to store custom metadata alongside
the bundle references. Reverse DNS naming should be used with the keys to avoid name clashes

Feature Service Specification Version 1.0 Bundles

OSGi Compendium Release 8.1 Page 75

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

when metadata is provided by multiple entities. Keys not using the reverse DNS naming scheme are
reserved for OSGi use.

Bundle metadata supports str ing keys and str ing , number or boolean values.

The following example shows a simple Feature describing a small application with its dependen-
cies:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.1",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",
 "complete": true,

 "bundles": [
 { "id": "org.osgi:org.osgi.util.function:1.1.0" },
 { "id": "org.osgi:org.osgi.util.promise:1.1.1" },
 {
 "id": "org.apache.commons:commons-email:1.5",

 // This attribute is used by custom tooling to
 // find the associated javadoc
 "org.acme.javadoc.link":
 "https://commons.apache.org/proper/commons-email/javadocs/api-1.5"
 },
 { "id": "com.acme:acmelib:1.7.2" }
]

 /*
 Additional Feature entities here
 ...
 */
}

159.4.2 Using the Feature API
A Feature with Bundles can be created using the Feature API as follows:

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder(
 fs.getID("org.acme", "acmeapp", "1.0.1"));
builder.setName("The Acme Application");
builder.setLicense("https://opensource.org/licenses/Apache-2.0");
builder.setComplete(true);

FeatureBundle b1 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.osgi:org.osgi.util.function:1.1.0"))
 .build();
FeatureBundle b2 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.osgi:org.osgi.util.promise:1.1.1"))
 .build();

Configurations Feature Service Specification Version 1.0

Page 76 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

FeatureBundle b3 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.apache.commons:commons-email:1.1.5"))
 .addMetadata("org.acme.javadoc.link",
 "https://commons.apache.org/proper/commons-email/javadocs/api-1.5")
 .build();
FeatureBundle b4 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "com.acme:acmelib:1.7.2"))
 .build();

builder.addBundles(b1, b2, b3, b4);
Feature f = builder.build();

159.5 Configurations
Features support configuration using the OSGi Configurator syntax, see ???. This is specified with
the configurat ions key in the Feature. A Launcher can apply these configurations to the Configura-
tion Admin service when starting the system.

It is an error to define the same PID twice in a single Feature. An entity processing the feature must
fail in this case.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:configs:1.0.0",
 "configurations": {
 "org.apache.felix.http": {
 "org.osgi.service.http.port": 8080,
 "org.osgi.service.http.port.secure": 8443
 }
 }
}

159.6 Variables
Configurations and Framework Launching Properties support late binding of values. This enables
setting these items through a Launcher, for example to specify a database user name, server port
number or other information that may be variable between runtimes.

Variables are declared in the var iables section of the Feature and they can have a default value spec-
ified. The default must be of type str ing , number or boolean . Variables can also be declared to not
have a default, which means that they must be provided with a value through the Launcher. This is
done by specifying nul l as the default in the variable declaration.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:configs:1.1.0",
 "variables": {
 "http.port": 8080,
 "db.username": "scott",

Feature Service Specification Version 1.0 Extensions

OSGi Compendium Release 8.1 Page 77

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "db.password": null
 },
 "configurations": {
 "org.acme.server.http": {
 "org.osgi.service.http.port:Integer": "${http.port}"
 },
 "org.acme.db": {
 "username": "${db.username}-user",
 "password": "${db.password}"
 }
 }
}

Variables are referenced with the curly brace placeholder syntax: ${ variable-name } in the configu-
ration value or framework launching property value section. To support conversion of variables to
non-string types the configurator syntax specifying the datatype with the configuration key is used,
as in the above example.

Multiple variables can be referenced for a single configuration or framework launching property
value and variables may be combined with text. If no variable exist with the given name, then the ${
variable-name } must be retained in the value.

159.7 Extensions
Features can include custom content. This makes it possible to keep custom entities and informa-
tion relating to the Feature together with the rest of the Feature.

Custom content is provided through Feature extensions, which are in one of the following formats:

• Text - A text extension contains an array of text.
• JSON - A JSON extension contains embedded custom JSON content.
• Artifacts - A list of custom artifacts associated with the Feature.

Extensions can have a variety of consumers. For example they may be handled by a Feature Launch-
er or by an external tool which can process the extension at any point of the Feature life cycle.

Extensions are of one of the following three kinds:

• Mandatory - The entity processing this Feature must know how to handle this extension. If it can-
not handle the extension it must fail.

• Optional - This extension is optional. If the entity processing the Feature cannot handle it, the ex-
tension can be skipped or ignored. This is the default.

• Transient - This extension contains transient information which may be used to optimize the pro-
cessing of the Feature. It is not part of the Feature definition.

Extensions are specified as JSON objects under the extensions key in the Feature. A Feature can con-
tain any number of extensions, as long as the extension keys are unique. Extension keys should use
reverse domain naming to avoid name clashing of multiple extensions in a single Feature. Exten-
sions names without a reverse domain naming prefix are reserved for OSGi use.

159.7.1 Text Extensions
Text extensions support the addition of custom text content to the Feature. The text is provided as a
JSON array of strings.

Example:

Extensions Feature Service Specification Version 1.0

Page 78 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.0.0",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",

 "extensions": {
 "org.acme.mydoc": {
 "type": "text",
 "text": [
 "This application provides the main acme ",
 "functionality."
]
 }
 }
}

159.7.2 JSON Extensions
Custom JSON content is added to Features by using a JSON extension. The content can either be a
JSON object or a JSON array.

The following example extension declares under which execution environment the Feature is com-
plete, using a custom JSON object.

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.1.0",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",

 "extensions": {
 "org.acme.execution-environment": {
 "type": "json",
 "json": {
 "environment-capabilities":
 ["osgi.ee; filter:=\"(&(osgi.ee=JavaSE)(version=11))\""],
 "framework": "org.osgi:core:6.0.0",
 "provided-features": ["org.acme:platform:1.1"]
 }
 }
 }
}

159.7.3 Artifact list Extensions
Custom extensions can be used to associate artifacts that are not listed as bundles with the Feature.

For example, database definition resources may be listed as artifacts in a Feature. In the following ex-
ample, the extension org.acme.ddlf i les lists Database Definition Resources which must be handled
by the launcher agent, that is, the database must be configured when the application is run:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.2.0",

Feature Service Specification Version 1.0 Framework Launching Properties

OSGi Compendium Release 8.1 Page 79

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",
 "complete": true,

 "bundles": [
 "org.osgi:org.osgi.util.function:1.1.0",
 "org.osgi:org.osgi.util.promise:1.1.1",
 "com.acme:acmelib:2.0.0"
],

 "extensions": {
 "org.acme.ddlfiles": {
 "kind": "mandatory",
 "type": "artifacts",
 "artifacts": [
 { "id": "org.acme:appddl:1.2.1" },
 {
 "id": "org.acme:appddl-custom:1.0.3",
 "org.acme.target": "custom-db"
 }
]
 }
 }
}

As with bundle identifiers, custom artifacts are specified in an object in the artifacts list with an ex-
plicit id and optional additional metadata. The keys of the metadata should use a reverse domain
naming pattern to avoid clashes. Keys that do not use reverse domain name as a prefix are reserved
for OSGi use. Supported metadata values must be of type str ing , number or boolean .

159.8 Framework Launching Properties
When a Feature is launched in an OSGi framework it may be necessary to specify Framework Prop-
erties. These are provided in the Framework Launching Properties extension section of the Fea-
ture. The Launcher must be able to satisfy the specified properties. If it cannot ensure that these are
present in the running Framework the launcher must fail.

Framework Launching Properties can reference Variables as defined in Variables on page 76.
These variables are substituted before the properties are set.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:fw-props:2.0.0",

 "variables": {
 "fw.storage.dir": "/tmp" // Can be overridden through the launcher
 },

 "extensions": {
 "framework-launching-properties": {
 "type": "json",
 "json": {

Resource Versioning Feature Service Specification Version 1.0

Page 80 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "org.osgi.framework.system.packages.extra":
 "javax.activation;version=\"1.1.1\"",
 "org.osgi.framework.bootdelegation": "javax.activation",
 "org.osgi.framework.storage": "${fw.storage.dir}"
 }
 }
 }
}

159.9 Resource Versioning
Feature JSON resources are versioned to support updates to the JSON structure in the future. To de-
clare the document version of the Feature use the feature-resource-version key in the JSON docu-
ment.

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.0"

 /*
 Additional Feature entities here
 ...
 */
}

The currently supported version of the Feature JSON documents is 1.0. If no Feature Resource Ver-
sion is specified 1.0 is used as the default.

159.10 Capabilities

159.10.1 osgi.service Capability
The bundle providing the Feature Service must provide a capability in the osgi .service namespace
representing the services it is registering. This capability must also declare uses constraints for the
relevant service packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.feature.FeatureService";
 uses:="org.osgi.service.feature"

This capability must follow the rules defined for the osgi.service Namespace on page 65.

159.11 org.osgi.service.feature

Feature Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.feature; vers ion="[1.0,2.0)"

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 81

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.feature; vers ion="[1.0,1.1)"

159.11.1 Summary

• Bui lderFactory - The Builder Factory can be used to obtain builders for the various entities.
• Feature - The Feature Model Feature.
• FeatureArt i fact - An Artifact is an entity with an ID, for use in extensions.
• FeatureArt i factBui lder - A builder for FeatureArtifact objects.
• FeatureBui lder - A builder for Feature Models.
• FeatureBundle - A Bundle which is part of a feature.
• FeatureBundleBui lder - A builder for Feature Model FeatureBundle objects.
• FeatureConfigurat ion - Represents an OSGi Configuration in the Feature Model.
• FeatureConfigurat ionBui lder - A builder for Feature Model FeatureConfiguration objects.
• FeatureConstants - Defines standard constants for the Feature specification.
• FeatureExtension - A Feature Model Extension.
• FeatureExtension.Kind - The kind of extension: optional, mandatory or transient.
• FeatureExtension.Type - The type of extension
• FeatureExtensionBui lder - A builder for Feature Model FeatureExtension objects.
• FeatureService - The Feature service is the primary entry point for interacting with the feature

model.
• ID - ID used to denote an artifact.

159.11.2 public interface BuilderFactory
The Builder Factory can be used to obtain builders for the various entities.

Provider Type Consumers of this API must not implement this type

159.11.2.1 public FeatureArtifactBuilder newArtifactBuilder(ID id)

id The artifact ID for the artifact object being built.

□ Obtain a new builder for Artifact objects.

Returns The builder.

159.11.2.2 public FeatureBundleBuilder newBundleBuilder(ID id)

id The ID for the bundle object being built. If the ID has no type specified, a default type of @{code jar}
is assumed.

□ Obtain a new builder for Bundle objects.

Returns The builder.

159.11.2.3 public FeatureConfigurationBuilder newConfigurationBuilder(String pid)

pid The persistent ID for the Configuration being built.

□ Obtain a new builder for Configuration objects.

Returns The builder.

159.11.2.4 public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)

factoryPid The factory persistent ID for the Configuration being built.

name The name of the configuration being built. The PID for the configuration will be the factoryPid + '~'
+ name

org.osgi.service.feature Feature Service Specification Version 1.0

Page 82 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Obtain a new builder for Factory Configuration objects.

Returns The builder.

159.11.2.5 public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type,
FeatureExtension.Kind kind)

name The extension name.

type The type of extension: JSON, Text or Artifacts.

kind The kind of extension: Mandatory, Optional or Transient.

□ Obtain a new builder for Feature objects.

Returns The builder.

159.11.2.6 public FeatureBuilder newFeatureBuilder(ID id)

id The ID for the feature object being built. If the ID has no type specified, a default type of osgifeature
is assumed.

□ Obtain a new builder for Feature objects.

Returns The builder.

159.11.3 public interface Feature
The Feature Model Feature.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.3.1 public List<FeatureBundle> getBundles()

□ Get the bundles.

Returns The bundles. The returned list is unmodifiable.

159.11.3.2 public List<String> getCategories()

□ Get the categories.

Returns The categories. The returned list is unmodifiable.

159.11.3.3 public Map<String, FeatureConfiguration> getConfigurations()

□ Get the configurations. The iteration order of the returned map should follow the definition order of
the configurations in the feature.

Returns The configurations. The returned map is unmodifiable.

159.11.3.4 public Optional<String> getDescription()

□ Get the description.

Returns The description.

159.11.3.5 public Optional<String> getDocURL()

□ Get the documentation URL.

Returns The documentation URL.

159.11.3.6 public Map<String, FeatureExtension> getExtensions()

□ Get the extensions. The iteration order of the returned map should follow the definition order of the
extensions in the feature.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 83

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The extensions. The returned map is unmodifiable.

159.11.3.7 public ID getID()

□ Get the Feature's ID.

Returns The ID of this Feature.

159.11.3.8 public Optional<String> getLicense()

□ Get the license of this Feature. The syntax of the value follows the Bundle-License header syntax. See
the 'Bundle Manifest Headers' section in the OSGi Core specification.

Returns The license.

159.11.3.9 public Optional<String> getName()

□ Get the name.

Returns The name.

159.11.3.10 public Optional<String> getSCM()

□ Get the SCM information relating to the feature. The syntax of the value follows the Bundle-SCM
format. See the 'Bundle Manifest Headers' section in the OSGi Core specification.

Returns The SCM information.

159.11.3.11 public Map<String, Object> getVariables()

□ Get the variables. The iteration order of the returned map should follow the definition order of the
variables in the feature. Values are of type: String, Boolean or BigDecimal for numbers. The nul l
JSON value is represented by a null value in the map.

Returns The variables. The returned map is unmodifiable.

159.11.3.12 public Optional<String> getVendor()

□ Get the vendor.

Returns The vendor.

159.11.3.13 public boolean isComplete()

□ Get whether the feature is complete or not.

Returns Completeness value.

159.11.4 public interface FeatureArtifact
An Artifact is an entity with an ID, for use in extensions.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.4.1 public ID getID()

□ Get the artifact's ID.

Returns The ID of this artifact.

159.11.4.2 public Map<String, Object> getMetadata()

□ Get the metadata for this artifact.

Returns The metadata. The returned map is unmodifiable.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 84 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

159.11.5 public interface FeatureArtifactBuilder
A builder for FeatureArtifact objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.5.1 public FeatureArtifactBuilder addMetadata(String key, Object value)

key Metadata key.

value Metadata value.

□ Add metadata for this Artifact.

Returns This builder.

159.11.5.2 public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)

metadata The map with metadata.

□ Add metadata for this Artifact by providing a map. All metadata in the map is added to any previ-
ously provided metadata.

Returns This builder.

159.11.5.3 public FeatureArtifact build()

□ Build the Artifact object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Feature Artifact.

159.11.6 public interface FeatureBuilder
A builder for Feature Models.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.6.1 public FeatureBuilder addBundles(FeatureBundle... bundles)

bundles The Bundles to add.

□ Add Bundles to the Feature.

Returns This builder.

159.11.6.2 public FeatureBuilder addCategories(String... categories)

categories The Categories.

□ Adds one or more categories to the Feature.

Returns This builder.

159.11.6.3 public FeatureBuilder addConfigurations(FeatureConfiguration... configs)

configs The Configurations to add.

□ Add Configurations to the Feature.

Returns This builder.

159.11.6.4 public FeatureBuilder addExtensions(FeatureExtension... extensions)

extensions The Extensions to add.

□ Add Extensions to the Feature

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 85

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns This builder.

159.11.6.5 public FeatureBuilder addVariable(String key, Object defaultValue)

key The key.

defaultValue The default value.

□ Add a variable to the Feature. If a variable with the specified key already exists it is replaced with
this one. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

159.11.6.6 public FeatureBuilder addVariables(Map<String, Object> variables)

variables to be added.

□ Add a map of variables to the Feature. Pre-existing variables with the same key in are overwritten if
these keys exist in the map. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type.

159.11.6.7 public Feature build()

□ Build the Feature. Can only be called once on a builder. After calling this method the current builder
instance cannot be used any more.

Returns The Feature.

159.11.6.8 public FeatureBuilder setComplete(boolean complete)

complete If the feature is complete.

□ Set the Feature Complete flag. If this method is not called the complete flag defaults to fa lse .

Returns This builder.

159.11.6.9 public FeatureBuilder setDescription(String description)

description The description.

□ Set the Feature Description.

Returns This builder.

159.11.6.10 public FeatureBuilder setDocURL(String docURL)

docURL The Documentation URL.

□ Set the documentation URL.

Returns This builder.

159.11.6.11 public FeatureBuilder setLicense(String license)

license The License.

□ Set the License.

Returns This builder.

159.11.6.12 public FeatureBuilder setName(String name)

name The Name.

□ Set the Feature Name.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 86 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns This builder.

159.11.6.13 public FeatureBuilder setSCM(String scm)

scm The SCM information.

□ Set the SCM information.

Returns This builder.

159.11.6.14 public FeatureBuilder setVendor(String vendor)

vendor The Vendor.

□ Set the Vendor.

Returns This builder.

159.11.7 public interface FeatureBundle
A Bundle which is part of a feature.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.7.1 public ID getID()

□ Get the bundle's ID.

Returns The ID of this bundle.

159.11.7.2 public Map<String, Object> getMetadata()

□ Get the metadata for this bundle.

Returns The metadata. The returned map is unmodifiable.

159.11.8 public interface FeatureBundleBuilder
A builder for Feature Model FeatureBundle objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.8.1 public FeatureBundleBuilder addMetadata(String key, Object value)

key Metadata key.

value Metadata value.

□ Add metadata for this Bundle.

Returns This builder.

159.11.8.2 public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)

metadata The map with metadata.

□ Add metadata for this Bundle by providing a map. All metadata in the map is added to any previous-
ly provided metadata.

Returns This builder.

159.11.8.3 public FeatureBundle build()

□ Build the Bundle object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Bundle.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 87

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

159.11.9 public interface FeatureConfiguration
Represents an OSGi Configuration in the Feature Model.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.9.1 public Optional<String> getFactoryPid()

□ Get the Factory PID from the configuration, if any.

Returns The Factory PID, or nul l if there is none.

159.11.9.2 public String getPid()

□ Get the PID from the configuration.

Returns The PID.

159.11.9.3 public Map<String, Object> getValues()

□ Get the configuration key-value map.

Returns The key-value map. The returned map is unmodifiable.

159.11.10 public interface FeatureConfigurationBuilder
A builder for Feature Model FeatureConfiguration objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.10.1 public FeatureConfigurationBuilder addValue(String key, Object value)

key The configuration key.

value The configuration value. Acceptable data types are the data type supported by the Configuration Ad-
min service, which are the Primary Property Types as defined for the Filter Syntax in the OSGi Core
specification.

