&y
O

Version 0.1.0-SNAPSHOT, Agosto 14, 2019

Table of Contents

Eclipse Jakarta NoSQL
1. One Mapping API, multiples databases

1.1. Beyond JPA

1.2. A Fluent API

1.3. Let’s not reinvent the wheel: Graph

1.4. Particular behavior matters in NoSQL database
1.5. Key features

2. Let’s talk about standard to NoSQL database in Java

2.1. Key-value

2.2. Document collection

2.3. Column Family

2.4. Graph

2.5. Multi-model database
2.6. Scalability vs Complexity
2.7. BASE vs ACID

2.8. CAP Theorem

2.9. The diversity in NoSQL
2.10. Standard in SQL

3. The main idea behind the API

4. Communication API Introduction

4.1. The API structure
4.2. Value
4.2.1. Make custom Writer and Reader
4.3. Element Entity
4.3.1. Document
4.3.2. Column
4.4. Entity
4.4.1. ColumnFamilyEntity
4.4.2. DocumentEntity
4.4.3. KeyValueEntity
4.5. Manager
4.5.1. Document Manager
DocumentCollectionManager
DocumentCollectionManagerAsync

Search information on a document collection

Removing information from Document Collection

4.5.2. Column Manager
ColumnFamilyManager

© 0 T O O R R R R R W N

W W N DN DN DN DN DN DN DNDDNDDNDDNDDNDNDNDDNDDNDDND R B B B2 m =
O O © 00 0 N N9 9 9 o0 o o0 U1 v 0NN R R U ww N R =R o

ColumnFamilyManagerAsync
Search information on a column family
Removing information from Column Family
4.5.3. BucketManager
Removing and retrieve information from a key-value database
4.5.4. Querying by text at Communication API
Key-Value
Column and Document
WHERE
Conditions
Operators
The value
SKIP
LIMIT
ORDER BY
TTL
PreparedStatement and PreparedStatementAsync
4.6. Factory
4.6.1. Column Family Manager Factory
4.6.2. Document Collection Factory
4.6.3. Bucket Manager Factory
4.7. Configuration
4.7.1. Settings
Encryption
4.7.2. Document Configuration
4.7.3. Column Configuration
4.7.4. Key Value Configuration
4.8. The diversity on NoSQL database
5. Mapping API Introduction
5.1. The Mapping structure
5.2. Models Annotation
5.2.1. Annotation Models
Entity
Column
MappedSuperclass
Id
Embeddable
Convert
Collection
5.2.2. Qualifier annotation

5.2.3. ConfigurationUnit

30
31
31
32
32
32
33
33
35
35
35
35
36
36
36
36
36
37
37
37
38
38
38
39
40
40
41
41
43
43
43
44
44
45
46
46
47
47
48
50
50

Injection of the code
The configuration structure
5.3. Template classes

5.3.1. DocumentTemplate

5.3.2. DocumentTemplateAsync

5.3.3. ColumnTemplate
ColumnTemplateAsync

5.3.4. Key-Value template

5.3.5. Graph template
Create the Relationship Between Them (EdgeEntity)
Querying with traversal

5.3.6. Querying by text at Mapping API
Key-Value
Column-Family
Document Collection
Graph

5.4. Repository

5.4.1. Query by method
Special Parameters

5.4.2. Using Repository as an asynchronous way

5.4.3. Using Query annotation

5.4.4. How to Create Repository and RepositoryAsync implementation programmatically

5.5. Pagination
5.5.1. Column
Template

Query Mapper
Repository
5.5.2. Document
Template
Query Mapper
Repository
5.5.3. Graph
Repository
5.6. Bean Validation
6. References
6.1. Frameworks
6.2. Databases
6.3. Articles

51
53
54
35
58
60
62
64
66
67
67
69
69
70
70
70
71
74
75
76
77

79
80
81
81
82
82
82
83
83
83
84
84
86
86
86
88

Specification: Eclipse Jakarta NoSQL
Version: 0.7.0-SNAPSHOT

Status: Draft

Release: Agosto 14, 2019

Copyright (c) 2019 Eclipse Jakarta NoSQL Contributors:
Otavio Santana

This program and the accompanying materials are made available under the
terms of the Eclipse Public License v. 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0.

