
  

2016-07-07 openMDM® Eclipse working group 1 / 2 

Minutes of the Architecture Committee 

Place: WebEx 

Date/Time: 2016-07-01 – 11:00-12:00 CEST 

Minutes: Andreas Benzing, Canoo 

 

Participants: Andreas Benzing Canoo (Daimler) (chair) 

 Stefan Ebeling BMW 

 Gerwin Mathwig PL MDM@WEB 

 Stefan Wartini MBBM 

 Jan Wiegelmann NorCom 

 - missing -  AUDI 

 - missing -  PL MDM|BL 

Guests:  Sebastian Dirsch, Dennis Schröder 

 

Participants are referred to by their initials, i.e. GM refers to Gerwin Mathwig. 

1 Definition of a collaboration concept and a repository structure 
This issue [1] has been directed to the AC for clarification. 

The way of collaborating in openMDM 4 is revisited. Given the change from Subversion to 

Git along with the new environment at Eclipse, this mode is no longer adequate. At the 

moment, there are multiple repositories, grouped by interfaces, deployment artifacts, and 

other parts of openMDM 5. While this allows for individual tracking of the history of each of 

these repositories, the basic requirement of having individual versioning is not explicitly 

addressed. 

In order to allow for parallel development of multiple artifacts, the separation of code into 

multiple repositories is not required. Instead of working on an isolated part of the code, Git 

provides the means to work on a separate branch [2] of the code base. This mechanism can 

be used to develop multiple versions of the software, for example to implement new features 

on one branch and bug fixes for an existing release on another [3]. The collaboration 

between teams then can be implemented using so-called merge requests, where the 

maintainer of the main branch is basically asked to integrate (merge) the new code into the 

branch [4]. 

Given this collaboration model, the versioning can be done very flexibly. Since the resulting 

artifacts rather than the code base itself should be versioned, these artifacts are made 

available to non-developers once a version is released. The release process itself is covered 

by the Eclipse Development Process [5]. A release can of course reference a specific status 

(commit) of the source code repository. 



  

2016-07-07 openMDM® Eclipse working group 2 / 2 

The combination of community and proprietary elements can be accomplished by adding 

released artifacts as project dependencies. This way, no manual copying of source files into 

another source directory is required unless working on an unreleased version of the code 

base. This exception can still be addressed using automated nightly builds in addition to 

regular releases [5]. 

However, to get the described approach working, the details must be further clarified. The 

initial release of the web client has to be finalized, including the IP clearance currently in 

progress. The responsibilities in the the Eclipse projects participating in the openMDM WG  

in terms of opening, reviewing, and approving merge requests must be clarified by the QC. 

2 Components in openMDM 4 vs Modules in openMDM 5 
Since the meaning of the term component has changed significantly from openMDM 4 to 

openMDM 5, the participants agree to refer to openMDM 5 modules to avoid confusion. 

3 Architecture Conformity Check 
AB suggests a service package to check the code base for conformity to the architecture 

specification. The participants agree that conformity has to be ensured. However, this check 

must be integrated into the release process (see above), rather than having a separate 

service. 

4 Next Meeting 
The next AC meeting will be scheduled when needed. 

References 
[1] https://openmdm.atlassian.net/browse/ORGA-137  

[2] https://git-scm.com/book/en/v1/Git-Branching  

[3] http://nvie.com/posts/a-successful-git-branching-model/  

[4] http://doc.gitlab.com/ee/workflow/gitlab_flow.html  

[5] https://eclipse.org/projects/dev_process/development_process.php#6_4_Releases  

https://openmdm.atlassian.net/browse/ORGA-137
https://git-scm.com/book/en/v1/Git-Branching
http://nvie.com/posts/a-successful-git-branching-model/
http://doc.gitlab.com/ee/workflow/gitlab_flow.html
https://eclipse.org/projects/dev_process/development_process.php#6_4_Releases