□ Add a configuration value for this Configuration object. If a value with the same key was previously
provided (regardless of case) the previous value is overwritten.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

159.11.10.2 public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)

configValues The map of configuration values to add. Acceptable value types are the data type supported by the
Configuration Admin service, which are the Primary Property Types as defined for the Filter Syntax
in the OSGi Core specification.

□ Add a map of configuration values for this Configuration object. Values will be added to any previ-
ously provided configuration values. If a value with the same key was previously provided (regard-
less of case) the previous value is overwritten.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type or if the same key is provided in different
capitalizations (regardless of case).

159.11.10.3 public FeatureConfiguration build()

□ Build the Configuration object. Can only be called once on a builder. After calling this method the
current builder instance cannot be used any more.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 88 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The Configuration.

159.11.11 public final class FeatureConstants
Defines standard constants for the Feature specification.

159.11.11.1 public static final String FEATURE_IMPLEMENTATION = "osgi.feature"

The name of the implementation capability for the Feature specification.

159.11.11.2 public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

159.11.12 public interface FeatureExtension
A Feature Model Extension. Extensions can contain either Text, JSON or a list of Artifacts.

Extensions are of one of the following kinds:

• Mandatory: this extension must be processed by the runtime
• Optional: this extension does not have to be processed by the runtime
• Transient: this extension contains transient information such as caching data that is for opti-

mization purposes. It may be changed or removed and is not part of the feature's identity.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.12.1 public List<FeatureArtifact> getArtifacts()

□ Get the Artifacts from this extension.

Returns The Artifacts. The returned list is unmodifiable.

Throws I l legalStateException– If called on an extension which is not of type ARTIFACTS.

159.11.12.2 public String getJSON()

□ Get the JSON from this extension.

Returns The JSON.

Throws I l legalStateException– If called on an extension which is not of type JSON.

159.11.12.3 public FeatureExtension.Kind getKind()

□ Get the extension kind.

Returns The kind.

159.11.12.4 public String getName()

□ Get the extension name.

Returns The name.

159.11.12.5 public List<String> getText()

□ Get the Text from this extension.

Returns The lines of text. The returned list is unmodifiable.

Throws I l legalStateException– If called on an extension which is not of type TEXT.

159.11.12.6 public FeatureExtension.Type getType()

□ Get the extension type.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 89

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The type.

159.11.13 enum FeatureExtension.Kind
The kind of extension: optional, mandatory or transient.

159.11.13.1 MANDATORY

A mandatory extension must be processed.

159.11.13.2 OPTIONAL

An optional extension can be ignored if no processor is found.

159.11.13.3 TRANSIENT

A transient extension contains computed information which can be used as a cache to speed up op-
eration.

159.11.13.4 public static FeatureExtension.Kind valueOf(String name)

159.11.13.5 public static FeatureExtension.Kind[] values()

159.11.14 enum FeatureExtension.Type
The type of extension

159.11.14.1 JSON

A JSON extension.

159.11.14.2 TEXT

A plain text extension.

159.11.14.3 ARTIFACTS

An extension that is a list of artifact identifiers.

159.11.14.4 public static FeatureExtension.Type valueOf(String name)

159.11.14.5 public static FeatureExtension.Type[] values()

159.11.15 public interface FeatureExtensionBuilder
A builder for Feature Model FeatureExtension objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.15.1 public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)

artifact The artifact to add.

□ Add an Artifact to the extension. Can only be called for extensions of type
FeatureExtension.Type.ARTIFACTS.

Returns This builder.

159.11.15.2 public FeatureExtensionBuilder addText(String text)

text The text to be added.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 90 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Add a line of text to the extension. Can only be called for extensions of type
FeatureExtension.Type.TEXT.

Returns This builder.

159.11.15.3 public FeatureExtension build()

□ Build the Extension. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Extension.

159.11.15.4 public FeatureExtensionBuilder setJSON(String json)

json The JSON to be added.

□ Add JSON in String form to the extension. Can only be called for extensions of type
FeatureExtension.Type.JSON.

Returns This builder.

159.11.16 public interface FeatureService
The Feature service is the primary entry point for interacting with the feature model.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.16.1 public BuilderFactory getBuilderFactory()

□ Get a factory which can be used to build feature model entities.

Returns A builder factory.

159.11.16.2 public ID getID(String groupId, String artifactId, String version)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.3 public ID getID(String groupId, String artifactId, String version, String type)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

type The type (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.4 public ID getID(String groupId, String artifactId, String version, String type, String classifier)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

type The type (not nul l , not empty).

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8.1 Page 91

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

classifier The classifier (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.5 public ID getIDfromMavenCoordinates(String coordinates)

coordinates The Maven Coordinates.

□ Obtain an ID from a Maven Coordinates formatted string. The supported syntax is as follows:

groupId ' : ' art i fact Id (' : ' type (' : ' c lassi f ier)?)? ' : ' vers ion

Returns the ID.

159.11.16.6 public Feature readFeature(Reader jsonReader) throws IOException

jsonReader A Reader to the JSON input

□ Read a Feature from JSON

Returns The Feature represented by the JSON

Throws IOException– When reading fails

159.11.16.7 public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

feature the Feature to write.

jsonWriter A Writer to which the Feature should be written.

□ Write a Feature Model to JSON

Throws IOException– When writing fails.

159.11.17 public interface ID
ID used to denote an artifact. This could be a feature model, a bundle which is part of the feature
model or some other artifact.

Artifact IDs follow the Maven convention of having:

• A group ID
• An artifact ID
• A version
• A type identifier (optional)
• A classifier (optional)

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.17.1 public static final String FEATURE_ID_TYPE = "osgifeature"

ID type for use with Features.

159.11.17.2 public String getArtifactId()

□ Get the artifact ID.

Returns The artifact ID.

159.11.17.3 public Optional<String> getClassifier()

□ Get the classifier.

Returns The classifier.

org.osgi.service.feature.annotation Feature Service Specification Version 1.0

Page 92 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

159.11.17.4 public String getGroupId()

□ Get the group ID.

Returns The group ID.

159.11.17.5 public Optional<String> getType()

□ Get the type identifier.

Returns The type identifier.

159.11.17.6 public String getVersion()

□ Get the version.

Returns The version.

159.11.17.7 public String toString()

□ This method returns the ID using the following syntax:

groupId ' : ' art i fact Id (' : ' type (' : ' c lassi f ier)?)? ' : ' vers ion

Returns The string representation.

159.12 org.osgi.service.feature.annotation

Feature Annotations Package Version 1.0.

This package contains annotations that can be used to require the Feature Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

159.12.1 Summary

• RequireFeatureService - This annotation can be used to require the Feature implementation.

159.12.2 @RequireFeatureService
This annotation can be used to require the Feature implementation. It can be used directly, or as a
meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

159.13 References

[1] JSON (JavaScript Object Notation)
https://www.json.org

[2] JSMin (The JavaScript Minifier)
https://www.crockford.com/javascript/jsmin.html

[3] Apache Maven Pom Reference
https://maven.apache.org/pom.html

https://www.json.org
https://www.crockford.com/javascript/jsmin.html
https://maven.apache.org/pom.html

Feature Launcher Service Specification Version 1.0 Introduction

OSGi Compendium Release 8.1 Page 93

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160 Feature Launcher Service
Specification

Version 1.0

160.1 Introduction
The Feature Service Specification on page 71 defines a model to design and declare Complex Applica-
tions and reusable Sub-Components that are composed of multiple bundles, configurations and oth-
er metadata. These models are, however, only descriptive and have no standard mechanism for in-
stalling them into an OSGi framework.

This specification focuses on turning these Features into a running system, by introducing the Fea-
ture Launcher and Feature Runtime. The Feature Launcher takes a Feature definition, obtains a
framework instance for it and then starts the Feature in that environment. The Feature Runtime ex-
tends this capability to a running system, enabling one or more Features to be installed, updated,
and later removed from a running OSGi framework.

The Launcher and Runtime also interact with the Configuration Admin Service, that is, they pro-
vide configuration to the system if it is present in the Feature being launched or installed.

160.1.1 Essentials

• Dynamic - The Feature Runtime dynamically adds, updates and removes Features in a running
system.

• Parameterizable - Feature installation may be customised using local parameters if the Feature
supports it.

• Zero code - The Feature Launcher can launch a framework containing an installed Feature in an
implementation independent way without a user writing any code .

160.1.2 Entities
The following entities are used in this specification:

• Feature - A Feature as defined by the Feature Service Specification on page 71
• Artifact Repository - A means of accessing the installable bytes for bundles in a Feature
• Feature Launcher - A Feature Launcher obtains an OSGi Framework instance and installs a Feature

into it.
• Framework - A running implementation of the OSGi core specification.
• Launch Properties - Framework launching properties defined in a Feature.
• Feature Parameters - Key value pairs that can be used to customise the installation of a Feature.
• Configuration - A configuration for the Configuration Admin service.
• Feature Runtime - A Feature Runtime is an OSGi service capable of installing Features into the run-

ning OSGi framework, removing installed Features from the OSGi framework, and updating an
installed Feature with a new Feature definition.

• Installed Feature - A representation of a Feature installed by the Feature Runtime.
• Installed Configuration - A representation of a Configuration installed by the Feature Runtime.

Features and Artifact Repositories Feature Launcher Service Specification Version 1.0

Page 94 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Figure 160.1 Features Entity overview

FeatureLauncher

FeatureRuntimeArtifactRepositoryFactory

ArtifactRepository Framework

InstalledFeature

InstalledConfiguration

0..n

0..n 0..n

0..n

0..n

160.2 Features and Artifact Repositories
OSGi Features exist either as JSON documents, or as runtime objects created by the Feature Service
API. The primary purpose of a Feature is to define a list of bundles and configurations that should be
installed, however the Feature provides no information about the location of the bundle artifacts. A
key challenge with installing a Feature is therefore finding the appropriate artifacts to install.

The Arti factRepository interface is designed to be implemented by users of the Feature Launcher
Service to provide a way for the Feature Launcher Service to find an installable InputStream of bytes
for a given bundle artifact using the getArt i fact(ID) method. Artifact Repository implementations
are free to use any mechanism for locating the bundle artifact data. If no artifact can be found for
the supplied ID then the implementation of the Artifact Repository should return nul l . If the Artifact
Repository throws an exception then this must be logged by the Feature Launcher Service and then
treated in the same manner as a nul l return value.

160.2.1 The Artifact Repository Factory
In order to support the Zero Code objective of this specification, and to simplify usage for most users,
the Arti factRepositoryFactory provides a factory for commonly used repository types.

160.2.1.1 Obtaining an Artifact Repository Factory

The Artifact Repository Factory is useful both for the Feature Launcher and the Feature Runtime,
and as such it must be easy to access both inside and outside an OSGi framework. The Feature
Launcher Service implementation must provide an implementation of the Artifact Repository Fac-
tory interface. A user of the Artifact Repository Factory service may use the following ways to find
an instance.

When outside OSGi:

• Using the Java ServiceLoader API to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• From configuration, and then using Class.forName , getConstructor() and newInstance()

Feature Launcher Service Specification Version 1.0 Features and Artifact Repositories

OSGi Compendium Release 8.1 Page 95

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• By hard coding the implementation and using the new operator.

When inside an OSGi framework:

• Using the OSGi service registry to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• Using the Java ServiceLoader API and the OSGi Service Loader Mediator to find instances of
org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

• By hard coding the implementation type and using the new operator.

160.2.1.2 Local Repositories

A Local Repository is one that exists on a locally accessible file system. Note that this does not re-
quire that the file system is local, and technologies such as NFS or other network file systems would
still be considered as Local Repositories. The key aspects of a Local Repository are that:

• The root of the repository can be accessed and resolved as a java.nio.f i le .Path or f i le : URI.
• The repository uses [1] The Maven 2 Repository Layout

An Artifact Repository representing a Local Repository can be created using the
createRepository(Path) method, passing in the path to the root of the repository. A NullPointerEx-
ception must be thrown if the path is nul l and an I l legalArgumentException must be thrown if the
path does not exist, or represents a file which is not a directory.

An Artifact Repository representing a Local Repository can also be created using the
createRepository(URI ,Map) method, passing a URI using the f i le scheme which points to the root of
the repository. A NullPointerException must be thrown if the URI is nul l and an I l legalArgumentEx-
ception must be thrown if the path does not exist, or represents a file which is not a directory.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

160.2.1.3 Remote Repositories

A Remote Repository is one that exists with an accessible http or https endpoint for retrieving arti-
fact data. Note that this does not require that the repository is on a remote machine, only that the
means of accessing data is via HTTP requests. The key aspects of a Remote Repository are that:

• The root of the repository can be accessed and resolved as a http or https URI
• The repository uses [1] The Maven 2 Repository Layout

An Artifact Repository representing a Remote Repository can be created using the
createRepository(URI ,Map) method, passing in the uri to the root of the repository. A NullPointerEx-
ception must be thrown if the uri is nul l and an I l legalArgumentException must be thrown if the uri
does not use the http or https scheme.

In addition to the repository URI the user may pass configuration properties in a Map . Implemen-
tations may support custom configuration properties, but those properties should use Reverse Do-
main Name keys. Keys not using the reverse DNS naming scheme are reserved for OSGi use. Imple-
mentations must ignore any configuration property keys that they do not recognise. All implemen-
tations must support the following properties:

• REMOTE_ARTIFACT_REPOSITORY_NAME - The name for this repository
• REMOTE_ARTIFACT_REPOSITORY_USER - The user name to use for authenticating with this

repository
• REMOTE_ARTIFACT_REPOSITORY_PASSWORD - The password to use for authenticating with this

repository
• REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN - A bearer token to use when authenticating

with this repository

Common themes Feature Launcher Service Specification Version 1.0

Page 96 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED - A Boolean indicating that
SNAPSHOT versions are supported. Defaults to true

• REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED - A Boolean indicating that release ver-
sions are supported. Defaults to true

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE - A trust store to use when validating a server
certificate. May be a file system path or a data URI as defined by [2] The Data URI scheme .

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT - The format of the trust store to use
when validating a server certificate.

• REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD - The password to use when vali-
dating the trust store integrity.

Once created this Artifact Repository will search the supplied repository for any requested artifact
data. Implementations are free to optimise checks using repository metadata.

160.3 Common themes
This specification includes support for bootstrapping an OSGi runtime, for ongoing management
of an OSGi runtime, and for merging features. There are many concepts that apply across more than
one of these scenarios, and so they are described here.

160.3.1 Overriding Feature variables
Some Feature definitions include variables which can be used to customise their deployment. These
variables are intended to be set at the point where a Feature is installed, and may contain default val-
ues. To enable these variables to be overridden there are overloaded versions of methods which per-
mit a Map of variables to be provided. The keys in this map must be strings and the values must be
one of the types permitted by the Feature Service Specification on page 71

If a Feature declares a variable with no default value then this variable must be provided. If no value
is provided then the method must fail to launch by throwing a LaunchException

160.3.2 Setting the bundle start levels
An OSGi framework contains a number of bundles which collaborate to produce a functioning ap-
plication. There are times when some bundles require the system to have reached a certain state be-
fore they can be started. To address this use case the OSGi framework has the concept of start levels as
described in the Start Level API Specification chapter of OSGi Core Release 8..

Setting the initial start level for the OSGi framework when bootstrapping can easily be achieved us-
ing the framework launch property org.osgi .f ramework.start level .beginning as defined by the OSGi
core specification.

Controlling the start levels assigned to the bundles in a feature is managed through the use of Fea-
ture Bundle metadata. Specifically the Feature Launcher will look for a Feature Bundle metadata
property named BUNDLE_START_LEVEL_METADATA which is of type integer and has a value be-
tween 1 and 2147483647 inclusive. If the property does not exist then the default start level will
be used. If the property does exist and is not a suitable integer then launching must fail with a
LaunchException .

Setting the default start level for the bundles, and the minimum start level required for an installed
Feature is accomplished by using a Feature Extension named BUNDLE_START_LEVELS with Type
JSON . The JSON contained in this extension is used to configure the default start level for the bun-
dles, and the target start level for the framework. The schema of this JSON is as follows: ### Add
Schema in build

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",

Feature Launcher Service Specification Version 1.0 Common themes

OSGi Compendium Release 8.1 Page 97

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 "$id": "http://www.osgi.org/json.schema/featurelauncher/v1.0.0/bundle-start-levels.json",
 "title": "bundle-start-levels",
 "description": "The definition of the bundle-start-levels feature extension",
 "type": "object",
 "properties": {
 "version": {
 "description": "The version of the Feature Launcher extension",
 "const": "1.0.0"
 },
 "defaultStartLevel": {
 "description": "The default start level for bundles in the feature",
 "type": "integer",
 "minimum": 1,
 "maximum": 2147483647
 },
 "minimumStartLevel": {
 "description": "The minimum required start level for the framework after feature installation",
 "type": "integer",
 "minimum": 1,
 "maximum": 2147483647
 }
 },
 "required": ["version", "defaultStartLevel", "minimumStartLevel"]
}

Setting the default start level for bundles installed by the framework is achieved using the default-
StartLevel property of the JSON extension. This must be an integer greater than zero and less than
Integer.MAX_INT , or the special marker value nul l . A nul l value is used to indicate that the default
start level for newly installed bundles is the current framework start level, or 1 if the current frame-
work start level is 0 . If the value is not valid then a LaunchException must be thrown when attempt-
ing to use the feature.

The minimum final start level for the OSGi framework required by the feature can be set using the
minimumStartLevel property. of the JSON extension. This must be an integer greater than zero and
less than Integer.MAX_INT . If the value is not valid then a LaunchException must be thrown when
attempting to use the feature. This property sets the minimum start level that the OSGi framework
must use to complete the installation of a Feature.

Finally the version property defines the version of the extension schema being used. This can be
used by the implementation to determine whether the Feature is targeting a newer version of the
specification. If the version is not understood by the implementation then a LaunchException must
be thrown when attempting to use the feature.

160.3.3 Feature Decoration
Feature Decoration is a process by which features can be pre-processed before they are installed or
updated. This gives users an opportunity to modify the feature, accept it as is, or block the operation
from proceeding. There are two types of decorator:

• Feature Decorators - called for all operations. Can re-write the bundles, configurations, variables
and extensions present in a feature.

• Feature Extension Handlers - called operations where the feature defines the named extension. Can
re-write the bundles, configurations and variables present in a feature, but not the extensions.

Both types of decorator may pass through the feature unchanged by returning the feature object
passed into them. This will cause the operation to continue as normal. Decorators may also block an
operation from proceeding by throwing an AbandonOperationException . This will cause the opera-
tion to be immediately halted, and an exception thrown to the caller who requested the operation.