http://www.eclipse.org/legal/epl-2.0
http://www.eclipse.org/legal/epl-2.0
http://www.eclipse.org/legal/epl-2.0
http://www.eclipse.org/legal/epl-2.0
http://www.eclipse.org/legal/epl-2.0

Eclipse Jakarta NoSQL

Chapter 1. One Mapping API, multiples
databases

Eclipse NoSQL has one API for each NoSQL database type. However, it uses the same annotations to
map Java objects. Therefore, with just these annotations that look like JPA, there is support for more
than twenty NoSQL databases.

public class God {

private String id;
private String name;

private String power;
/],
}

Another example can be found in an article that demonstrates the same annotated entity used
across different NoSQL databases: Redis, Cassandra, Couchbase, and Neo4]. The approach is "stick
to the API": the developer can replace Redis with Hazelcast, as both implement the Key-Value API,
thus avoiding vendor lock-in with one of these databases.

Vendor lock-in is one of the things any Java project needs to consider when choosing NoSQL
databases. If there’s a need for a switch, other considerations include: time spent on the change, the
learning curve of a new API to use with this database, the code that will be lost, the persistence
layer that needs to be replaced, etc. Eclipse JNoSQL avoids most of these issues through the
Communication APIs. It also has template classes that apply the design pattern 'template method’ to
databases operations. And the Repository interface allows Java developers to create and extend
interfaces, with implementation automatically provided by Eclipse JNoSQL: support method
queries built by developers will automatically be implemented for them.

public interface GodRepository extends Repository<God, String> {
Optional<God> findByName(String name);

}

GodRepository repository = ...;

God diana = God.builder().withId("diana").withName("Diana").withPower("hunt").builder
0);

repository.save(diana);

Optional idResult = repository.findById("diana");

Optional nameResult = repository.findByName("Diana");

1.1. Beyond JPA

JPA is a good API for object-relationship mapping and it’s already a standard in the Java world
defined in JSRs. It would be great to use the same API for both SQL and NoSQL, but there are
behaviors in NoSQL that SQL does not cover, such as time to live and asynchronous operations. JPA
was simply not made to handle those features.

ColumnTemplateAsync templateAsync = --;

ColumnTemplate template = '

God diana = God.builder().withId("diana").withName("Diana").withPower("hunt").builder
0);

Consumer<God> callback = g -> System.out.println("Insert completed to:
templateAsync.insert(diana, callback);

Duration ttl = Duration.ofSeconds(1);

template.insert(diana, Duration.ofSeconds(1));

+9);

1.2. A Fluent API

Eclipse Jakarta NoSQL is a fluent API that makes it easier for Java developers create queries that
either retrieve or delete information in a Document type, for example.

1.3. Let’s not reinvent the wheel: Graph

The Communication Layer defines three new APIs: Key-Value, Document and Column Family. It
does not have new Graph API, because a very good one already exists. Apache TinkerPop is a graph
computing framework for both graph databases (OLTP) and graph analytic systems (OLAP). Using
Apache TinkerPop as Communication API for Graph databases, the Mapping API has a tight
integration with it.

1.4. Particular behavior matters in NoSQL database

Particular behavior matters. Even within the same type, each NoSQL database has a unique feature
that is a considerable factor when choosing a database over another. This “feature” might make it
easier to develop, make it more scaleable or consistent from a configuration standpoint, have the
desired consistency level or search engine, etc. Some examples are Cassandra and its Cassandra
Query Language and consistency level, OrientDB with live queries, ArangoDB and its Arango Query
Language, Couchbase with N1QL - the list goes on. Each NoSQL has a specific behavior and this
behavior matters, so JNoSQL is extensible enough to capture this substantiality different feature
elements.

1.5. Key features

» Simple APIs supporting all well-known NoSQL storage types - Column Family, Key-Value Pair,
Graph and Document databases.

* Use of Convention Over Configuration

Support for Asynchronous Queries
Support for Asynchronous Write operations
Easy-to-implement API Specification and Test Compatibility Kit (TCK) for NoSQL Vendors

The APT’s focus is on simplicity and ease of use. Developers should only have to know a minimal
set of artifacts to work with JNoSQL. The API is built on Java 8 features like Lambdas and
Streams, and therefore fits perfectly with the functional features of Java 8+.