160.3.3.1 Building decorated features

Feature objects are expected to be immutable, and therefore a decorator cannot, and should not,
change the feature object that is passed to them. Instead the decorator must create a new feature ob-
ject which includes the decorated content.

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 98 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

To enable this both types of decorator are passed two builders, the first of which implements Base-
FeatureDecorat ionBui lder and the second of which implements DecoratorBui lderFactory .

The former builder is similar to a FeatureBui lder but with three important differences:

• The builder is pre-populated with the information from the existing feature, such that immedi-
ately calling bui ld() would create a feature with identical content to the original.

• Except where explicitly stated the builder configuration methods replace content rather than
adding to it

• Only a limited subset of the feature content can be changed.

The latter builder is similar to a Bui lderFactory but it cannot create FeatureBui lder instances.

By using these two builders a decorated feature can be configured and created. This decorated fea-
ture can then be returned from the decorator. Note that the only valid way to create a decorated fea-
ture is by using the builder. Any attempt to return a feature object which is not either:

• The original feature object.
• The object returned by bui ld()

is an error and will result in the operation being abandoned.

160.3.3.2 Using Decorators

Decorators may be included using one of the relevant builder methods for a launch or runtime oper-
ation:

• withDecorator(FeatureDecorator)
• withExtensionHandler(Str ing,FeatureExtensionHandler)
• withDecorator(FeatureDecorator)
• withExtensionHandler(Str ing,FeatureExtensionHandler)

When registering a FeatureExtensionHandler the name of the extension to be handled must be
passed, and cannot be nul l . This defines the name of the extension that the Feature Extension Han-
dler will be used to process.

If multiple FeatureDecorator instances are registered then they will be called in the order that they
were added.

If multiple FeatureExtensionHandler instances are registered for the same extension name then
the earlier instances will be discarded. It is not possible to register more than one Feature Extension
Handler for a single extension.

160.4 The Feature Launcher
The FeatureLauncher is the main entry point for creating a running OSGi framework containing the
bundles and configurations defined in a Feature. As such the Feature Launcher is primarily designed
for use outside of an OSGi framework.

To support usage in a non-OSGi environment implementations of the Feature Launcher Service
must register the following implementation classes with the Java ServiceLoader API, and any neces-
sary module metadata.

• org.osgi .service.featurelauncher.FeatureLauncher
• org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory

Feature Launcher Service Specification Version 1.0 The Feature Launcher

OSGi Compendium Release 8.1 Page 99

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.4.1 Obtaining and configuring a Feature Launcher
A Feature Launcher Service implementation must provide an implementation of the Feature
Launcher interface. A user of the Feature Launcher service may use the following ways to find this
class and create an instance:

• Using the Java ServiceLoader API to find instances of
org.osgi .service.featurelauncher.FeatureLauncher

• From configuration, and then using Class.forName , getConstructor() and newInstance()
• By hard coding the implementation type and using the new operator.

Once instantiated the Feature Launcher may be supplied with a Feature, either as a Read-
er providing access to the JSON text of a Feature document or a parsed Feature to create a
FeatureLauncher.LaunchBui lder . The Launch Builder can be configured in a fluent manner us-
ing the withConfigurat ion(Map) , withVariables(Map) , withFrameworkPropert ies(Map) and
withRepository(Art i factRepository) methods. Configuration properties for the Feature Launcher are
implementation specific, and any unrecognised property names should be ignored. Artifact Reposi-
tory instances may be created by the user using as described in The Art i fact Repository Factory on
page 94, or using custom implementations.

160.4.1.1 Thread Safety

Instances of the Feature Launcher and Launch Builder are not required to be Thread Safe, and
should not be shared between threads. Changing the configuration of a Launch Builder instance on-
ly affects that instance, and not any other instances that exist.

160.4.2 Using a Feature Launcher
Once a configured Launch Builder instance has been created the launchFramework() method can be
used to launch an OSGi framework containing the supplied Feature. The Feature Launcher will then
return a running Framework instance representing the launched OSGi framework and the Feature
that it contains. If an error occurs creating the framework, or locating and installing any of the fea-
ture bundles, then a LaunchException must be thrown.

Once the caller has received their framework instance they may carry on with other work, or they
may wait for the OSGi framework to stop using the waitForStop() method.

160.4.2.1 Providing Framework Launch Properties

Framework launch properties are key value pairs which are passed to the OSGi framework as it is
created. They can control many behaviours, including operations which happen before the frame-
work starts, meaning that is not always possible to set them after startup.

Feature definitions that require particular framework launch properties can define them using a
Feature Extension named FRAMEWORK_LAUNCHING_PROPERTIES . The Type of this Feature Exten-
sion must be TEXT , where each entry is in the form key=value All implementations of the Feature
Launcher must support this extension, and use it to populate the Framework Launch Properties.

In addition to Framework Launch properties defined inside the Feature, users of the Feature Launch-
er can add and override Framework Launch Properties using one of the withFrameworkPropert ies
method that permits a Map of framework properties to be provided. Any key value pairs defined in
this map must take precedence over those defined in the Feature. A key with a nul l value must result
in the removal of a key value pair if it is defined in the Feature.

160.4.2.2 Selecting a framework implementation

When defining a feature it is not always possible to be framework independent. Sometimes specific
framework APIs, or licensing restrictions, will require that a particular implementation is used. In
this case a Feature Extension named LAUNCH_FRAMEWORK with Type ARTIFACTS can be used to list
one or more artifacts representing OSGi framework implementations.

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 100 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The list of artifacts is treated as a preference order, with the first listed artifact being used if avail-
able, and so on, until a framework is found. If a listed artifact is not an OSGi framework implemen-
tation then the Feature Launcher must log a warning and continue on to the next artifact in the list.
If the Kind of the feature is MANDATORY and none of the listed artifacts are available then launching
must fail with a LaunchException .

The Feature Launcher implementation may identify that an artifact is an OSGi framework imple-
mentation in any way that it chooses, however it must recognise framework implementations that
provide the Framework Launch API using the service loader pattern, as described in the Launching
and Controlling a Framework section of OSGi Core Release 8.

160.4.2.3 A simple example

The following code snippet demonstrates a simple example of using the Feature Launcher to start
an OSGi framework containing one or more bundles.

// Load the Feature Launcher
ServiceLoader<FeatureLauncher> sl = ServiceLoader.load(FeatureLauncher.class);
FeatureLauncher launcher = sl.iterator().next();

// Set up a repository
ArtifactRepository localRepo = launcher.createRepository(Paths.get("bundles"));

// Launch the framework
Framework fw = launcher
 .launch(Files.newBufferedReader(Paths.get("myfeature.json")))
 .withRepository(localRepo)
 .launchFramework();

fw.waitForStop(0);

160.4.3 The Feature Launching Process
The following section defines the process through which the Feature Launcher must locate, initial-
ize and populate an OSGi framework when launching a feature. Unless explicitly stated implemen-
tations may perform one or more parts of this process in a different order to that described in the
specification.

160.4.3.1 Feature Decoration

The first stage of launching is to determine the feature that should be launched by running the con-
figured feature decoration handlers.

First the Feature Launcher must execute any registered FeatureDecorator instances in the order that
they were registered. The feature returned by each decorator is used as input to the next.

Once the decoration is complete the Feature Launcher must iterate through the Feature Extensions
defined by the feature. For each Feature Extension the launcher must:

1. Identify the Feature Extension Handler for the named extension.
2. If no Feature Extension Handler can be found, and the extension name is one of:

• LAUNCH_FRAMEWORK
• FRAMEWORK_LAUNCHING_PROPERTIES
• BUNDLE_START_LEVELS

then create an empty Feature Extension Handler which may validate the FeatureExtension.Type
of the extension and must return the original feature.

Feature Launcher Service Specification Version 1.0 The Feature Launcher

OSGi Compendium Release 8.1 Page 101

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

3. If no Feature Extension Handler has been found or created then check the
FeatureExtension.Kind of the extension. If it is MANDATORY then the launch fails with a
LaunchException

4. Otherwise call the Feature Extension Handler, and use its result as input when calling any subse-
quent Feature Extension Handlers.

If any of the decorators throws an AbandonOperationException then the launch operation must im-
mediately fail.

160.4.3.2 Locating a framework implementation

Before a framework instance can be created the Feature Launcher must identify a suitable imple-
mentation using the following search order:

1. If any provider specific configuration has been given to the Feature Launcher implementation
then this should be used to identify the framework.

2. If the Feature declares an Extension LAUNCH_FRAMEWORK then the Feature Launcher imple-
mentation must use the first listed artifact that can be found in any configured Artifact Reposi-
tories, as described in Select ing a framework implementation on page 99.

3. If no framework implementation is found in the previous steps then the Feature Launcher
implementation must search the classpath using the Thread Context Class Loader, or, if the
Thread Context Class Loader is not set, the Class Loader which loaded the caller of the Feature
Launcher's launch method. The first suitable framework instance located is the instance that
will be used.

4. In the event that no suitable OSGi framework can be found by any of the previous steps then
the Feature Launcher implementation may provide a default framework implementation to be
used.

If no suitable OSGi framework implementation can be found then the Feature Launcher implemen-
tation must throw a LaunchException .

160.4.3.3 Creating a Framework instance

Once a suitable framework implementation has been located the Feature Launcher imple-
mentation must create and initialize a framework instance. Implementations are free to
use implementation specific mechanisms for framework implementations that they recog-
nise. The result of this initialization must be the same as if the Feature Launcher used the
org.osgi .f ramework. launch.FrameworkFactory registered by the framework implementation to cre-
ate the framework instance.

When creating the framework any framework launch properties defined in the Feature must be
used. These are defined as described in Providing Framework Launch Propert ies on page 99 and
must include any necessary variable replacement as defined by Overr iding Feature var iables on
page 96.

Once instantiated the framework must be initialised appropriately so that it has a valid BundleCon-
text . Once initialised the framework is ready for the Feature Launcher implementation to begin
populating the framework.

160.4.3.4 Installing bundles and configurations

The Feature Launcher must iterate through the list of bundles in the feature, installing them in the
same order that they are declared in the feature. If bundle start levels have been defined, as described
in Sett ing the bundle start levels on page 96, then the Feature Launcher must ensure that the
start level is correctly set for each installed bundle. If no start level metadata or extension is defined
then all bundles are installed with the framework default start level.

If the installation of a bundle fails because it is determined by the framework to be a duplicate of an
existing bundle then the Feature Launcher must treat the installation as a success. The start level of

The Feature Launcher Feature Launcher Service Specification Version 1.0

Page 102 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

such a bundle must be set to the lower of its current value and the start level defined for the feature
bundle that failed to install.

If a Feature defines one or more Feature Configurations then these cannot be guaranteed to be made
available until the Configurat ionAdmin service has been registered. A Feature Launcher implemen-
tation may provide an implementation specific way to pre-register configurations, however in gen-
eral the Feature Launcher should listen for the registration of the Configurat ionAdmin service and
immediately create the defined configurations when it becomes available. Configurations must be
created in the same order as they are defined in the Feature.

If the CONFIGURATION_TIMEOUT configuration property is set to 0 , and one or more Feature
Configurations are defined in the Feature being installed, then the implementation must throw a
LaunchException unless it is capable of pre-registering those configurations in an implementation
specific way.

160.4.3.5 Starting the framework

Once all of the the bundles listed in the feature are installed, and any necessary configuration listen-
er is registered, the implementation must start the OSGi framework. This action will automatically
start the installed bundles as defined by the initial start level of the framework, and the start levels
of the installed bundles.

The Feature Launcher implementation must delay returning control to the caller until all configu-
rations have been created, subject to the timeout defined by CONFIGURATION_TIMEOUT . The de-
fault timeout is 5000 milliseconds, and it determines the maximum length of time that the Feature
Launcher implementation should wait to begin creating the configurations. A value of -1 indicates
that the Feature Launcher implementation must not wait, and must continue immediately, even if
the configurations have not yet been created. If it is not possible to begin before the timeout expires
then a LaunchException must be thrown.

Finally, if the minimumStartLevel has been set by the BUNDLE_START_LEVELS extension then the
Feature Launcher implementation must check the current start level of the framework. If the cur-
rent start level is less than the value of minimumStartLevel then the framework's start level must be
set to this value.

Once the start process is complete the Framework instance must be returned to the caller.

The following failure modes must all result in a LaunchException being thrown:

• A bundle fails to resolve. If one of the installed bundles fails to resolve this is an error unless the
Feature is not complete. For Features that are not complete resolution failures must be logged,
but not cause a failure.

• A resolved bundle fails to start. If one of the resolved bundles fails to start this is an error unless
the bundle is a fragment or an extension bundle, which the Feature Launcher should not attempt
to start.

• A configuration cannot be created. If a configuration cannot be created then this must result in a
start failure

If a launching failure is triggered by an exception, for example a BundleException then this must be
set as the cause of the LaunchException that is thrown.

160.4.3.6 Cleanup after failure

If the Feature Launcher implementation fails to launch a feature then any intermediate objects
must be properly closed and discarded. For example if an OSGi framework instance has been created
then it must be stopped and discarded.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 103

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.5 The Feature Runtime Service
The Feature Runtime Service can be thought of as an equivalent of the Feature Launcher for an ex-
isting, running OSGi framework. The Feature Runtime Service therefore does not offer any mech-
anism for launching a framework, but instead allows one or more features to be installed into the
running framework. As an OSGi framework is a dynamic environment the Feature Runtime Service
also provides snapshots describing the currently installed Features, allows installed Features to be
updated, and allows Features to be removed from the system.

An important difference between the Feature Launcher and Feature Runtime Service is that because
the Feature Runtime Service allows multiple Features to be installed it must be able to identify and
resolve simple conflicts. For example if two Features include the same bundle at different versions
then the resolution may be to install only the higher version, or both versions.

160.5.1 Using the Feature Runtime
The Feature Runtime must be registered as a service in the service registry. Management agents that
wish to install, manage or introspect Features in the framework must obtain this service. The Fea-
ture Service Runtime service must advertise the FeatureRuntime interface.

160.5.1.1 Thread Safety

Instances of the Feature Runtime are Thread Safe, regardless of whether the service is implemented
as a singleton or otherwise. Any FeatureRuntime.Operat ionBui lder instances created by the Feature
Runtime are not thread safe and must not be shared between threads.

Despite the Operation Builders not being Thread Safe the underlying Feature Runtime must re-
main Thread Safe, specifically if two Operation Builders complete at the same time then these calls
should be handled sequentially such that there are never partially deployed Features present when
installing, updating or removing a Feature.

160.5.1.2 Introspecting the installed Features

An important role for any management agent is being able to introspect the system to discover its
current state. The Feature Runtime enables this through the getInstal ledFeatures() method, which
returns a snapshot of the current state of the system.

The returned list of snapshots contains one Instal ledFeature entry for each installed Feature, in the
order that they were installed, and may be empty if no Features have been installed. If the frame-
work was started using a Feature Launcher from the same implementation as the Feature Runtime
then the Feature Runtime may choose to represent the launched Feature in the snapshot list. If the
launched Feature is included in the snapshot list then it must set is Init ia lLaunch() to true . Launch
features cannot be removed or updated by the Feature Runtime, and any attempt to do so must
throw a FeatureRuntimeException

Each Installed Feature provides:

• The ID of the Feature from getFeatureId()
• The List of Instal ledBundle from getInstal ledBundles() listing the bundles installed by the Run-

time on behalf of the Feature.
• The List of Instal ledConfigurat ion from getInstal ledConfigurat ions() listing the configurations

installed by the feature.

The Instal ledBundle snapshots each represent a bundle installed by the Feature Runtime on behalf
of the Feature. The Installed Bundle contains the following information:

• getBundleId() - The ID of the bundle that was installed.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 104 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• getAl iases() - A Collect ion of one or more IDs that are known to correspond to this bundle. This
list will always contain the bundleId and may contain additional IDs if their attempted installa-
tion resulted in a collision.

• getBundle() - The actual bundle that was installed into the runtime.
• getStartLevel() - The calculated start level for this bundle. Note that this start level may have

been affected by other features.
• getOwningFeatures() - A List of the ids of the features which own the installed bundle. Owner-

ship of a bundle is tracked by the Feature Runtime, and it is used to identify when the same bun-
dle forms part of more than one Feature. Bundles that are owned by more than one Feature will
not be removed until all of the Features that own them are removed.

In the case where a bundle was not installed by the Feature Runtime, but later became owned by
an installed Feature, that bundle will also be owned by the EXTERNAL_FEATURE_ID to indicate
that they will not be removed if the other owning Feature is removed.

In addition to bundles Features can contain configurations. The Instal ledConfigurat ion snapshots
each represent a configuration created by the Feature Runtime on behalf of the Feature. The In-
stalled Configuration contains the following information:

• getPid() - The configuration pid of this configuration.
• getFactoryPid() - The factory pid of this configuration, or an empty Optional if the configuration

is not a factory configuration.
• getPropert ies() - The merged configuration properties that result from the full set of installed

Features contributing to this configuration. Note that there is no dynamic link to Configuration
Admin and so any configuration changes made outside the Feature Runtime will not be reflected.

• getOwningFeatures() - A List of the ids of the features which own the configuration. Ownership
of a configuration is tracked by the Feature Runtime, and it is used to identify when the same
configuration, as defined by its pid, forms part of more than one Feature. Configurations that are
owned by more than one Feature will not be removed until all of the Features that own them are
removed.

In the case where a configuration was not installed by the Feature Runtime, but lat-
er became owned by an installed Feature, that configuration will also be owned by the
EXTERNAL_FEATURE_ID to indicate that they will not be deleted if the other owning Feature is re-
moved.

160.5.1.3 Installing a feature

Installing a Feature uses one of the instal l methods present on the Feature Runtime.
These methods allow the caller to provide the Feature to be installed and return an
FeatureRuntime. Instal lOperat ionBui lder to allow the caller to configure their installation opera-
tion. Configuration of operations includes:

• Sett ing var iable overr ides on page 105.
• Sett ing the avai lable Art i fact Repositor ies on page 105
• Feature Decoration on page 97
• Adding Merging strategies on page 105

Once the operation is fully configured then the caller uses the instal l () method to begin the installa-
tion. The end result of installing a Feature is that all of the bundles listed in the Feature are installed,
all of the Feature Configurations have been created, all bundles have been marked as persistently
started, and the framework start level is at least the minimum level required by the Feature.

Start levels for the bundles in the Feature may be controlled as described in Sett ing the bundle start
levels on page 96. If any bundles are installed with a start level higher than the current frame-
work start level then they will be marked persistently started but will not start until the framework
start level is changed.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 105

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

In more complex cases, where multiple features are installed with overlapping bundles or configu-
rations then Merging strategies on page 105 will be applied to determine which bundles are in-
stalled, and what configuration properties will be used when creating or updating a configuration.