Find out more information and get involved!
Website: http://www.jnosql.org/

Twitter: https://twitter.com/jnosql

GitHub Repo: https://github.com/eclipse?q=Jnosql

Mailing List: https://accounts.eclipse.org/mailing-list/jnosql-dev

http://www.jnosql.org/
https://twitter.com/jnosql
https://github.com/eclipse?q=Jnosql
https://accounts.eclipse.org/mailing-list/jnosql-dev

Chapter 2. Let’s talk about standard to
NoSQL database in Java

The NoSQL DB is a database that provides a mechanism for storage and retrieval of data, which is
modeled by means, other than the tabular relations used in relational databases. These databases
have speed and high scalability. This kind of database is becoming more popular in several
applications, which include financial ones. As a result of the increase, the number of users and
vendors are increasing too.

The NoSQL database is defined basically by its model of storage, and there are four types:

2.1. Key-value

Apollo

Ares War

: - * Love Beaty

Figure 1. Key-value structure

This database has a structure that looks like a java.util. Map APIL, where we can store any value from
a key.

Examples:
* Amazon Dynamo
* Amazon S3
» Redis

e Scalaris

e Voldemort

Table 1. Key-Value vs Relational structure

Relational structure Key-value structure
Table Bucket

Row Key/value pair
Column -

Relationship

2.2. Document collection

{

"name”: "Diana",
Ildutyll [
"Hunt",

- .

IIMoonIIJ

"Nature”

1,

‘age’: 1000,

"siblings": {
"Apollo”: "brother”

}

Figure 2. Document structure

This model can store any document without the need to predefine a structure. This document may
be composed of numerous fields with many kinds of data, including a document inside another
document. This model works either with XML or JSON file.

Examples:

* Amazon SimpleDB
» Apache CouchDB
* MongoDB

Table 2. Document vs Relational structure

Relational structure Document Collection structure
Table Collection

Row Document

Column Key/value pair

Relationship Link

2.3. Column Family
Row-key Columns...

&

Sun

&

{Love, happy}

&%

War Sword

Figure 3. Column Family structure

This model became popular with the Bigtable’s paper by Google, with the goal of being a distributed
system storage, projected to have either high scalability or volume.

Examples:

 HBase
e Cassandra

» Scylla

Cloud Data

SimpleDB

Table 3. Column Family vs Relational structure

Relational structure Column Family structure

Table Column Family
Row Column
Column Key/value pair
Relationship not supported

2.4. Graph

>
o
=
o
>
@
7]

W __--"°0\N%
S e Hephaestus ent \(\

Figure 4. Graph structure

In computing, a graph database is a database that uses graph structures for semantic queries with
nodes, edges, and properties, to represent and store data.

* Property: A small component in the structure; a tuple where the key is the name, and the value
is the information itself.
* Vertex: Looks like the table in an SQL technology that has an unlimited number of properties.

* Edge: The element that represents the relationship between vertices; it has a small similarity
with a relationship in SQL. However, the edge has properties — so, a connection deeper than
relational technology.

P’O"Hna s a mm s omm s mm s mm s omm b omm o mm s mm s omm ok mm s omm s omm o
when 2018
where | Brazil
label Person label Book
name Poliana age 2007
age 25 name The Shack

Figure 5. Graph with vertex, edge and properties

The graph direction is another concept pretty important in a graph structure, i.e., you can know a
person despite this person not knowing you.

* Out: Vertex > action > vertex; the "out" is the "action" direction, moreover, the sample (i.e. I
know the Ironman)
* In: Vertex > passive; the "in" is the reaction course; synonymously, the Ironman is known by me.

e Both: Refers to either direction IN or OUT
Examples:

* Neo4j
e InfoGrid
e Sones

* HyperGraphDB

Table 4. Graph vs Relational structure

Relational Structure Graph structure

Table Vertex and Edge

Row Vertex

Column Vertex and Edge property
Relationship Edge

2.5. Multi-model database

Some databases have support for more than one kind of model storage. This is the multi-model
database.

Examples:

e OrientDB

10

e Couchbase

2.6. Scalability vs Complexity

Every kind with specific persistence structures to solve particular problems. As the graph below
shows, there is a balance regarding model complexity; more complicated models are less scalable.
E.g., a key-value NoSQL database is more scalable, but it has smooth complexity once all queries
and operations are key-based.