If a failure occurs during the installation of a Feature then the Feature Runtime must make every ef-
fort to return the system to its pre-existing state. After a failure no new bundles should be installed,
any altered configurations returned to their previous states, and the framework start level should be
the same as it was prior to the failed installation.

160.5.1.4 Setting the available Artifact Repositories

As with the Feature Launcher, in order to successfully locate the bundles listed in a feature the Fea-
ture Runtime must have access to one or more Artifact Repositories capable of locating the bundles.
These Artifact Repositories are configured into each Operation Builder by the user.

A configured Feature Runtime will typically include one or more pre-defined Artifact Repositories.
These pre-defined repositories are available to view via the getDefaultRepositor ies() . By default all
Operation Builders will have access to these repositories when completing. This behaviour can be
changed using the useDefaultRepositor ies(boolean) method.

Additional Artifact Repositories can be added to an Operation Builder by calling the
addRepository(Str ing,Art i factRepository) method. The supplied name is used to identify the reposi-
tory. If the supplied name is already used for an existing Artifact Repository then it will be replaced
or, if the supplied Artifact Repository is nul l , removed. A named Artifact Repository added in this
way will override a default Artifact Repository with the same name.

160.5.1.5 Setting variable overrides

As described in Overr iding Feature var iables on page 96 a feature may define zero or more over-
ridable properties which can be used to alter the deployment of the feature. These properties may
be configured into each Operation Builder by calling the withVariables(Map) method. The supplied
Map contains the keys and values that will override the variables in the Feature.

160.5.1.6 Merging strategies

Merge operations occur when two or more features reference the same, or similar, items to be in-
stalled. The purpose of a merge operation is to avoid unnecessary duplication, and to resolve con-
flicts.

Merging potentially applies whenever a Feature is installed, updated or removed, and may result in
different outcomes depending on the strategy used. All runtime merge functions therefore receive a
MergeOperationType indicating which type of operation is currently running.

160.5.1.6.1 Merging Bundles

Features may define bundles to be installed by including Feature Bundle entries. If two or more Fea-
tures include Feature Bundles which have IDs with the same group id and artifact id, but which
are not the same, then this situation requires a merge to resolve the possible conflict. Determining
whether two IDs are the same is accomplished by checking whether they return equal strings from
toStr ing() .

When a possible conflict is detected the Feature Runtime must call a RuntimeBundleMerge to iden-
tify the correct actions to take. These actions include:

• Whether to install the candidate Feature Bundle or not
• Whether to re-designate the ownership of any existing Installed Bundles
• Whether to remove any existing Feature Bundles

Although the obvious time for a bundle merge operation to occur is during an INSTALL operation,
merges may also occur during UPDATE and REMOVE operations. During an UPDATE the existing
bundles from the Feature being updated will remain available so that the updated Feature may be

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 106 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

merged into the existing runtime. During a REMOVE a merge will occur to allow Feature ownership
to be re-allocated if a shared bundle is being removed.

Merges are resolved by the mergeBundle method which receives:

• The type of the operation, one of INSTALL , UPDATE or REMOVE .
• The Feature being operated on
• The Feature Bundle which requires merging
• A Collect ion of Installed Bundles representing the currently installed bundles which have an

overlapping groupId and art i fact Id . Note that in the case of an UPDATE or REMOVE operation the
Feature being updated or removed will not be present in the collection of owning features for
any of the Installed Bundles.

• A List of RuntimeBundleMerge.FeatureBundleDefinit ion representing the existing Features
which form part of the merge operation. Note that in the case of an UPDATE or REMOVE opera-
tion the Feature Bundle being updated or removed will not be present in the list. Entries in the
list are present in the order that the Features were installed into the runtime.

The result of the merge function is a Stream of RuntimeBundleMerge.BundleMapping . Each Bun-
dle Mapping links a bundle ID to List of feature IDs. The Bundle Mapping's bundle id must only be a
bundleId found in the list of Installed Bundles or, in the case of an INSTALL or UPDATE operation, the
id of the Feature Bundle being merged. The mapped Feature ids must contain the id of every Feature
in the supplied Feature Bundle Definitions, and, in the case of an INSTALL or UPDATE operation, the
id of the Feature being merged. If the id of any Installed Bundle is not present in the returned Stream
then that bundle will be removed as part of the ongoing operation. If the same bundle id is present
more than once the the two mappings will be combined using the union of the mapped Feature ids.

A simple example of a merge strategy which combines configurations by upgrading Features to the
highest compatible version could be implemented as follows:

public Map<ID,List<ID>> mergeBundle(MergeOperationType operation,
 Feature feature, FeatureBundle toMerge,
 List<InstalledBundle> installedBundles,
 Map<FeatureBundle,Feature> existingFeatureBundles) {

 Map<ID,List<ID>> result;

 if (operation == MergeOperationType.REMOVE) {
 // Just keep everything the same
 result = installedBundles.stream()
 .filter(i -> !i.getOwningFeatures().isEmpty())
 .collect(Collectors.toMap(i -> i.getBundleId(),
 i -> i.getOwningFeatures()));
 } else {
 // Find the Installed bundles we might replace
 Version v = RuntimeMerges.getOSGiVersion(toMerge.getID());

 List<InstalledBundle> sameMajor = new ArrayList<>();
 List<InstalledBundle> differentMajor = new ArrayList<>();

 installedBundles.forEach(i -> {
 if (i.getBundle().getVersion().getMajor() == v.getMajor()) {
 sameMajor.add(i);
 } else {
 differentMajor.add(i);
 }

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 107

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 });

 // Bundles with a different major version stay the same
 result = differentMajor.stream()
 .filter(i -> !i.getOwningFeatures().isEmpty())
 .collect(Collectors.toMap(i -> i.getBundleId(),
 i -> i.getOwningFeatures()));

 // Find the biggest existing version and see if it's bigger than v
 Optional<InstalledBundle> max = sameMajor.stream()
 .max((a, b) -> a.getBundle().getVersion()
 .compareTo(b.getBundle().getVersion()))
 .filter(m -> m.getBundle().getVersion().compareTo(v) >= 0);

 // Use the old version if it's bigger, or the new if not
 ID key = max.isPresent() ? max.get().getBundleId() : toMerge.getID();

 Stream<ID> featureIds = sameMajor.stream()
 .flatMap(i -> i.getOwningFeatures().stream());

 result.put(key,
 Stream.concat(Stream.of(feature.getID()), featureIds)
 .collect(Collectors.toList()));
 }
 return result;
}

160.5.1.6.2 Merging Configurations

Features may define configurations by including Feature Configuration entries. If two or more Fea-
tures include properties for the same configuration PID then this situation requires a merge to re-
solve the conflict.

Merges are resolved by a RuntimeConfigurat ionMerge which receives:

• The type of the operation, one of INSTALL , UPDATE or REMOVE .
• The Feature being operated on
• The Feature Configuration which requires merging
• The Installed Configuration representing the current state of the configuration. Note that in

the case of an UPDATE or REMOVE operation the Feature being updated or removed will not be
present in the list of owning features.

• A List of RuntimeConfigurat ionMerge.FeatureConfigurat ionDefinit ion representing the existing
Features which form part of the merge operation. Note that in the case of an UPDATE or REMOVE
operation the Feature Configuration being updated or removed will not be present in the list. En-
tries in the list are present in the order that the Features were installed into the runtime.

The result of the merge function is a map of configuration properties that should be used to update
the configuration. If the map is nul l then the configuration should be deleted.

A simple example of a merge strategy which combines configurations by overlaying each in turn
and ignoring nul l configurations could be implemented as follows:

public Map<String,Object> mergeConfiguration(MergeOperationType operation,
 Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration,
 List<FeatureConfigurationDefinition> existingFeatureConfigurations) {

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 108 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 boolean addedSomething = false;

 Map<String,Object> result = new HashMap<>();

 for (FeatureConfigurationDefinition fcd : existingFeatureConfigurations) {
 FeatureConfiguration fc = fcd.getFeatureConfiguration();
 if(fc.getValues() != null) {
 result.putAll(fc.getValues());
 addedSomething = true;
 }
 }

 if(operation != MergeOperationType.REMOVE && toMerge.getValues() != null) {
 result.putAll(toMerge.getValues());
 addedSomething = true;
 }

 return addedSomething ? result : null;
}

160.5.1.7 Removing a Feature

Removing a feature from the Feature Runtime Service uses the remove(ID) method to uninstall and
remove a feature from the framework. Removing a feature is a comparatively simple operation, and
therefore does not require the configuration of an FeatureRuntime.Operat ionBui lder .

Once the remove method returns the feature will have been removed from the Feature Runtime,
and any links to installed bundles and configurations will have been removed. If this leaves any in-
stalled bundles or installed configurations with no owners then these will be uninstalled or deleted
from the system as appropriate.

If a failure occurs during the removal of a feature then the Feature Runtime must make every effort
to fully remove the feature, for example by continuing to remove installed bundles that no longer
have any owners. Exceptions that occur must be logged, and upon completion the Feature Runtime
must throw a FeatureRuntimeException which indicates the incomplete removal.

It is not an error to remove a feature which does not exist in the Feature Runtime and this must re-
turn without error, and without altering the state of the system. It is an error to attempt to remove
any feature that returns true for is Init ia lLaunch() , and any attempt to do so must result in a Feature-
RuntimeException .

160.5.1.8 Updating a Feature

Updating a Feature uses one of the update methods present on the Feature Runtime. These methods
allow the caller to indicate which feature should be updated, and provider the new Feature defini-
tion to replace it with. The methods return an FeatureRuntime.UpdateOperationBui lder to allow
the caller to configure their update operation. Configuration of operations includes:

• Sett ing var iable overr ides on page 105.
• Sett ing the avai lable Art i fact Repositor ies on page 105
• Feature Decoration on page 97
• Adding Merging strategies on page 105

Once the operation is fully configured then the caller uses the update() method to begin the up-
date. The end result of updating a Feature is that all of the bundles listed in the new Feature are in-
stalled, all of the Feature Configurations in the new Feature have been created, all bundles have
been marked as persistently started, and the framework start level is at least the minimum level re-
quired by the new Feature. In addition, any bundles and configurations from the old Feature that are

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 109

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

not present in the new Feature will have been removed, and any configurations present in both the
old and new Features will have been updated with new any new content.

At a high level an update operation is therefore superficially similar to performing a remove opera-
tion followed by an instal l operation. The key difference, however, is that any bundles and configu-
rations shared by both features, or identified by a merge strategy, will not be removed, and instead
will become owned by the new Feature.

As for installation, start levels for the bundles in the new Feature will be determined as described in
Sett ing the bundle start levels on page 96. If any bundles are installed with a start level high-
er than the current framework start level then they will be marked persistently started but will not
start until the framework start level is changed.

Where the feature update includes overlapping bundles or configurations then Merging strategies
on page 105 will be applied to determine which bundles are installed, and what configuration
properties will be used when creating or updating a configuration.

If a failure occurs during the update of a Feature then the Feature Runtime must make every effort
to return the system to its pre-existing state. After a failure no new bundles should be installed, any
altered configurations returned to their previous states, and the framework start level should be the
same as it was prior to the failed installation.

160.5.2 The Feature Runtime Behaviour
The following section provides normative requirements for the behaviour of the Feature Runtime
when it is used. This includes the necessary end states after installation, update and removal of Fea-
tures.

160.5.2.1 The Feature installation process

The Feature Installation process has four main phases:

• The feature decoration phase, where the Feature is decorated and validated
• The bundle installation phase, where Feature bundles are installed
• The configuration creation phase, where Feature Configurations are created
• The Feature Start phase, where Bundles are started.

The feature decoration phase must complete before any other phases can begin. The the bundle in-
stallation phase and the configuration creation phase may happen in any order, or even with inter-
leaved steps, however the Feature Start phase must not begin until the bundle installation and con-
figuration creation phases are complete.

160.5.2.1.1 Feature Decoration

The first stage of the operation is to determine the feature that should be used by running the con-
figured feature decoration handlers.

First the Feature Runtime must execute any registered FeatureDecorator instances in the order that
they were registered. The feature returned by each decorator is used as input to the next.

Once the decoration is complete the Feature Runtime must iterate through the Feature Extensions
defined by the feature. For each Feature Extension the Feature Runtime must:

1. Identify the Feature Extension Handler for the named extension.
2. If no Feature Extension Handler can be found, and the extension name is one of:

• LAUNCH_FRAMEWORK
• FRAMEWORK_LAUNCHING_PROPERTIES
• BUNDLE_START_LEVELS

then create an empty Feature Extension Handler which may validate the FeatureExtension.Type
of the extension and must return the original feature.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 110 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

3. If no Feature Extension Handler has been found or created then check the
FeatureExtension.Kind of the extension. If it is MANDATORY then the operation fails with a Fea-
tureRuntimeException

4. Otherwise call the Feature Extension Handler, and use its result as input when calling any subse-
quent Feature Extension Handlers.

If any of the decorators throws an AbandonOperationException then the operation must immedi-
ately fail.

160.5.2.1.2 Bundle Installation

When a feature is being installed the Feature Runtime identifies the bundles to be installed. The Fea-
ture Runtime also gathers the set of bundles that are already installed, and then computes the over-
lap between these. Bundles are deemed to overlap if they have the same group id, artifact id, type
and classifier but they may differ in version.

If the overlap list contains entries which overlap exactly, that is they have the same version in the
runtime and the Feature being installed, then those bundles are removed from the list of bundles
to be installed and the existing bundles are marked as owned by the Feature being installed. If the
marked bundles were not previously owned by any other feature then they also marked as owned
by the EXTERNAL_FEATURE_ID to indicate that they will not be removed if the Feature being in-
stalled is removed.

Any remaining overlap entries are processed according to the merge strategy for the feature, as de-
scribed in Merging Bundles on page 105. The final list of bundles to install, which excludes any
already installed bundles, is then installed in the same order as it was defined by the feature. Each
bundle in the feature, including bundles that were already installed, is then marked as owned by the
installing feature.

If the installation of a bundle fails because it is determined by the framework to be a duplicate of an
existing bundle then the Feature Runtime must treat the installation as a success and add the ID as
an alias for the existing Installed Bundle. The start level of such a bundle must be set to the lower of
its current value and the start level defined for the feature bundle that failed to install.

Once the installation of bundles is complete the Feature Runtime must uninstall any bundles which
were identified for removal as part of any merge processes.

160.5.2.1.3 Configuration Creation

As part of the initial Feature installation the Feature Runtime must also process and create any Fea-
ture Configurations that are defined in the Feature. Feature Configurations cannot be guaranteed to
be made available until a Configurat ionAdmin service has been registered. A Feature Runtime imple-
mentation should therefore listen for the registration of a Configurat ionAdmin service and immedi-
ately create or update any pending configurations when it becomes available. Configurations must
be created or updated in the same order as they are defined in the Feature.

If the same configuration, as identified by its configuration pid, is defined in one or more existing
installed Features then the configuration properties to be used are determined by merging the previ-
ous configuration properties with the new properties defined in the Feature, as described in Merging
Configurations on page 107. If at the point where the FeatureRuntime attempts to create or up-
date a Feature Configuration there are already configuration properties defined in Configurat ionAd-
min then these must be ignored and replaced using updateIfDifferent(Dict ionary) unless the Con-
figurat ion is marked as READ_ONLY . If a READ_ONLY configuration does exist then the Feature Run-
time must log a warning and skip that configuration.

160.5.2.1.4 Feature Start

Once all of the bundles listed by the feature are installed then the bundles' start levels are assigned
as described in Sett ing the bundle start levels on page 96. This includes any pre-existing bun-
dles and the results of any merge operations. If no start level configuration is defined in the fea-

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 111

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ture for a particular bundle then the start level for that bundle is set to the current start level of the
framework.

The Feature Runtime must then identify the lowest start level referenced in the Feature, and repeat-
edly run through the list of bundles, in the order that they are defined in the Feature, looking for
bundles which match the identified start level. For each bundle the Feature Runtime must:

• If the bundle was installed in the Bundle Installation phase then set the start level for the bundle.
• If the bundle was already installed then update the start level for the bundle if, and only if, the

new start level is lower than the existing start level.
• Mark the bundle as persistently started unless it is a fragment bundle.

The Feature Runtime must then identify the next lowest start level referenced in the Feature and re-
peat this process until all bundles have been persistently started. Once this process is complete then
the framework start level must be increased to the minimum start level required by the Feature, or
returned to the original framework start level if this is higher and was decreased as part of Merging
Bundles on page 105.

160.5.2.1.5 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being installed is already known to the Feature Runtime. This must be treated as a
failure as the configuration of the Instal lOperat ionBui lder may not be the same as the previous
installation. The Feature Runtime must make no changes and immediately throw a FeatureRun-
timeException .

• A Feature Bundle cannot be found by any configured Arti factRepository .
• A BundleException is thrown during Bundle Instal lat ion on page 110.
• A BundleException is thrown during Feature Start on page 110.
• A Feature Configuration cannot be created by the Configurat ionAdmin service.
• An Exception is thrown by any configured Arti factRepository , RuntimeBundleMerge or Run-

timeConfigurat ionMerge .

In all cases the first exception must be treated as a failure, with the installation process halting im-
mediately. The feature must then be removed from the runtime in a similar manner to calling re-
move for the feature id. Once the feature removal is complete the failure may be used in creating the
FeatureRuntimeException that must be thrown by this method.

160.5.2.2 The Feature removal process

The Feature removal process has four main phases:

• The feature removal phase, where the feature is removed from the Feature Runtime.
• The bundle stop phase, where Installed Bundles without owners are stopped.
• The configuration deletion phase, where Installed Configurations without owners are removed
• The bundle removal phase, stopped bundles are uninstalled

The the feature removal and bundle stop phases may happen in any order, or even with interleaved
steps. The same is true for the configuration deletion phase and the bundle removal phase, however
these phases must not begin until the bundle stop phase is complete.

160.5.2.2.1 Feature Removal

Feature removal is a simple operation which removes any reference to the Installed Feature from
the Feature Runtime. This includes the list of installed features, and the ownership lists of any In-
stalled Bundles or Installed configurations in the Feature Runtime. After removal is complete the ID
of the removed feature should not appear anywhere in the Feature Runtime.

The Feature Runtime Service Feature Launcher Service Specification Version 1.0

Page 112 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Installed Bundles and Installed Configurations which have zero owners after the removal of the
feature are now considered eligible for removal. Their removal processes are described in the next
phases.

160.5.2.2.2 Bundle Stop

The Feature Runtime must identify the highest start level set by the list of Installed Features, exclud-
ing the Feature being removed. If no start level is defined by this list of features then no action is tak-
en, otherwise the framework start level is set to the newly identified start level.