Sl

O
(O Column
(O Document

@ Graph

< 77T 77T o0 70 O

Complexity

Figure 6. Scalability vs Complexity

2.7. BASE vs ACID

avs

Figure 7. BASE vs ACID

11

While in the relational persistence technology, they use the ACID, that is an acronym for Atomicity,
Consistency, Isolation, Durability.

Atomicity: All of the operations in the transaction will complete, or none will.

Consistency: The database will be in a consistent state when the transaction begins and ends.

Isolation: The transaction will behave as if it is the only operation being performed upon the
database.

Durability: Upon completion of the transaction, the operation will not be reversed.
In the NoSQL world, they usually focus on the BASE. As ACID the BASE is an acronym.

» Basic Availability: The database appears to work most of the time.

» Soft-state: Stores don’t have to be write-consistent, nor do different replicas have to be
mutually consistent all the time.

* Eventual consistency: Stores exhibit consistency at some later point (e.g., lazily at read time).

2.8. CAP Theorem

Consistency

Partition

Availability Tolerance

Figure 8. CAP Theorem

The CAP theorem applies to distributed systems that store state. Eric Brewer, at the 2000
Symposium on Principles of Distributed Computing (PODC), conjectured that in any networked
shared-data system, there is a fundamental trade-off between consistency, availability, and

12

partition. Tolerance: In 2002, Seth Gilbert and Nancy Lynch of MIT published a formal proof of
Brewer’s conjecture. The theorem states that networked shared-data systems can only
guarantee/strongly support two of the following three properties:

* Consistency: A guarantee that every node in a distributed cluster returns the same, most
recent, successful write. Consistency refers to every client having the same view of the data.
There are various types of consistency models. Consistency in CAP (used to prove the theorem)
refers to linearizability or sequential consistency - a very strong form of consistency.

 Availability: Every non-failing node returns a response for all read and write requests in a
reasonable amount of time. The key word here is “every.” To be available, every node (on either
side of a network partition) must be able to respond in a reasonable amount of time.

 Partition Tolerance: The system continues to function and uphold its consistency guarantees in
spite of network partitions. Network partitions are a fact of life. Distributed systems
guaranteeing partition tolerance can gracefully recover from partitions once the partition heals.

2.9. The diversity in NoSQL

At the current moment, there are around two hundred and twenty-five NoSQL databases. These
databases usually go beyond to support one or more types of structures, and they also have specific
behavior. These particular features make the developer’s life more comfortable in different ways,
such as Cassandra Query language at Cassandra database, a search engine to Elasticsearch, the live
query at OrientDB, N1QL at Couchbase, and so on. These aspect matters when the topic is a NoSQL
database.

2.10. Standard in SQL

Looking to Java application that uses a relational database, it’s a good practice to have a layer
bridge between a Java application and relationship database: a DAO - the data access object. Talking
more about relational databases, there are APIs such as JPA and JDBC that have some advantages to
a Java developer:

* There isn’t a lock-in vendor. In other words, with the standard, a database change will happen
easier and with transparency because we just need to change a simple driver.

It isn’t necessary to learn a new API for each new database once there is a common database
communication.

» There isn’t an impact in change from one vendor to another; in some moments, it’s necessary to
use a specific database resource, but in this case, not everything in the DAO layer is lost.

Currently in NoSQL, database have no standard, so a Java developer has some issues:

¢ Lock-in vendor

* To each new database, it’s necessary to learn a new API. Any change to another database has a
high impact, and once all the communication layer will be lost, there isn’t a standard API. This
happens even with the same kind of NoSQL database; for example, a change in a column to
another column.

13

There is a massive effort to create a common API to make the Java developer’s life easier, such as
Spring Data, Hibernate ORM, and TopLink. The JPA is a popular API in the Java world, which is why
all solutions try to use it. However, this API is created for SQL and not for NoSQL and doesn’t
support all behaviors in NoSQL database. Many NoSQL hasn’t a transaction, and many NoSQL
database hasn’t support to asynchronous insertion.

The solution for this case would be the creation of a specification that covers the four kinds of
NoSQL database; as described, each NoSQL database has specific structures that must be
recognized. The new API should look like the JPA once the developer has familiarity with this API,
plus be extensible when a database has more than a particular behavior. However, that cannot be
JPA as JPA has the goal of a relational database instead of NoSQL. As described briefly, NoSQL has
more than one structure that must be covered. They usually use BASE instead of ACID, they
typically don’t use SQL as a query language, schemeless, and so on.

14

Chapter 3. The main idea behind the API

The divide-and-conquer strategy decreases the complexity of systems within modules or structures.
These structure levels split responsibility and make maintenance and replaceability more clear.
The new Jakarta NoSQL API proposal is going to be a bridge between the logic tier and the data tier.
To do this, we need to create two APIS: one to communicate to a database and another one to be a
high abstraction to the Java application.

In software, there are structures: tiers, physical structures, and layers. The multi-tier application
has three levels:
* Presentation tier: Has a primary duty to translate results so the user can understand.

* Logic tier: Has all business rules, processes, conditions, saved information, etc. This level moves
and processes information between other levels.

» Data tier: Retrieves and stores information in either a database or a system file.

15

View Tier

L M~

Talking more precisely about the physical layer and the logic to separate responsibilities, there are
other layers.

The logic tier, where the application and the business rules stay, has additional layers:

» Application layer: The bridge between the view tier and logic tier, e.g. convert an object into
either JSON or HTML.

» Service layer: The service layer; this can be either a Controller or a Resource.

* Business Layer: This is the part of the program that encodes the real-world business or domain
rules that determine how data will be created, stored, and changed.

» Persistence Layer: This is a layer that provides simplified access to data stored in persistent
storage of some kind.

Within a persistence layer, it has its layers: A Data Access Object, DAO. This structure connects
business layer and persistence layer. Inside it has an API that does database. Currently, there is a
difference between SQL and NoSQL database:

In the relational database, there are two mechanisms under DAO, JDBC, and JPA:
* JDBC: a deep layer with a database that has communications, underlying transactions, and is

basically a driver to a particular database.

* JPA: A high layer that has communication with either JDBC or JPA. This layer has a high
mapping to Java; this place has annotations and an EntityManager. In general, a JPA has
integrations with other specifications, such as CDI and Bean Validation.

A considerable advantage of this strategy is that one change, either JDBC or JPA, can happen
quickly. When you change a database, you need to supersede to a respective driver by a database,
and then you’re done! The code is ready for a new database change.

17

JDBC JDBC

&
e
=

Figure 9. A usual Java application with JPA layer architecture

In a NoSQL database, there isn’t a strategy to save code, and there is little impact for change. All
APIs are different and don’t follow any one standard, so one change to a new database can result in
a lot of work.

* The database vendor needs to be worried about the high-level mapping to Java world, and the
solution provider needs to be concerned about the low level of communication with a particular
database.

* The database vendor needs to “copy” these communication solutions to all Java vendors.

* To a Java developer, there are two lock-in types: If a developer uses an API directly for a change,
it loses code. If a developer uses high-level mapping, they lock-in a Java solution because if this
high level doesn’t have the support to a particular NoSQL database, the developer needs to
change to either a Java solution or use a NoSQL API directly.

18

o |

D@

Figure 10. A NoSQL Java application that has lock-in to each NoSQL provider

A wise recommendation might be to use the JPA because once the developer already knows this
standard SQL API, they can use the same API for a relational database and apply it to a NoSQL
database. Using an API with SQL concepts in NoSQL is the same as using a knife as a spoon; the
result is a disaster! Furthermore, the NoSQL world has diversity with several data structures and
particular behavior to each provider, and both matter in a software solution. Indeed, the merge
strategy to use just one API is still a discussion nowadays.

A good point about using NoSQL as a consequence polyglot persistence is that data storage is about
choice. When a database offers gains, it sacrifices other aspects; it is the CAP theorem slamming the
door. Hence, an API generic enough to encapsulate all kinds of databases might be useless.

The history between Java and NoSQL has several solutions that can be split by two:

1. NoSQL Drivers
2. Mapper
o Mapper Agnostic
o Mapper Specific
The first one is the driver API; this API has a low communication level, such as JDBC to NoSQL. It

guarantees full power over the NoSQL database, a semantic closer to a database. However, it
requires more code to move it forward to the entity domain the portability is pretty down;

19

therefore, the learning curve.

The Object Mapper lets the developer work in terms of domains, thus it can help a developer follow
ethical practices. A mapper may be specific, which means that a mapper is made for a particular
database, so the mapper will support all the database features but with the price of a lock-in API.
On the other hand, there is the agnostic mapper that uses a generic API to encapsulate the database
API, which allows a developer with an API to connect several databases; however, it tends to either
not cover numerous features in a database or many databases.