The list of bundles eligible to be stopped, as determined in Feature Removal on page 111, is used
to peristently stop any remaining bundles. Bundles that are eligible for removal are stopped in the
reverse order in which they were started by Feature Start on page 110. This is accomplished by
stopping the bundles with the highest start level first, using the reverse order of declaration in the
feature where the start level is the same. If an eligible bundle is already stopped due to its start level
then it must still be persistently stopped.

160.5.2.2.3 Configuration Removal

Once the Bundle Stop on page 112 phase has completed the Feature Runtime may begin remov-
ing configurations that are eligible. As with bundles, configurations become eligible for removal if
they are no longer owned by any feature. Eligible configurations must be removed in the reverse or-
der of creation, that is the reverse order that they were listed in the feature being removed.

160.5.2.2.4 Bundle Removal

Once the Bundle Stop on page 112 phase has completed the Feature Runtime may begin unin-
stalling bundles from the OSGi framework. These bundles must only be eligible bundles identified
and stopped as part of the previous phase. Bundles are uninstalled in reverse installation order, that
is the reverse of the order in which they are listed in the feature.

If one or more bundles have been uninstalled, and once all eligible bundles have
been uninstalled, the Feature Runtime must refresh the framework wiring by calling
FrameworkWir ing.refreshBundles , passing the list of uninstalled bundles. This will cause the frame-
work to completely remove the uninstalled bundles, and any wirings that link to them.

160.5.2.2.5 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being removed is not known to the Feature Runtime. This must not be treated as a
failure, and should simply return immediately.

• One or more BundleExceptions are thrown during Bundle Stop on page 112. These exceptions
should be logged when they occur, but then ignored.

• One or more BundleExceptions are thrown during Bundle Removal on page 112. These excep-
tions should be logged when they occur, with the Feature Runtime continuing despite the errors.
Once the feature removal is complete the failures may be used in creating the FeatureRuntime-
Exception that must be thrown by this method.

• One or more Installed Configurations are missing from the Configurat ionAdmin service. These
missing configurations should be logged with a warning, but not treated as an error.

• One or more Installed Configurations cannot be deleted missing from the Configurat ionAdmin
service. These exceptions should be logged when they occur, with the Feature Runtime continu-
ing despite the errors. Once the feature removal is complete the failures may be used in creating
the FeatureRuntimeException that must be thrown by this method.

The Feature Update Process

The Feature Update Process can be viewed as an interleaved remove and installation operation, fol-
lowing the phases present in both.

Feature Launcher Service Specification Version 1.0 The Feature Runtime Service

OSGi Compendium Release 8.1 Page 113

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• The feature decoration phase, where the new Feature is decorated and validated
• The feature removal phase, where the existing feature is removed from the Feature Runtime.
• The bundle installation phase, where the new Feature bundles are installed
• The bundle stop phase, where Installed Bundles without owners are stopped.
• The configuration creation and update phase, where the new Feature Configurations are created

or updated
• The configuration deletion phase, where Installed Configurations without owners are removed
• The Feature Start phase, where Bundles in the new feature are started.
• The bundle removal phase, stopped bundles are uninstalled

160.5.2.3.1 Decorating the new Feature

Decorating the new feature proceeds exactly as if a new feature is being installed, as described in
Feature Decoration on page 109.

160.5.2.3.2 Removing the existing Feature

Removing the existing feature proceeds exactly as if a new feature is being removed, as described in
Feature Removal on page 111.

160.5.2.3.3 Installing the new bundles

Installing the bundles from the new feature proceeds as if a new feature is being removed, as de-
scribed in Bundle Instal lat ion on page 110, but with two important differences.

The first important difference is that bundles being installed must be prevented from wiring to bun-
dles that are eligible for removal. This may be accomplished through the use of a Resolver Hook. As
the resolver may attempt to resolve bundles at any time this restriction must be enforced by the Fea-
ture Runtime until after all of the eligible bundles are uninstalled.

The second important difference is that any Installed Bundles that are eligible for removal are still
available in the runtime. This means that they must be considered when determining whether bun-
dles are already installed, or whether they need to be merged. This may lead to one or more Installed
Bundles that were eligible for removal becoming ineligible for removal as they become owned by the
new feature. Any Installed Bundles for which this is the case must be removed from the list of eligi-
ble bundles, and immediately become available for wiring by newly installed bundles.

160.5.2.3.4 Stopping the eligible bundles

Stopping the eligible bundles proceeds exactly as described in Bundle Stop on page 112. Note that
if the existing feature used start levels then this process will likely result in one or more bundles
shared between the old and new features being stopped temporarily.

Care must be taken in this phase to persistently stop all eligible bundles. Failing to do so may result
in eligible bundles being accidentally restarted in later phases.

160.5.2.3.5 Creating and Updating Configurations

Creating and updating configurations proceeds as described in Configuration Creation on page
110, but with one important difference.

Any Installed Configurations that are eligible for removal are still available in the runtime. This
means that they must be considered when determining whether they need to be merged. This may
lead to one or more Installed Configurations that were eligible for removal becoming ineligible for
removal as they become owned by the new feature. Any Installed Configurations for which this is
the case must be removed from the list of eligible configurations.

160.5.2.3.6 Removing Configurations

Removing eligible configurations proceeds exactly as described in Configuration Removal on page
112.

Capabilities Feature Launcher Service Specification Version 1.0

Page 114 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.5.2.3.7 Starting the new feature

Starting the new feature proceeds exactly as described in Feature Start on page 110. As all bun-
dles eligible for removal were persistently stopped in an earier phase they will remain stopped dur-
ing this phase, and must not be started again.

160.5.2.3.8 Uninstalling the eligible bundles

Until the Feature Runtime reaches this phase of an update it must fail by attempting to roll back to
the previous feature. Once this phase has been reached this failure mode changes, and the Feature
Runtime must retain the new Feature, attempting to continue despite failures.

Removing the eligible bundles proceeds exactly as described in Bundle Removal on page 112.

160.5.2.3.9 Failure scenarios

The following is a non-exhaustive list of possible failure scenarios that must be handled.

• The feature being updated is not known to the Feature Runtime. This must not make any
changes and should immediately throw a FeatureRuntimeException .

• A Feature Bundle cannot be found by any configured Arti factRepository .
• A BundleException is thrown during Instal l ing the new bundles on page 113. This should re-

sult in the imediate failure of the operation, rolling back to the pre-update state, with a Feature-
RuntimeException thrown to the caller.

• A BundleException is thrown during Start ing the new feature on page 114. This should result
in the imediate failure of the operation, rolling back to the pre-update state, with a FeatureRun-
timeException thrown to the caller.

• A Feature Configuration cannot be created by the Configurat ionAdmin service. This should re-
sult in the imediate failure of the operation, rolling back to the pre-update state, with a Feature-
RuntimeException thrown to the caller.

• An Exception is thrown by any configured Arti factRepository , RuntimeBundleMerge or Run-
timeConfigurat ionMerge . This should result in the imediate failure of the operation, rolling
back to the pre-update state, with a FeatureRuntimeException thrown to the caller.

• One or more BundleExceptions are thrown during Stopping the el ig ible bundles on page 113.
These exceptions should be logged when they occur, but then ignored.

• One or more BundleExceptions are thrown during Uninstal l ing the el ig ible bundles on page
114. These exceptions should be logged when they occur, with the Feature Runtime continuing
despite the errors. Once the feature removal is complete the failures may be used in creating the
FeatureRuntimeException that must be thrown by this method.

• One or more Installed Configurations are missing from the Configurat ionAdmin service. These
missing configurations should be logged with a warning, but not treated as an error.

• One or more Installed Configurations cannot be deleted missing from the Configurat ionAdmin
service. These exceptions should be logged when they occur, with the Feature Runtime continu-
ing despite the errors. Once the feature removal is complete the failures may be used in creating
the FeatureRuntimeException that must be thrown by this method.

160.6 Capabilities
The Feature Launcher must provide the following capabilities.

160.6.1 osgi.service Capability
The bundle providing the Feature Runtime service must provide capabilities in the osgi .service
namespace representing the services it is required to register. This capability must also declare uses
constraints for the relevant service packages:

Feature Launcher Service Specification Version 1.0 Security

OSGi Compendium Release 8.1 Page 115

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.featurelauncher.runtime.FeatureRuntime";
 uses:="org.osgi.service.featurelauncher.runtime",
 osgi.service;
 objectClass:List<String>="org.osgi.service.featurelauncher.repository.ArtifactRepositoryFactory";
 uses:="org.osgi.service.featurelauncher.repository"

This capability must follow the rules defined for the osgi.service Namespace on page 65.

160.7 Security
When Java permissions are enabled, the following security procedures apply.

160.7.1 Required Permissions
Bundles that need to make use of the Feature Runtime or Artifact Repository Fac-
tory services must be granted permission to get the relevant service, for example
ServicePermission[org.osgi .service.featurelauncher.runtime.FeatureRuntime, GET] so that they
may retrieve the service and use it.

Only a bundle that provides a Feature Runtime implementation should be granted
ServicePermission[org.osgi .service.featurelauncher.runtime.FeatureRuntime, REGISTER] and
ServicePermission[org.osgi .service.featurelauncher.repository.Art i factRepositoryFactory,
REGISTER] to register the services defined by this specification.

The Feature Runtime implementation must also be granted
ServicePermission[org.osgi .service.cm.Configurat ionAdmin, GET] , AdminPermission[*, execute] ,
AdminPermission[*, l i fecycle] , AdminPermission[*, metadata] , AdminPermission[*, resolve] , Ad-
minPermission[*, start level] , AdminPermission[*, context] , as these actions are all required to im-
plement the specification.

160.8 org.osgi.service.featurelauncher

Feature Launcher Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher; vers ion="[1.0,1.1)"

160.8.1 Summary

• FeatureLauncher - The Feature launcher is the primary entry point for launching an OSGi
framework and set of bundles.

• FeatureLauncher.LaunchBui lder - A builder for configuring and triggering the launch of an OS-
Gi framework containing the supplied feature

• FeatureLauncherConstants - Defines standard constants for the Feature Launcher specification.
• LaunchException - A LaunchException is thrown by the FeatureLauncher if it is unable to:

• Locate or start an OSGi Framework instance

org.osgi.service.featurelauncher Feature Launcher Service Specification Version 1.0

Page 116 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined

160.8.2 public interface FeatureLauncher
extends ArtifactRepositoryFactory
The Feature launcher is the primary entry point for launching an OSGi framework and set of bun-
dles. As it is a means for launching a framework it is designed to be used from outside OSGi and
therefore should be obtained using the ServiceLoader.

Provider Type Consumers of this API must not implement this type

160.8.2.1 public FeatureLauncher.LaunchBuilder launch(Feature feature)

feature the feature to launch

□ Begin launching a framework instance based on the supplied feature

Returns A running framework instance.

Throws LaunchException –

160.8.2.2 public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

jsonReader a Reader for the input Feature JSON

□ Begin launching a framework instance based on the supplied feature JSON

Returns A running framework instance.

Throws LaunchException –

160.8.3 public static interface FeatureLauncher.LaunchBuilder
A builder for configuring and triggering the launch of an OSGi framework containing the supplied
feature

LaunchBuilder instances are single use. Once they have been used to launch a framework instance
they become invalid and all methods will throw IllegalStateException

160.8.3.1 public Framework launchFramework()

□ Launch a framework instance based on the configured builder

Returns A running framework instance.

Throws LaunchException –

I l legalStateException– if the builder has been launched

160.8.3.2 public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Object> configuration)

configuration the configuration for this implementation

□ Configure this LaunchBuilder with the supplied properties.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.3.3 public FeatureLauncher.LaunchBuilder withDecorator(FeatureDecorator decorator)

decorator the decorator to add

□ Add a FeatureDecorator to this LaunchBuilder that will be used to decorate the feature being
launched. If called multiple times then the supplied decorators will be called in the same order that
they were added to this builder.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher

OSGi Compendium Release 8.1 Page 117

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns this

Throws NullPointerException– if the decorator is nul l

I l legalStateException– if the builder has been launched

160.8.3.4 public FeatureLauncher.LaunchBuilder withExtensionHandler(String extensionName,
FeatureExtensionHandler extensionHandler)

extensionName the name of the extension to handle

extensionHandler the extensionHandler to add

□ Add a FeatureExtensionHandler to this LaunchBuilder that will be used to process the named Fea-
tureExtension if it is found in the Feature being launched. If called multiple times for the same ex-
tensionName then later calls will replace the extensionHandler to be used.

Returns this

Throws NullPointerException– if the extension name or decorator is nul l

I l legalStateException– if the builder has been launched

160.8.3.5 public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)

frameworkProps the launch properties to use when starting the framework

□ Configure this LaunchBuilder with the supplied Framework Launch Properties.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.3.6 public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)

repository the repository to add

□ Add a repository to this LaunchBuilder that will be used to locate installable artifact data.

Returns this

Throws NullPointerException– if the repository is null

I l legalStateException– if the builder has been launched

160.8.3.7 public FeatureLauncher.LaunchBuilder withVariables(Map<String, Object> variables)

variables the variable placeholder overrides for this launch

□ Configure this LaunchBuilder with the supplied variables.

Returns this

Throws I l legalStateException– if the builder has been launched

160.8.4 public final class FeatureLauncherConstants
Defines standard constants for the Feature Launcher specification.

160.8.4.1 public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"

The name of the metadata property used to indicate the start level of the bundle to be installed. The
value must be an integer between 0 and Integer.MAX_VALUE.

160.8.4.2 public static final String BUNDLE_START_LEVELS = "bundle-start-levels"

The name for the FeatureExtension of Type.JSON which defines the start level configuration for the
bundles in the feature

org.osgi.service.featurelauncher Feature Launcher Service Specification Version 1.0

Page 118 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.8.4.3 public static final String CONFIGURATION_TIMEOUT = "configuration.timeout"

The configuration property used to set the timeout for creating configurations from FeatureConfig-
uration definitions.

The value must be a Long indicating the number of milliseconds that the implementation should
wait to be able to create configurations for the Feature. The default is 5000 .

A value of 0 means that the configurations must be created before the bundles in the feature are
started. In general this will require the Configurat ionAdmin service to be available from outside the
feature.

A value of -1 means that the implementation must not wait to create configurations and should re-
turn control to the user as soon as the bundles are started, even if the configurations have not yet
been created.

160.8.4.4 public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "osgi.featurelauncher"

The name of the implementation capability for the Feature specification.

160.8.4.5 public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

160.8.4.6 public static final String FRAMEWORK_LAUNCHING_PROPERTIES = "framework-launching-properties"

The name for the FeatureExtension of Type.TEXT which defines the framework properties that
should be used when launching the feature.

160.8.4.7 public static final String LAUNCH_FRAMEWORK = "launch-framework"

The name for the FeatureExtension which defines the framework that should be used to launch
the feature. The extension must be of Type.ARTIFACTS and contain one or more ID entries cor-
responding to OSGi framework implementations. This extension must be processed even if it is
Kind.OPTIONAL or Kind.TRANSIENT.

If more than one framework entry is provided then the list will be used as a priority order when de-
termining the framework implementation to use. If none of the frameworks are present then an er-
ror is raised and launching will be aborted.

160.8.4.8 public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"

The configuration property key used to set the bearer token when creating an ArtifactRepository us-
ing FeatureLauncher.createRepository(URI, Map)

160.8.4.9 public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = "name"

The configuration property key used to set the repository name when creating an ArtifactReposito-
ry using FeatureLauncher.createRepository(URI, Map)

160.8.4.10 public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = "password"

The configuration property key used to set the repository password when creating an ArtifactRepos-
itory using FeatureLauncher.createRepository(URI, Map)

160.8.4.11 public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"

The configuration property key used to set that release versions are enabled for an ArtifactReposito-
ry using FeatureLauncher.createRepository(URI, Map)

160.8.4.12 public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"

The configuration property key used to set that SNAPSHOT release versions are enabled for an Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.annotation

OSGi Compendium Release 8.1 Page 119

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.8.4.13 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"

The configuration property key used to set the trust store to be used when accessing a remote Arti-
factRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.14 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = "truststoreFormat"

The configuration property key used to set the trust store format to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.15 public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD =
"truststorePassword"

The configuration property key used to set the trust store password to be used when accessing a re-
mote ArtifactRepository using FeatureLauncher.createRepository(URI, Map)

160.8.4.16 public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

The configuration property key used to set the repository user when creating an ArtifactRepository
using FeatureLauncher.createRepository(URI, Map)

160.8.5 public class LaunchException
extends RuntimeException
A LaunchException is thrown by the FeatureLauncher if it is unable to:

• Locate or start an OSGi Framework instance
• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined

160.8.5.1 public LaunchException(String message)

message

□ Create a LaunchException with the supplied error message

160.8.5.2 public LaunchException(String message, Throwable cause)

message

cause

□ Create a LaunchException with the supplied error message and cause

160.9 org.osgi.service.featurelauncher.annotation

Feature Annotations Package Version 1.0.

This package contains annotations that can be used to require the Feature Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

160.9.1 Summary

• RequireFeatureLauncherService - This annotation can be used to require the Feature implemen-
tation.

org.osgi.service.featurelauncher.decorator Feature Launcher Service Specification Version 1.0

Page 120 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.9.2 @RequireFeatureLauncherService
This annotation can be used to require the Feature implementation. It can be used directly, or as a
meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

160.10 org.osgi.service.featurelauncher.decorator

Feature Launcher Decorator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.decorator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.decorator; vers ion="[1.0,1.1)"

160.10.1 Summary

• AbandonOperationException - An AbandonOperationException is thrown by a FeatureDecora-
tor or FeatureExtensionHandler if it needs to prevent the operation from continuing.

• BaseFeatureDecorat ionBui lder - The BaseFeatureDecorationBuilder is used to allow a user to
customize a Feature.

• DecoratorBui lderFactory - The Builder Factory can be used to obtain builders for the various en-
tities.

• FeatureDecorator - A FeatureDecorator is used to pre-process a Feature before it is installed or
updated.

• FeatureDecorator.FeatureDecoratorBui lder - A reified builder which adds the ability to replace
the extensions for the decorated feature

• FeatureExtensionHandler - A FeatureExtensionHandler is used to check and pre-process a Fea-
ture based on its FeatureExtensions before the feature is installed or updated.

• FeatureExtensionHandler.FeatureExtensionHandlerBui lder - A reified builder which does not
permit extensions to be modified

160.10.2 public final class AbandonOperationException
extends Exception
An AbandonOperationException is thrown by a FeatureDecorator or FeatureExtensionHandler if it
needs to prevent the operation from continuing. This may be because of a problem detected in the
feature, or because an extension has determined that the feature cannot be used in the current envi-
ronment.

160.10.2.1 public AbandonOperationException(String message)

message

□ Create an AbandonOperationException with the supplied error message

160.10.2.2 public AbandonOperationException(String message, Throwable cause)

message

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.decorator

OSGi Compendium Release 8.1 Page 121

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

cause

□ Create an AbandonOperationException with the supplied error message and cause

160.10.3 public interface BaseFeatureDecorationBuilder<T extends
BaseFeatureDecorationBuilder<T>>

<T> the type of the FeatureDecorator, used to parameterize the builder return values

The BaseFeatureDecorationBuilder is used to allow a user to customize a Feature. It is pre-populated
with data from the original Feature, and calling any of the setXXX methods will replace the data in
that section.

Provider Type Consumers of this API must not implement this type

160.10.3.1 public Feature build()

□ Build the Feature. Can only be called once. After calling this method the current builder instance
cannot be used any more. and all methods will throw IllegalStateException.

Returns The Feature.

160.10.3.2 public T extends BaseFeatureDecorationBuilder<T> setBundles(List<FeatureBundle> bundles)

bundles The Bundles to add.

□ Replace the bundles in the Feature, discarding the current values.

Returns This builder.

160.10.3.3 public T extends BaseFeatureDecorationBuilder<T> setConfigurations(List<FeatureConfiguration> configs)

configs The Configurations to add.

□ Replace the Configurations in the Feature, discarding the current values.

Returns This builder.

160.10.3.4 public T extends BaseFeatureDecorationBuilder<T> setVariable(String key, Object defaultValue)

key The key.

defaultValue The default value.

□ Set or replace a single variable in the Feature. If a variable with the specified key already exists it is
replaced with this one. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

160.10.3.5 public T extends BaseFeatureDecorationBuilder<T> setVariables(Map<String, Object> variables)

variables to be added.

□ Replace all the variables in the Feature, discarding the current values. Variable values are of type:
String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type.

160.10.4 public interface DecoratorBuilderFactory
The Builder Factory can be used to obtain builders for the various entities.

This is similar to BuilderFactory but does not permit the creation of FeatureBuilder instances.

Provider Type Consumers of this API must not implement this type

org.osgi.service.featurelauncher.decorator Feature Launcher Service Specification Version 1.0

Page 122 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.10.4.1 public FeatureArtifactBuilder newArtifactBuilder(ID id)

id The artifact ID for the artifact object being built.

□ Obtain a new builder for Artifact objects.

Returns The builder.

160.10.4.2 public FeatureBundleBuilder newBundleBuilder(ID id)

id The ID for the bundle object being built. If the ID has no type specified, a default type of @{code jar}
is assumed.

□ Obtain a new builder for Bundle objects.

Returns The builder.

160.10.4.3 public FeatureConfigurationBuilder newConfigurationBuilder(String pid)

pid The persistent ID for the Configuration being built.

□ Obtain a new builder for Configuration objects.

Returns The builder.

160.10.4.4 public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)

factoryPid The factory persistent ID for the Configuration being built.

name The name of the configuration being built. The PID for the configuration will be the factoryPid + '~'
+ name

□ Obtain a new builder for Factory Configuration objects.

Returns The builder.

160.10.4.5 public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type,
FeatureExtension.Kind kind)

name The extension name.

type The type of extension: JSON, Text or Artifacts.

kind The kind of extension: Mandatory, Optional or Transient.

□ Obtain a new builder for Feature objects.

Returns The builder.

160.10.5 public interface FeatureDecorator
A FeatureDecorator is used to pre-process a Feature before it is installed or updated. This allows the
caller to potentially add or remove extensions, alter feature bundles, or edit configurations before
the feature is installed or updated.

Note that a FeatureDecorator is always called for all features and may change the feature extensions,
as well as bundles, configurations and variables.

160.10.5.1 public Feature decorate(Feature feature, FeatureDecorator.FeatureDecoratorBuilder
decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

feature the feature to be installed or updated

decoratedFeature-
Builder

a builder that can be used to produce a decorated feature with updated values

factory - a factory allowing users to create values for use with decoratedFeatureBui lder

□ Provides an opportunity to transform a feature before it is installed or updated

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.repository

OSGi Compendium Release 8.1 Page 123

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns The Feature to be installed. This must either be the same instance as feature or a new object created
by calling decoratedFeatureBui lder.bui ld() . Returning any other object is an error that will cause
the install or update operation to fail

Throws AbandonOperationException– if the feature installation or update operation must not continue

160.10.6 public static interface FeatureDecorator.FeatureDecoratorBuilder
extends
BaseFeatureDecorationBuilder<FeatureDecorator.FeatureDecoratorBuilder>
A reified builder which adds the ability to replace the extensions for the decorated feature

Provider Type Consumers of this API must not implement this type

160.10.6.1 public FeatureDecorator.FeatureDecoratorBuilder setExtensions(List<FeatureExtension> extensions)

extensions The extensions to add.

□ Replace the extensions in the Feature, discarding the current values.

Returns This builder.

160.10.7 public interface FeatureExtensionHandler
A FeatureExtensionHandler is used to check and pre-process a Feature based on its FeatureExten-
sions before the feature is installed or updated. This allows the caller to potentially alter feature
bundles, or edit configurations before the feature is installed or updated.

Note that a FeatureExtensionHandler is only called for features with a matching extension called and
may only change the feature bundles or feature configurations.

160.10.7.1 public Feature handle(Feature feature, FeatureExtension extension,
FeatureExtensionHandler.FeatureExtensionHandlerBuilder decoratedFeatureBuilder,
DecoratorBuilderFactory factory) throws AbandonOperationException

feature the feature to be installed or updated

extension the feature extension which caused this handler to be called

decoratedFeature-
Builder

a builder that can be used to produce a decorated feature with updated values

factory - a factory allowing users to create values for use with decoratedFeatureBui lder

□ Provides an opportunity to transform a feature before it is installed or updated

Returns The Feature to be installed. This must either be the same instance as feature or a new object created
by calling decoratedFeatureBui lder.bui ld() . Returning any other object is an error that will cause
the install or update operation to fail

Throws AbandonOperationException– if the feature installation or update operation must not continue

160.10.8 public static interface FeatureExtensionHandler.FeatureExtensionHandlerBuilder
extends
BaseFeatureDecorationBuilder<FeatureExtensionHandler.FeatureExtensionHandlerBuilder>
A reified builder which does not permit extensions to be modified

Provider Type Consumers of this API must not implement this type

160.11 org.osgi.service.featurelauncher.repository

org.osgi.service.featurelauncher.repository Feature Launcher Service Specification Version 1.0

Page 124 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Feature Launcher Repository Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.repository; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.repository; vers ion="[1.0,1.1)"

160.11.1 Summary

• Arti factRepository - An ArtifactRepository is used to get hold of the bytes used to install an arti-
fact.

• Arti factRepositoryFactory - A ArtifactRepositoryFactory is used to create implementations of
ArtifactRepository for one of the built in repository types:
• Local File System
• HTTP repository

160.11.2 public interface ArtifactRepository
An ArtifactRepository is used to get hold of the bytes used to install an artifact. Users of this specifi-
cation may provide their own implementations for use when installing feature artifacts. Instances
must be Thread Safe.

Concurrency Thread-safe

160.11.2.1 public InputStream getArtifact(ID id)

id the id of the artifact

□ Get a stream to the bytes of an artifact

Returns an InputStream containing the bytes of the artifact or nul l if this repository does not have access to
the bytes

160.11.3 public interface ArtifactRepositoryFactory
A ArtifactRepositoryFactory is used to create implementations of ArtifactRepository for one of the
built in repository types:

• Local File System
• HTTP repository

Provider Type Consumers of this API must not implement this type

160.11.3.1 public ArtifactRepository createRepository(Path path)

path a path to the root of a Maven Repository Layout containing installable artifacts

□ Create an ArtifactRepository using the local file system

Returns an ArtifactRepository using the local file system

Throws I l legalArgumentException– if the path does not exist, or exists and is not a directory

NullPointerException– if the path is nul l

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 125

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.11.3.2 public ArtifactRepository createRepository(URI uri, Map<String, Object> props)

uri the URI for the repository. The http , https and f i le schemes must be supported by all implementa-
tions.

props the configuration properties for the remote repository. See FeatureLauncherConstants for standard
property names

□ Create an ArtifactRepository using a remote Maven repository.

Returns an ArtifactRepository using the local file system

Throws I l legalArgumentException– if the uri scheme is not supported by this implementation

NullPointerException– if the path is nul l

160.12 org.osgi.service.featurelauncher.runtime

Feature Launcher Runtime Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.featurelauncher.runtime; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.featurelauncher.runtime; vers ion="[1.0,1.1)"

160.12.1 Summary

• FeatureRuntime - The Feature runtime service allows features to be installed and removed dy-
namically at runtime.

• FeatureRuntime. Instal lOperat ionBui lder - The OperationBuilder for a
FeatureRuntime.install(Feature) operation.

• FeatureRuntime.Operat ionBui lder - An OperationBuilder is used to configure the installation or
update of a Feature by the FeatureRuntime.

• FeatureRuntime.UpdateOperationBui lder - The OperationBuilder for a
FeatureRuntime.install(Feature) operation.

• FeatureRuntimeConstants - Defines standard constants for the Feature Runtime.
• FeatureRuntimeException - A FeatureRuntimeException is thrown by the FeatureRuntime if it

is unable to:
• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined
• Successfully merge a feature with the existing environment

• Instal ledBundle - An InstalledBundle represents a configuration that has been installed as a re-
sult of one or more feature installations.

• Instal ledConfigurat ion - An InstalledConfiguration represents a configuration that has been in-
stalled as a result of one or more feature installations.

• Instal ledFeature - An InstalledFeature represents the current state of a feature installed by the
FeatureRuntime.

• MergeOperationType - An MergeOperationType represents the type of operation that is in
flight

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 126 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• RuntimeBundleMerge - Merge operations occur when two or more features reference the same
(or similar) items to be installed.

• RuntimeBundleMerge.BundleMapping - A BundleMapping is used to define that a bundle
should be (or remain) installed and which Features should own it

• RuntimeBundleMerge.FeatureBundleDefinit ion - A FeatureBundleDefinition is used to show
which FeatureBundle(s) are being merged, and the Feature that they relate to.

• RuntimeConfigurat ionMerge - Merge operations occur when two or more features reference the
same (or similar) items to be installed.

• RuntimeConfigurat ionMerge.FeatureConfigurat ionDefinit ion - A FeatureConfigurationDefini-
tion is used to show which FeatureConfiguration(s) are being merged, and the Feature that they
relate to.

• RuntimeMerges - Merge operations occur when two or more features reference the same (or
similar) items to be installed.

160.12.2 public interface FeatureRuntime
extends ArtifactRepositoryFactory
The Feature runtime service allows features to be installed and removed dynamically at runtime.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

160.12.2.1 public Map<String, ArtifactRepository> getDefaultRepositories()

□ Get the default repositories for the FeatureRuntime service. These are the repositories which are
used by default when installing or updating features.

This method can be used to select a subset of the default repositories when using an Opera-
tionBuilder, or to query for instances manually.

Returns the default repositories

160.12.2.2 public List<InstalledFeature> getInstalledFeatures()

□ Get the features that have been installed by the FeatureRuntime service

Returns a list of installed features

160.12.2.3 public FeatureRuntime.InstallOperationBuilder install(Feature feature)

feature the feature to launch

□ Install a feature into the runtime

Returns An OperationBuilder that can be used to set up the installation of this feature

Throws LaunchException– if installation fails

160.12.2.4 public FeatureRuntime.InstallOperationBuilder install(Reader jsonReader)

jsonReader a Reader for the input Feature JSON

□ Install a feature into the runtime based on the supplied feature JSON

Returns An installedFeature representing the results of installing this feature

Throws LaunchException– if installation fails

160.12.2.5 public void remove(ID featureId)

featureId the feature id

□ Remove an installed feature

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 127

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.12.2.6 public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Feature feature)

featureId the id of the feature to update

feature the feature to launch

□ Update a feature in the runtime

Returns An installedFeature representing the results of updating this feature

160.12.2.7 public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Reader jsonReader)

featureId the id of the feature to update

jsonReader a Reader for the input Feature JSON

□ Update a feature in the runtime based on the supplied feature JSON

Returns An installedFeature representing the results of updating this feature

160.12.3 public static interface FeatureRuntime.InstallOperationBuilder
extends
FeatureRuntime.OperationBuilder<FeatureRuntime.InstallOperationBuilder>
The OperationBuilder for a FeatureRuntime.install(Feature) operation. Instances are not thread safe
and must not be shared.

160.12.3.1 public InstalledFeature install()

□ An alias for the complete() method

Returns the installed feature

160.12.4 public static interface FeatureRuntime.OperationBuilder<T extends
FeatureRuntime.OperationBuilder<T>>

<T>

An OperationBuilder is used to configure the installation or update of a Feature by the FeatureRun-
time. Instances are not thread safe and must not be shared.

Once the complete() method is called the operation will be run by the feature runtime and the oper-
ation builder will be invalidated, with all methods throwing IllegalStateException.

160.12.4.1 public T extends FeatureRuntime.OperationBuilder<T> addRepository(String name, ArtifactRepository
repository)

name the name to use for this repository

repository the repository

□ Add an ArtifactRepository for use by this OperationBuilder instance. If an ArtifactRepository is al-
ready set for the given name then it will be replaced. Passing a nul l ArtifactRepository will remove
the repository from this operation.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.4.2 public InstalledFeature complete() throws FeatureRuntimeException

□ Complete the operation by installing or updating the feature

Returns An InstalledFeature representing the result of the operation

Throws FeatureRuntimeException– if an error occurs

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 128 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

I l legalStateException– if the builder has been completed already

160.12.4.3 public T extends FeatureRuntime.OperationBuilder<T> useDefaultRepositories(boolean include)

include

□ Include the default repositories when completing this operation. This value defaults to true . If any
ArtifactRepository added using addRepository(String, ArtifactRepository) has the same name as a
default repository then the added repository will override the default repository.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.4.4 public T extends FeatureRuntime.OperationBuilder<T> withBundleMerge(RuntimeBundleMerge merge)

merge

□ Use The supplied RuntimeBundleMerge to resolve any bundle merge operations that are required to
complete the operation

Returns this

160.12.4.5 public T extends FeatureRuntime.OperationBuilder<T>
withConfigurationMerge(RuntimeConfigurationMerge merge)

merge

□ Use The supplied RuntimeConfigurationMerge to resolve any configuration merge operations that
are required to complete the operation

Returns this

160.12.4.6 public T extends FeatureRuntime.OperationBuilder<T> withDecorator(FeatureDecorator decorator)

decorator the decorator to add

□ Add a FeatureDecorator to this OperationBuilder that will be used to decorate the feature. If called
multiple times then the supplied decorators will be called in the same order that they were added to
this builder.

Returns this

Throws NullPointerException– if the decorator is nul l

I l legalStateException– if the builder has been launched

160.12.4.7 public T extends FeatureRuntime.OperationBuilder<T> withExtensionHandler(String extensionName,
FeatureExtensionHandler extensionHandler)

extensionName the name of the extension to handle

extensionHandler the extensionHandler to add

□ Add a FeatureExtensionHandler to this OperationBuilder that will be used to process the named Fea-
tureExtension if it is found in the Feature. If called multiple times for the same extensionName then
later calls will replace the extensionHandler to be used.

Returns this

Throws NullPointerException– if the extension name or decorator is nul l

I l legalStateException– if the builder has been launched

160.12.4.8 public T extends FeatureRuntime.OperationBuilder<T> withVariables(Map<String, Object> variables)

variables the variable placeholder overrides for this launch

□ Configure this OperationBuilder with the supplied variables.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 129

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns this

Throws I l legalStateException– if the builder has been completed

160.12.5 public static interface FeatureRuntime.UpdateOperationBuilder
extends
FeatureRuntime.OperationBuilder<FeatureRuntime.UpdateOperationBuilder>
The OperationBuilder for a FeatureRuntime.install(Feature) operation. Instances are not thread safe
and must not be shared.

160.12.5.1 public InstalledFeature update()

□ An alias for the complete() method

Returns the updated feature

160.12.6 public final class FeatureRuntimeConstants
Defines standard constants for the Feature Runtime.

160.12.6.1 public static final String EXTERNAL_FEATURE_ID = "org.osgi.service.featurelauncher:external:1.0.0"

The ID of the virtual external feature representing ownership of a bundle or configuration that was
deployed by another management agent.

160.12.7 public class FeatureRuntimeException
extends RuntimeException
A FeatureRuntimeException is thrown by the FeatureRuntime if it is unable to:

• Locate the installable bytes of any bundle in a Feature
• Install a bundle in the Feature
• Determine a value for a Feature variable that has no default value defined
• Successfully merge a feature with the existing environment

160.12.7.1 public FeatureRuntimeException(String message)

message

□ Create a LaunchException with the supplied error message

160.12.7.2 public FeatureRuntimeException(String message, Throwable cause)

message

cause

□ Create a LaunchException with the supplied error message and cause

160.12.8 public interface InstalledBundle
An InstalledBundle represents a configuration that has been installed as a result of one or more fea-
ture installations.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Provider Type Consumers of this API must not implement this type

160.12.8.1 public Collection<ID> getAliases()

□ Get any known IDs which correspond to the same bundle

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 130 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns an immutable collection of aliases for this bundle. Always includes the id returned by getBundleId()

160.12.8.2 public Bundle getBundle()

□ The actual bundle installed in the framework

Returns the Bundle installed for this getBundleId()

160.12.8.3 public ID getBundleId()

□ Get the ID of the bundle that has been installed

Returns the id of the bundle that was installed

160.12.8.4 public List<ID> getOwningFeatures()

□ The features responsible for this bundle being installed, in installation order

Returns A list of Feature IDs

160.12.8.5 public int getStartLevel()

□ The start level for this bundle

Returns the start level

160.12.9 public interface InstalledConfiguration
An InstalledConfiguration represents a configuration that has been installed as a result of one or
more feature installations.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Provider Type Consumers of this API must not implement this type

160.12.9.1 public Optional<String> getFactoryPid()

□ Get the factory PID of the configuration

Returns the factory PID of this configuration, or an empty optional if this is not a factory configuration

160.12.9.2 public List<ID> getOwningFeatures()

□ The features responsible for creating this configuration, in installation order

Returns A list of Feature IDs

160.12.9.3 public String getPid()

□ Get the PID of the configuration

Returns the full PID of this configuration

160.12.9.4 public Map<String, Object> getProperties()

□ Get the merged configuration properties for this configuration

Returns The properties associated with this configuration, may be nul l if the configuration should not be cre-
ated

160.12.10 public interface InstalledFeature
An InstalledFeature represents the current state of a feature installed by the FeatureRuntime.

This type is a snapshot and represents the state of the runtime when it was created. It may become
out of date if additional features are installed or removed.