The rapid adoption of NoSQL combined with the vast assortment of implementations has driven a
desire to create a set of standardized APIs. In the Java world, this was initially proposed in an effort
by Oracle to define a NoSQL API for Java EE 9. The justification for the definition of a new API,
separate form JDBC and JPA, was the following:

* JPA was not designed with NoSQL in mind
* A single set of APIs or annotations isn’t adequate for all database types
* JPA over NoSQL implies the inconsistent use of annotations

* The diversity in the NoSQL world matters

Unfortunately, what Oracle proposed for Java EE 9 was not completed when Java EE was donated to
the Eclipse Foundation.

To bring innovation under the Jakarta EE umbrella, Jakarta NoSQL was born. The goal of this
specification is to ease integration between Java applications and NoSQL databases, with a standard
API to work with different types and vendors of NoSQL databases. To achieve this, the spec has two
APIs that work like layers, and each layer has a specific goal that can integrate between each and
use in isolation:

* Communication API: Exactly what JDBC is to SQL. This API has four specializations, one for
each type of database (column, document, key-value and graph). The specialties are
independent of each other, optional from the point of the database vendor and have their
specific TCKs.

* Mapping API: This layer is based on Annotations, analogous to JPA and CDI, and preserves
integration with other Jakarta EE technologies like Bean Validation and so on.

Jakarta EE NoSQL is the first specification in the Java enterprise. As any Java specification, it
analyzes solutions that already exist, checks the history with both success and failure cases, and
then goes in a direction that has a lesser number of trade-offs in an API architecture. The divide
and conquer method fits well in the layer, communication, mapping, and NoSQL types. Thus, it will
provide a straightforward specification, light maintenance; it will define the scope of each API; and
it will work better in extensibility once the particular features matter to a NoSQL database.ut CDI
events is how easy it creates and add new functionalities without changing the core code that is
easy to use bean validation just to listen to an event.

Jakarta EE has a bright future with a significant integration with the community and open source.
More transparency, after all, is the most meaningful power of Jakarta. It’s not the technology itself,
but the heart of the community, therefore, the success is in the hand of each developer.

20

Chapter 4. Communication API Introduction

With the strategy to divide and conquer on Jakarta NoSQL, the communication API was born. It has
the goal to make the communication layer easy and extensible. The extensibility is more than
important, that is entirely necessary once the API must support specific feature in each database.
Nonetheless, the advantage of a common API in a change to another database provider has lesser
than using the specific API.

To cover the three kinds of database, this API has three packages, one for each database.

« jakarta.nosql.column
« jakarta.nosql.document

« jakarta.nosql.keyvalue

o The package name might change on the Jakarta EE process.

There isn’t a communication API because of the Graph API already does exist, that is Apache
TinkerPop.

So, if a database is multi-model, has support to more than one database, it will implement an API to
each database which it supports. Also, each API has the TCK to prove if the database is compatible
with the APIL Even from different NoSQL types, it tries to use the same nomenclature:

* Configuration

* Factory

* Manager

* Entity

e Value

4.1. The API structure

The communication has four projects:

* The communication-core: The Jakarta NoSQL API communication common to all types.

* The communication-key-value: The Jakarta NoSQL communication API layer to key-value
database.

* The communication-column: The Jakarta NoSQL communication API layer to column
database.

* The communication-document: The Jakarta NoSQL communication API layer to document
database.

Each module works separately; thereby, a NoSQL vendor just needs to implement the specific type,
e.g., a key-value provider will apply a key-value API. If a NoSQL already has a driver, this API can
work as an adapter with the current one. To multi-model NoSQL, providers will implement the API
which they need.

21

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/

ﬁ To the Graph communication API, there is the Apache TinkerPop that won’t be
covered in this documentation.

4.2. Value

This interface represents the value that will store, that is a wrapper to be a bridge between the

database and the application. E.g. If a database does not support a Java type, it may do the
conversion with ease.

Value value = Value.of(12);

The Value interface has the methods:

* Object get(); Returns the value as Object

o <T> T get(Class<T> clazz); Does the conversion process to the required type that is the safer
way to do it. If the type required doesn’t have support, it will throw an exception, although the
API allows to create custom converters.

o <T> T get(TypeSupplier<T> typeSupplier); Similar to the previous method, it does the
conversion process but using a structure that uses generics such as List, Map, Stream and Set.