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 131

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Provider Type Consumers of this API must not implement this type

160.12.10.1 public ID getFeatureId()

Returns The ID of the installed feature

160.12.10.2 public List<InstalledBundle> getInstalledBundles()

□ Get the bundles installed by this feature

Returns A List of the bundles installed by this feature, in the order they were declared by the feature

160.12.10.3 public List<InstalledConfiguration> getInstalledConfigurations()

□ Get the configurations installed by this feature

Returns A List of the configurations installed by this feature, in the order they were declared by the feature

160.12.10.4 public boolean isInitialLaunch()

□ Is this a feature installed by FeatureLauncher

Returns true If this feature was installed as part of a FeatureLauncher launch operation. fa lse if it was in-
stalled by the FeatureRuntime

160.12.11 enum MergeOperationType
An MergeOperationType represents the type of operation that is in flight

160.12.11.1 INSTALL

An install operation adds a feature to the runtime

160.12.11.2 UPDATE

An update operation replaces one feature with another

160.12.11.3 REMOVE

A remove operation removes a feature from the runtime

160.12.11.4 public static MergeOperationType valueOf(String name)

160.12.11.5 public static MergeOperationType[] values()

160.12.12 public interface RuntimeBundleMerge
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeBundleMerge is to resolve possible conflicts between FeatureBundle en-
tries and determine which bundle(s) should be installed as a result.

Merge operations happen in one of three scenarios, indicated by the MergeOperationType:

• INSTALL - a feature is being installed
• UPDATE - a feature is being updated
• REMOVE - a feature is being removed

When any merge operation occurs the merge function will be provided with the Feature being oper-
ated upon, the FeatureBundle which needs to be merged, a List of the InstalledBundles representing

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 132 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

the currently installed bundles applicable to the merge, and a List of FeatureBundleDefinitions rep-
resenting the FeatureBundles and installed features participating in the merge. All Installed Bundle
and Feature Bundle objects will have the same group id and artifact id.

If an UPDATE or REMOVE operation is underway then the Feature being updated or removed will
already have been removed from any Installed Bundles and from the list of Feature Bundle Defini-
tions. For an UPDATE this may result in one or more Installed Bundles having an empty list of own-
ing features, and the list of existing installed Feature Bundle Definitions being empty.

The returned result from the merge function must be a full mapping of installed Bundle IDs
to Lists of owning Feature ids. This is returned as a Stream of BundleMappings. The combined
BundleMapping.owningFeatures in the stream must contain all of the Feature ids from the list of
Feature Bundle Definitions, and in the case of an INSTALL or UPDATE operation also the Feature be-
ing operated upon. The entries in the returned stream must only contain BundleMapping.bundleIds
from the list of Installed Bundles, and in the case of an INSTALL or UPDATE operation the Feature
Bundle being merged

.

It is an error for any value in the returned stream to be nul l , or to have fields set to nul l or an empty
list. In the case of a REMOVE operation it is an error to include the Feature id being operated upon in
the returned Bundle Mappings.

160.12.12.1 public Stream<RuntimeBundleMerge.BundleMapping> mergeBundle(MergeOperationType
operation, Feature feature, FeatureBundle toMerge, Collection<InstalledBundle> installedBundles,
List<RuntimeBundleMerge.FeatureBundleDefinition> existingFeatureBundles)

operation - the type of the operation triggering the merge.

feature The feature being operated upon

toMerge The FeatureBundle in feature that requires merging

installedBundles A read only list of bundles that have been installed as part of previous installations. This list will al-
ways contain at least one entry.

existingFeature-
Bundles

An immutable list of FeatureBundleDefinitions which are part of this merge operation. The entries
are in the same order as the Features were installed.

This list may be empty in the case of an UPDATE operation. Note that multiple Feature Bundle Defin-
itions may refer to the same bundle ID, or aliases of a single InstalledBundle.

□ Calculate the bundles that should be installed at the end of a given operation.

Bundle Merge operations occur when two or more features reference a bundle with the same group
id and artifact id, and the purpose of this method is to identify which bundles should be/remain in-
stalled, and which features they should be owned by.

The returned result from the merge function must be a full mapping of installed Bundle IDs to Lists
of owning Features. It is an error for the stream to contain a BundleMapping.bundleId which is not
the ID of an entry in in the instal ledBundle list or, in the case of an INSTALL or UPDATE operation,
the ID of the toMerge Feature Bundle.

The combined BundleMapping.owningFeatures in the stream must contain all of the Features from
the List of Feature Bundle Definitions, and in the case of an INSTALL or UPDATE operation also the
Feature being operated upon. In the case of a REMOVE operation it is an error to include the Feature
being operated upon in the returned stream.

It is an error for any entry in the returned stream to be, or contain, nul l or an empty list.

Returns An unordered Stream of BundleMapping entries linking a bundle id to List of owning Feature ids.
Each Bundle Mapping represents a bundle that should be installed as a result of this operation. Note
that every Feature id must appear in the combined BundleMapping.owningFeatures and that the
BundleMapping.bundleId may only contain IDs from toMerge or one of the keys from the instal led-

Feature Launcher Service Specification Version 1.0 org.osgi.service.featurelauncher.runtime

OSGi Compendium Release 8.1 Page 133

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Bundles list. If two BundleMapping entries use the same bundle id, or alias, then this is not an error
and these mappings will be combined by the implementation.

160.12.13 public static final class RuntimeBundleMerge.BundleMapping
A BundleMapping is used to define that a bundle should be (or remain) installed and which Features
should own it

160.12.13.1 public final ID bundleId

The ID of the bundle to be installed

160.12.13.2 public final List<ID> owningFeatures

The List of features which own the bundle

160.12.13.3 public BundleMapping(ID bundleId, List<ID> owningFeatures)

bundleId

owningFeatures

□ Create a new BundleMapping

160.12.14 public static interface RuntimeBundleMerge.FeatureBundleDefinition
A FeatureBundleDefinition is used to show which FeatureBundle(s) are being merged, and the Fea-
ture that they relate to.

160.12.14.1 public Feature getFeature()

Returns The Feature containing the FeatureBundle

160.12.14.2 public FeatureBundle getFeatureBundle()

Returns The FeatureBundle being merged

160.12.15 public interface RuntimeConfigurationMerge
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeConfigurationMerge is to resolve possible conflicts between FeatureCon-
figuration entries and determine what configuration should be created as a result.

Merge operations happen in one of three scenarios, indicated by the MergeOperationType:

• INSTALL - a feature is being installed
• UPDATE - a feature is being updated
• REMOVE - a feature is being removed

When any merge operation occurs the merge function will be provided with the Feature being op-
erated upon, the FeatureConfiguration which needs to be merged, the InstalledConfiguration repre-
senting the current configuration, and a list of FeatureConfigurationDefinitions representing the in-
stalled features participating in the merge. All Feature Configurations will have the same PID.

If an UPDATE or REMOVE operation is underway then the Feature being updated or re-
moved will already have been removed from the Installed Configuration and the list
of existing Feature Configuration Definitions. For an UPDATE this may result in the
InstalledConfiguration.getOwningFeatures() being an empty list, and the map of existing installed
Feature Configurations being empty.

The returned result from the merge function is a map of configuration properties that should be
used to complete the operation. This may be null if the configuration should be deleted.

org.osgi.service.featurelauncher.runtime Feature Launcher Service Specification Version 1.0

Page 134 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

160.12.15.1 public Map<String, Object> mergeConfiguration(MergeOperationType operation,
Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration,
List<RuntimeConfigurationMerge.FeatureConfigurationDefinition> existingFeatureConfigurations)

operation - the type of the operation triggering the merge.

feature The feature being operated upon

toMerge The FeatureConfiguration in feature that requires merging

configuration The existing configuration that has been installed as part of previous installations. This will repre-
sent a configuration with the same PID as toMerge .

Note that this value will be nul l if the configuration does not exist to differentiate it from an empty
configuration dictionary

existingFeature-
Configurations

An immutable list of FeatureConfigurationDefinitions which are part of this merge operation. The
entries are in the same order as the Features were installed.

This list may be empty in the case of an UPDATE operation. Note that all Feature Configuration De-
finitions will refer to the same PID, and this will match the PID of toMerge . An immutable map of
existing Feature Configurations which are part of this merge operation. The keys in the map are the
Feature Configurations involved in the merge and the values are the Features which contain the Fea-
ture Configuration.

□ Calculate the configuration that should be used at the end of a given operation.

Configuration merge operations occur when two or more features define the same configuration,
where configuration identity is determined by the PID of the configuration. The purpose of this
function is to determine what configuration properties should be used after the merge has finished.

Returns A map of configuration properties to use. Returning nul l indicates that the configuration should be
deleted.

160.12.16 public static interface
RuntimeConfigurationMerge.FeatureConfigurationDefinition
A FeatureConfigurationDefinition is used to show which FeatureConfiguration(s) are being merged,
and the Feature that they relate to.

160.12.16.1 public Feature getFeature()

Returns The Feature containing the FeatureConfiguration

160.12.16.2 public FeatureConfiguration getFeatureConfiguration()

Returns The FeatureBundle being merged

160.12.17 public final class RuntimeMerges
Merge operations occur when two or more features reference the same (or similar) items to be in-
stalled.

The purpose of a RuntimeMerges is to provide common merge strategies in an easy to construct
way.

160.12.17.1 public RuntimeMerges()

160.12.17.2 public static Version getOSGiVersion(ID id)

id

□ Attempts to turn the version String from an ID into an OSGi version

Feature Launcher Service Specification Version 1.0 References

OSGi Compendium Release 8.1 Page 135

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Note that this parsing is more lenient than Version.parseVersion(String). It treats the first three seg-
ments separated by . characters as possible integers. If they are integers then they represent the ma-
jor, minor and micro segments of an OSGi version. If any non-numeric segments are encountered, or
the end of the string, then the remaining version segments are 0 . Any remaining content from the
input version string is used as the qualifier.

Returns An OSGi version which attempts to replicate the version from the ID

160.12.17.3 public static RuntimeBundleMerge preferExistingBundles()

□ The preferExistingBundles() merge strategy tries to reduce the number of new installations by ap-
plying semantic versioning rules. The new bundle is only installed if it has:

• A different major version from all installed bundles
• A higher minor version than all other installed bundles with the same major version

Returns the prefer existing merge strategy

160.12.17.4 public static RuntimeConfigurationMerge replaceExistingProperties()

□ The replaceExistingProperties() merge strategy simply replaces any existing configuration values
with the new values from the new FeatureConfiguration.

Removal is more complex and relies on the fact that the exist ingFeatureConfigurat ions are in instal-
lation order. This means that we can descend the list looking for the previous configuration proper-
ties and apply them

Returns the replace existing merge strategy

160.13 References

[1] The Maven 2 Repository Layout
https://maven.apache.org/repository/layout.html#maven2-repository-layout

[2] The Data URI scheme
https://en.wikipedia.org/wiki/Data_URI_scheme

https://maven.apache.org/repository/layout.html#maven2-repository-layout
https://en.wikipedia.org/wiki/Data_URI_scheme

References Feature Launcher Service Specification Version 1.0

Page 136 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1 Page 137

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

Page 138 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

End Of Document

	OSGi Compendium
	Table of Contents
	Chapter 1. Introduction
	1.1. Reader Level
	1.2. Version Information
	1.2.1. OSGi Core Release 8
	1.2.2. Component Versions
	1.2.3. Notes

	1.3. References
	1.4. Changes

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration
	104.7.9. Configuration Attributes

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order
	104.9.6. Manual Invocation

	104.10. Meta Typing
	104.11. Coordinator Support
	104.12. Capabilities
	104.12.1. osgi.implementation Capability
	104.12.2. osgi.service Capability

	104.13. Security
	104.13.1. Configuration Permission
	104.13.2. Permissions Summary
	104.13.3. Configuration and Permission Administration

	104.14. org.osgi.service.cm
	104.14.1. Summary
	104.14.2. Permissions
	104.14.2.1. Configuration
	104.14.2.2. ConfigurationAdmin
	104.14.2.3. ManagedService
	104.14.2.4. ManagedServiceFactory

	104.14.3. public interface Configuration
	104.14.3.1. public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.2. public void delete() throws IOException
	104.14.3.3. public boolean equals(Object other)
	104.14.3.4. public Set<Configuration.ConfigurationAttribute> getAttributes()
	104.14.3.5. public String getBundleLocation()
	104.14.3.6. public long getChangeCount()
	104.14.3.7. public String getFactoryPid()
	104.14.3.8. public String getPid()
	104.14.3.9. public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)
	104.14.3.10. public Dictionary<String, Object> getProperties()
	104.14.3.11. public int hashCode()
	104.14.3.12. public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.13. public void setBundleLocation(String location)
	104.14.3.14. public void update(Dictionary<String, ?> properties) throws IOException
	104.14.3.15. public void update() throws IOException
	104.14.3.16. public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

	104.14.4. enum Configuration.ConfigurationAttribute
	104.14.4.1. READ_ONLY
	104.14.4.2. public static Configuration.ConfigurationAttribute valueOf(String name)
	104.14.4.3. public static Configuration.ConfigurationAttribute[] values()

	104.14.5. public interface ConfigurationAdmin
	104.14.5.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.14.5.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.14.5.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.14.5.4. public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
	104.14.5.5. public Configuration getConfiguration(String pid, String location) throws IOException
	104.14.5.6. public Configuration getConfiguration(String pid) throws IOException
	104.14.5.7. public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws IOException
	104.14.5.8. public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
	104.14.5.9. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.14.6. public final class ConfigurationConstants
	104.14.6.1. public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
	104.14.6.2. public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

	104.14.7. public class ConfigurationEvent
	104.14.7.1. public static final int CM_DELETED = 2
	104.14.7.2. public static final int CM_LOCATION_CHANGED = 3
	104.14.7.3. public static final int CM_UPDATED = 1
	104.14.7.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid, String pid)
	104.14.7.5. public String getFactoryPid()
	104.14.7.6. public String getPid()
	104.14.7.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.14.7.8. public int getType()

	104.14.8. public class ConfigurationException extends Exception
	104.14.8.1. public ConfigurationException(String property, String reason)
	104.14.8.2. public ConfigurationException(String property, String reason, Throwable cause)
	104.14.8.3. public Throwable getCause()
	104.14.8.4. public String getProperty()
	104.14.8.5. public String getReason()
	104.14.8.6. public Throwable initCause(Throwable cause)

	104.14.9. public interface ConfigurationListener
	104.14.9.1. public void configurationEvent(ConfigurationEvent event)

	104.14.10. public final class ConfigurationPermission extends BasicPermission
	104.14.10.1. public static final String ATTRIBUTE = "attribute"
	104.14.10.2. public static final String CONFIGURE = "configure"
	104.14.10.3. public static final String TARGET = "target"
	104.14.10.4. public ConfigurationPermission(String name, String actions)
	104.14.10.5. public boolean equals(Object obj)
	104.14.10.6. public String getActions()
	104.14.10.7. public int hashCode()
	104.14.10.8. public boolean implies(Permission p)
	104.14.10.9. public PermissionCollection newPermissionCollection()

	104.14.11. public interface ConfigurationPlugin
	104.14.11.1. public static final String CM_RANKING = "service.cmRanking"
	104.14.11.2. public static final String CM_TARGET = "cm.target"
	104.14.11.3. public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

	104.14.12. public interface ManagedService
	104.14.12.1. public void updated(Dictionary<String, ?> properties) throws ConfigurationException

	104.14.13. public interface ManagedServiceFactory
	104.14.13.1. public void deleted(String pid)
	104.14.13.2. public String getName()
	104.14.13.3. public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

	104.14.14. public class ReadOnlyConfigurationException extends RuntimeException
	104.14.14.1. public ReadOnlyConfigurationException(String reason)

	104.14.15. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.15. org.osgi.service.cm.annotations
	104.15.1. Summary
	104.15.2. @RequireConfigurationAdmin

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. osgi.unresolvable Namespace
	135.7. org.osgi.namespace.contract
	135.7.1. Summary
	135.7.2. public final class ContractNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.8. org.osgi.namespace.extender
	135.8.1. Summary
	135.8.2. public final class ExtenderNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.8.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.9. org.osgi.namespace.service
	135.9.1. Summary
	135.9.2. public final class ServiceNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.9.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.10. org.osgi.namespace.implementation
	135.10.1. Summary
	135.10.2. public final class ImplementationNamespace extends Namespace
	135.10.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.10.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.11. org.osgi.namespace.unresolvable
	135.11.1. Summary
	135.11.2. public final class UnresolvableNamespace extends Namespace
	135.11.2.1. public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"
	135.11.2.2. public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

	135.12. References

	Chapter 159. Feature Service Specification
	159.1. Introduction
	159.1.1. Essentials
	159.1.2. Entities

	159.2. Feature
	159.2.1. Identifiers
	159.2.2. Feature Identifier
	159.2.2.1. Identifier type

	159.2.3. Attributes
	159.2.4. Using the Feature API

	159.3. Comments
	159.4. Bundles
	159.4.1. Bundle Metadata
	159.4.2. Using the Feature API

	159.5. Configurations
	159.6. Variables
	159.7. Extensions
	159.7.1. Text Extensions
	159.7.2. JSON Extensions
	159.7.3. Artifact list Extensions

	159.8. Framework Launching Properties
	159.9. Resource Versioning
	159.10. Capabilities
	159.10.1. osgi.service Capability

	159.11. org.osgi.service.feature
	159.11.1. Summary
	159.11.2. public interface BuilderFactory
	159.11.2.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	159.11.2.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	159.11.2.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	159.11.2.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	159.11.2.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)
	159.11.2.6. public FeatureBuilder newFeatureBuilder(ID id)

	159.11.3. public interface Feature
	159.11.3.1. public List<FeatureBundle> getBundles()
	159.11.3.2. public List<String> getCategories()
	159.11.3.3. public Map<String, FeatureConfiguration> getConfigurations()
	159.11.3.4. public Optional<String> getDescription()
	159.11.3.5. public Optional<String> getDocURL()
	159.11.3.6. public Map<String, FeatureExtension> getExtensions()
	159.11.3.7. public ID getID()
	159.11.3.8. public Optional<String> getLicense()
	159.11.3.9. public Optional<String> getName()
	159.11.3.10. public Optional<String> getSCM()
	159.11.3.11. public Map<String, Object> getVariables()
	159.11.3.12. public Optional<String> getVendor()
	159.11.3.13. public boolean isComplete()

	159.11.4. public interface FeatureArtifact
	159.11.4.1. public ID getID()
	159.11.4.2. public Map<String, Object> getMetadata()

	159.11.5. public interface FeatureArtifactBuilder
	159.11.5.1. public FeatureArtifactBuilder addMetadata(String key, Object value)
	159.11.5.2. public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)
	159.11.5.3. public FeatureArtifact build()

	159.11.6. public interface FeatureBuilder
	159.11.6.1. public FeatureBuilder addBundles(FeatureBundle... bundles)
	159.11.6.2. public FeatureBuilder addCategories(String... categories)
	159.11.6.3. public FeatureBuilder addConfigurations(FeatureConfiguration... configs)
	159.11.6.4. public FeatureBuilder addExtensions(FeatureExtension... extensions)
	159.11.6.5. public FeatureBuilder addVariable(String key, Object defaultValue)
	159.11.6.6. public FeatureBuilder addVariables(Map<String, Object> variables)
	159.11.6.7. public Feature build()
	159.11.6.8. public FeatureBuilder setComplete(boolean complete)
	159.11.6.9. public FeatureBuilder setDescription(String description)
	159.11.6.10. public FeatureBuilder setDocURL(String docURL)
	159.11.6.11. public FeatureBuilder setLicense(String license)
	159.11.6.12. public FeatureBuilder setName(String name)
	159.11.6.13. public FeatureBuilder setSCM(String scm)
	159.11.6.14. public FeatureBuilder setVendor(String vendor)

	159.11.7. public interface FeatureBundle
	159.11.7.1. public ID getID()
	159.11.7.2. public Map<String, Object> getMetadata()

	159.11.8. public interface FeatureBundleBuilder
	159.11.8.1. public FeatureBundleBuilder addMetadata(String key, Object value)
	159.11.8.2. public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)
	159.11.8.3. public FeatureBundle build()

	159.11.9. public interface FeatureConfiguration
	159.11.9.1. public Optional<String> getFactoryPid()
	159.11.9.2. public String getPid()
	159.11.9.3. public Map<String, Object> getValues()

	159.11.10. public interface FeatureConfigurationBuilder
	159.11.10.1. public FeatureConfigurationBuilder addValue(String key, Object value)
	159.11.10.2. public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)
	159.11.10.3. public FeatureConfiguration build()

	159.11.11. public final class FeatureConstants
	159.11.11.1. public static final String FEATURE_IMPLEMENTATION = "osgi.feature"
	159.11.11.2. public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

	159.11.12. public interface FeatureExtension
	159.11.12.1. public List<FeatureArtifact> getArtifacts()
	159.11.12.2. public String getJSON()
	159.11.12.3. public FeatureExtension.Kind getKind()
	159.11.12.4. public String getName()
	159.11.12.5. public List<String> getText()
	159.11.12.6. public FeatureExtension.Type getType()

	159.11.13. enum FeatureExtension.Kind
	159.11.13.1. MANDATORY
	159.11.13.2. OPTIONAL
	159.11.13.3. TRANSIENT
	159.11.13.4. public static FeatureExtension.Kind valueOf(String name)
	159.11.13.5. public static FeatureExtension.Kind[] values()

	159.11.14. enum FeatureExtension.Type
	159.11.14.1. JSON
	159.11.14.2. TEXT
	159.11.14.3. ARTIFACTS
	159.11.14.4. public static FeatureExtension.Type valueOf(String name)
	159.11.14.5. public static FeatureExtension.Type[] values()

	159.11.15. public interface FeatureExtensionBuilder
	159.11.15.1. public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)
	159.11.15.2. public FeatureExtensionBuilder addText(String text)
	159.11.15.3. public FeatureExtension build()
	159.11.15.4. public FeatureExtensionBuilder setJSON(String json)

	159.11.16. public interface FeatureService
	159.11.16.1. public BuilderFactory getBuilderFactory()
	159.11.16.2. public ID getID(String groupId, String artifactId, String version)
	159.11.16.3. public ID getID(String groupId, String artifactId, String version, String type)
	159.11.16.4. public ID getID(String groupId, String artifactId, String version, String type, String classifier)
	159.11.16.5. public ID getIDfromMavenCoordinates(String coordinates)
	159.11.16.6. public Feature readFeature(Reader jsonReader) throws IOException
	159.11.16.7. public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

	159.11.17. public interface ID
	159.11.17.1. public static final String FEATURE_ID_TYPE = "osgifeature"
	159.11.17.2. public String getArtifactId()
	159.11.17.3. public Optional<String> getClassifier()
	159.11.17.4. public String getGroupId()
	159.11.17.5. public Optional<String> getType()
	159.11.17.6. public String getVersion()
	159.11.17.7. public String toString()

	159.12. org.osgi.service.feature.annotation
	159.12.1. Summary
	159.12.2. @RequireFeatureService

	159.13. References

	Chapter 160. Feature Launcher Service Specification
	160.1. Introduction
	160.1.1. Essentials
	160.1.2. Entities

	160.2. Features and Artifact Repositories
	160.2.1. The Artifact Repository Factory
	160.2.1.1. Obtaining an Artifact Repository Factory
	160.2.1.2. Local Repositories
	160.2.1.3. Remote Repositories

	160.3. Common themes
	160.3.1. Overriding Feature variables
	160.3.2. Setting the bundle start levels
	160.3.3. Feature Decoration
	160.3.3.1. Building decorated features
	160.3.3.2. Using Decorators

	160.4. The Feature Launcher
	160.4.1. Obtaining and configuring a Feature Launcher
	160.4.1.1. Thread Safety

	160.4.2. Using a Feature Launcher
	160.4.2.1. Providing Framework Launch Properties
	160.4.2.2. Selecting a framework implementation
	160.4.2.3. A simple example

	160.4.3. The Feature Launching Process
	160.4.3.1. Feature Decoration
	160.4.3.2. Locating a framework implementation
	160.4.3.3. Creating a Framework instance
	160.4.3.4. Installing bundles and configurations
	160.4.3.5. Starting the framework
	160.4.3.6. Cleanup after failure

	160.5. The Feature Runtime Service
	160.5.1. Using the Feature Runtime
	160.5.1.1. Thread Safety
	160.5.1.2. Introspecting the installed Features
	160.5.1.3. Installing a feature
	160.5.1.4. Setting the available Artifact Repositories
	160.5.1.5. Setting variable overrides
	160.5.1.6. Merging strategies
	160.5.1.6.1. Merging Bundles
	160.5.1.6.2. Merging Configurations

	160.5.1.7. Removing a Feature
	160.5.1.8. Updating a Feature

	160.5.2. The Feature Runtime Behaviour
	160.5.2.1. The Feature installation process
	160.5.2.1.1. Feature Decoration
	160.5.2.1.2. Bundle Installation
	160.5.2.1.3. Configuration Creation
	160.5.2.1.4. Feature Start
	160.5.2.1.5. Failure scenarios

	160.5.2.2. The Feature removal process
	160.5.2.2.1. Feature Removal
	160.5.2.2.2. Bundle Stop
	160.5.2.2.3. Configuration Removal
	160.5.2.2.4. Bundle Removal
	160.5.2.2.5. Failure scenarios

	160.5.2.3.
	160.5.2.3.1. Decorating the new Feature
	160.5.2.3.2. Removing the existing Feature
	160.5.2.3.3. Installing the new bundles
	160.5.2.3.4. Stopping the eligible bundles
	160.5.2.3.5. Creating and Updating Configurations
	160.5.2.3.6. Removing Configurations
	160.5.2.3.7. Starting the new feature
	160.5.2.3.8. Uninstalling the eligible bundles
	160.5.2.3.9. Failure scenarios

	160.6. Capabilities
	160.6.1. osgi.service Capability

	160.7. Security
	160.7.1. Required Permissions

	160.8. org.osgi.service.featurelauncher
	160.8.1. Summary
	160.8.2. public interface FeatureLauncher extends ArtifactRepositoryFactory
	160.8.2.1. public FeatureLauncher.LaunchBuilder launch(Feature feature)
	160.8.2.2. public FeatureLauncher.LaunchBuilder launch(Reader jsonReader)

	160.8.3. public static interface FeatureLauncher.LaunchBuilder
	160.8.3.1. public Framework launchFramework()
	160.8.3.2. public FeatureLauncher.LaunchBuilder withConfiguration(Map<String, Object> configuration)
	160.8.3.3. public FeatureLauncher.LaunchBuilder withDecorator(FeatureDecorator decorator)
	160.8.3.4. public FeatureLauncher.LaunchBuilder withExtensionHandler(String extensionName, FeatureExtensionHandler extensionHandler)
	160.8.3.5. public FeatureLauncher.LaunchBuilder withFrameworkProperties(Map<String, Object> frameworkProps)
	160.8.3.6. public FeatureLauncher.LaunchBuilder withRepository(ArtifactRepository repository)
	160.8.3.7. public FeatureLauncher.LaunchBuilder withVariables(Map<String, Object> variables)

	160.8.4. public final class FeatureLauncherConstants
	160.8.4.1. public static final String BUNDLE_START_LEVEL_METADATA = "bundleStartLevel"
	160.8.4.2. public static final String BUNDLE_START_LEVELS = "bundle-start-levels"
	160.8.4.3. public static final String CONFIGURATION_TIMEOUT = "configuration.timeout"
	160.8.4.4. public static final String FEATURE_LAUNCHER_IMPLEMENTATION = "osgi.featurelauncher"
	160.8.4.5. public static final String FEATURE_LAUNCHER_SPECIFICATION_VERSION = "1.0"
	160.8.4.6. public static final String FRAMEWORK_LAUNCHING_PROPERTIES = "framework-launching-properties"
	160.8.4.7. public static final String LAUNCH_FRAMEWORK = "launch-framework"
	160.8.4.8. public static final String REMOTE_ARTIFACT_REPOSITORY_BEARER_TOKEN = "token"
	160.8.4.9. public static final String REMOTE_ARTIFACT_REPOSITORY_NAME = "name"
	160.8.4.10. public static final String REMOTE_ARTIFACT_REPOSITORY_PASSWORD = "password"
	160.8.4.11. public static final String REMOTE_ARTIFACT_REPOSITORY_RELEASES_ENABLED = "release"
	160.8.4.12. public static final String REMOTE_ARTIFACT_REPOSITORY_SNAPSHOTS_ENABLED = "snapshot"
	160.8.4.13. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE = "truststore"
	160.8.4.14. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_FORMAT = "truststoreFormat"
	160.8.4.15. public static final String REMOTE_ARTIFACT_REPOSITORY_TRUST_STORE_PASSWORD = "truststorePassword"
	160.8.4.16. public static final String REMOTE_ARTIFACT_REPOSITORY_USER = "user"

	160.8.5. public class LaunchException extends RuntimeException
	160.8.5.1. public LaunchException(String message)
	160.8.5.2. public LaunchException(String message, Throwable cause)

	160.9. org.osgi.service.featurelauncher.annotation
	160.9.1. Summary
	160.9.2. @RequireFeatureLauncherService

	160.10. org.osgi.service.featurelauncher.decorator
	160.10.1. Summary
	160.10.2. public final class AbandonOperationException extends Exception
	160.10.2.1. public AbandonOperationException(String message)
	160.10.2.2. public AbandonOperationException(String message, Throwable cause)

	160.10.3. public interface BaseFeatureDecorationBuilder<T extends BaseFeatureDecorationBuilder<T>>
	160.10.3.1. public Feature build()
	160.10.3.2. public T extends BaseFeatureDecorationBuilder<T> setBundles(List<FeatureBundle> bundles)
	160.10.3.3. public T extends BaseFeatureDecorationBuilder<T> setConfigurations(List<FeatureConfiguration> configs)
	160.10.3.4. public T extends BaseFeatureDecorationBuilder<T> setVariable(String key, Object defaultValue)
	160.10.3.5. public T extends BaseFeatureDecorationBuilder<T> setVariables(Map<String, Object> variables)

	160.10.4. public interface DecoratorBuilderFactory
	160.10.4.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	160.10.4.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	160.10.4.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	160.10.4.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	160.10.4.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)

	160.10.5. public interface FeatureDecorator
	160.10.5.1. public Feature decorate(Feature feature, FeatureDecorator.FeatureDecoratorBuilder decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

	160.10.6. public static interface FeatureDecorator.FeatureDecoratorBuilder extends BaseFeatureDecorationBuilder<FeatureDecorator.FeatureDecoratorBuilder>
	160.10.6.1. public FeatureDecorator.FeatureDecoratorBuilder setExtensions(List<FeatureExtension> extensions)

	160.10.7. public interface FeatureExtensionHandler
	160.10.7.1. public Feature handle(Feature feature, FeatureExtension extension, FeatureExtensionHandler.FeatureExtensionHandlerBuilder decoratedFeatureBuilder, DecoratorBuilderFactory factory) throws AbandonOperationException

	160.10.8. public static interface FeatureExtensionHandler.FeatureExtensionHandlerBuilder extends BaseFeatureDecorationBuilder<FeatureExtensionHandler.FeatureExtensionHandlerBuilder>

	160.11. org.osgi.service.featurelauncher.repository
	160.11.1. Summary
	160.11.2. public interface ArtifactRepository
	160.11.2.1. public InputStream getArtifact(ID id)

	160.11.3. public interface ArtifactRepositoryFactory
	160.11.3.1. public ArtifactRepository createRepository(Path path)
	160.11.3.2. public ArtifactRepository createRepository(URI uri, Map<String, Object> props)

	160.12. org.osgi.service.featurelauncher.runtime
	160.12.1. Summary
	160.12.2. public interface FeatureRuntime extends ArtifactRepositoryFactory
	160.12.2.1. public Map<String, ArtifactRepository> getDefaultRepositories()
	160.12.2.2. public List<InstalledFeature> getInstalledFeatures()
	160.12.2.3. public FeatureRuntime.InstallOperationBuilder install(Feature feature)
	160.12.2.4. public FeatureRuntime.InstallOperationBuilder install(Reader jsonReader)
	160.12.2.5. public void remove(ID featureId)
	160.12.2.6. public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Feature feature)
	160.12.2.7. public FeatureRuntime.UpdateOperationBuilder update(ID featureId, Reader jsonReader)

	160.12.3. public static interface FeatureRuntime.InstallOperationBuilder extends FeatureRuntime.OperationBuilder<FeatureRuntime.InstallOperationBuilder>
	160.12.3.1. public InstalledFeature install()

	160.12.4. public static interface FeatureRuntime.OperationBuilder<T extends FeatureRuntime.OperationBuilder<T>>
	160.12.4.1. public T extends FeatureRuntime.OperationBuilder<T> addRepository(String name, ArtifactRepository repository)
	160.12.4.2. public InstalledFeature complete() throws FeatureRuntimeException
	160.12.4.3. public T extends FeatureRuntime.OperationBuilder<T> useDefaultRepositories(boolean include)
	160.12.4.4. public T extends FeatureRuntime.OperationBuilder<T> withBundleMerge(RuntimeBundleMerge merge)
	160.12.4.5. public T extends FeatureRuntime.OperationBuilder<T> withConfigurationMerge(RuntimeConfigurationMerge merge)
	160.12.4.6. public T extends FeatureRuntime.OperationBuilder<T> withDecorator(FeatureDecorator decorator)
	160.12.4.7. public T extends FeatureRuntime.OperationBuilder<T> withExtensionHandler(String extensionName, FeatureExtensionHandler extensionHandler)
	160.12.4.8. public T extends FeatureRuntime.OperationBuilder<T> withVariables(Map<String, Object> variables)

	160.12.5. public static interface FeatureRuntime.UpdateOperationBuilder extends FeatureRuntime.OperationBuilder<FeatureRuntime.UpdateOperationBuilder>
	160.12.5.1. public InstalledFeature update()

	160.12.6. public final class FeatureRuntimeConstants
	160.12.6.1. public static final String EXTERNAL_FEATURE_ID = "org.osgi.service.featurelauncher:external:1.0.0"

	160.12.7. public class FeatureRuntimeException extends RuntimeException
	160.12.7.1. public FeatureRuntimeException(String message)
	160.12.7.2. public FeatureRuntimeException(String message, Throwable cause)

	160.12.8. public interface InstalledBundle
	160.12.8.1. public Collection<ID> getAliases()
	160.12.8.2. public Bundle getBundle()
	160.12.8.3. public ID getBundleId()
	160.12.8.4. public List<ID> getOwningFeatures()
	160.12.8.5. public int getStartLevel()

	160.12.9. public interface InstalledConfiguration
	160.12.9.1. public Optional<String> getFactoryPid()
	160.12.9.2. public List<ID> getOwningFeatures()
	160.12.9.3. public String getPid()
	160.12.9.4. public Map<String, Object> getProperties()

	160.12.10. public interface InstalledFeature
	160.12.10.1. public ID getFeatureId()
	160.12.10.2. public List<InstalledBundle> getInstalledBundles()
	160.12.10.3. public List<InstalledConfiguration> getInstalledConfigurations()
	160.12.10.4. public boolean isInitialLaunch()

	160.12.11. enum MergeOperationType
	160.12.11.1. INSTALL
	160.12.11.2. UPDATE
	160.12.11.3. REMOVE
	160.12.11.4. public static MergeOperationType valueOf(String name)
	160.12.11.5. public static MergeOperationType[] values()

	160.12.12. public interface RuntimeBundleMerge
	160.12.12.1. public Stream<RuntimeBundleMerge.BundleMapping> mergeBundle(MergeOperationType operation, Feature feature, FeatureBundle toMerge, Collection<InstalledBundle> installedBundles, List<RuntimeBundleMerge.FeatureBundleDefinition> existingFeatureBundles)

	160.12.13. public static final class RuntimeBundleMerge.BundleMapping
	160.12.13.1. public final ID bundleId
	160.12.13.2. public final List<ID> owningFeatures
	160.12.13.3. public BundleMapping(ID bundleId, List<ID> owningFeatures)

	160.12.14. public static interface RuntimeBundleMerge.FeatureBundleDefinition
	160.12.14.1. public Feature getFeature()
	160.12.14.2. public FeatureBundle getFeatureBundle()

	160.12.15. public interface RuntimeConfigurationMerge
	160.12.15.1. public Map<String, Object> mergeConfiguration(MergeOperationType operation, Feature feature, FeatureConfiguration toMerge, InstalledConfiguration configuration, List<RuntimeConfigurationMerge.FeatureConfigurationDefinition> existingFeatureConfigurations)

	160.12.16. public static interface RuntimeConfigurationMerge.FeatureConfigurationDefinition
	160.12.16.1. public Feature getFeature()
	160.12.16.2. public FeatureConfiguration getFeatureConfiguration()

	160.12.17. public final class RuntimeMerges
	160.12.17.1. public RuntimeMerges()
	160.12.17.2. public static Version getOSGiVersion(ID id)
	160.12.17.3. public static RuntimeBundleMerge preferExistingBundles()
	160.12.17.4. public static RuntimeConfigurationMerge replaceExistingProperties()

	160.13. References