Value value = Value.of(12);

String string = value.get(String.class);

List<Integer> list = value.get(new TypeReference<List<Integer>>() {});
Set<Long> set = value.get(new TypeReference<Set<Long>>() {});

Stream<Integer> stream = value.get(new TypeReference<Stream<Integer>>() {});
Object integer = value.get();

4.2.1. Make custom Writer and Reader

As mentioned before, the Value interface is to store the cost information into a database. The API
already has support to the Java type such as primitive types, wrappers types, new Java 8 date time.
Furthermore, the developer can create a custom converter easily and quickly. It has two interfaces:

* ValueWriter: This interface represents a Value instance to write in a database.

* ValueReader: This interface represents how the Value will convert to Java application. This
interface will use the <T> T get(Class<T> clazz) and <T> T get(TypeSupplier<T> typeSupplier).

Both class implementations load from Java SE ServiceLoader resource. So, to Communication API
learn a new type, just register on ServiceLoader, e.g., Given a Money type:

22

http://tinkerpop.apache.org/

public class Money {
private final String currency;
private final BigDecimal value;

Money(String currency, BigDecimal value) {
this.currency = currency;
this.value = value;

}

public String getCurrency() {
return currency;

}

public BigDecimal getValue() {
return value;

}

public String toString() {

return currency + ' ' + value;

}

public static Money parse(String text) {
String[] texts = text.split(" ");
return new Money(texts[@], BigDecimal.valueOf(Double.valueOf(texts[1])));

Just to be more didactic, the book creates a simple money representation. As everyone knows, that
is not a good practice reinventing the wheel, so in production, the Java Developer must use mature
Money APIs such as Moneta that is the reference implementation of SR 354.

The first step is to create the converter to a custom type database, the ValueWriter. It has two
methods:

* boolean isCompatible(Class clazz): Check if the given class has support for this implementation.

* S write(T object): Once the implementation supports the type, the next step converts a T
instance to S type.

23

https://github.com/JavaMoney
https://jcp.org/en/jsr/detail?id=354

public class MoneyValueWriter implements ValueWriter<Money, String> {

public boolean isCompatible(Class clazz) {
return Money.class.equals(clazz);

}

public String write(Money money) {
return money.toString();

}

With the MoneyValueWriter created and the Money type will save as String, then the next step is read
information to Java application. As can be seen, a ValueReader implementation. This interface has
two methods:

* boolean isCompatible(Class clazz); Check if the given class has support for this implementation.

o <T> T read(Class<T> clazz, Object value); Converts to the T type from Object instance.

public class MoneyValueReader implements ValueReader {

public boolean isCompatible(Class clazz) {
return Money.class.equals(clazz);

}

public <T> T read(Class<T> clazz, Object value) {
return (T) Money.parse(value.toString());
}

After both implementations are done, the last step is to register them into two files:

« META-INF/services/jakarta.nosql.ValueReader
« META-INF/services/jakarta.nosql.ValueWriter

Each file will have the qualifier of this respective implementation:

The file jakarta.nosql.ValueReader will have:

my.company.MoneyValueReader

The file jakarta.nosql.ValueWriter will have:

24

my.company.MoneyValuellriter

Value value = Value.of("BRL 10.0");

Money money = value.get(Money.class);

List<Money> 1list = value.get(new TypeReference<List<Money>>() {});
Set<Money> set = value.get(new TypeReference<Set<Money>>() {});;

4.3. Element Entity

The Element entity is a small piece of a body, except a key-value structure type, once this structure
is simple. E.g. The column family structure, the entity has columns, element entity with column has
a tuple where the key is the name, and the value is the information as a Value implementation.

* Document
* Column
4.3.1. Document
The Document is a small piece of a Document entity. Each document has a tuple where the key is the

document name, and the value is the information itself as Value.

Document document = Document.of("name", "value");
Value value = document.getValue();
String name = document.getName();

The document might have another document inside; the subdocument concept.
Document subDocument = Document.of("subDocument”, document);

The way to store information in subdocuments will also depend on each driver’s implementation.
To access the information from Document, it has an alias method to Value; in other words, it does a

conversion directly from Document interface.

Document age = Document.of("age", 29);

String ageString = age.get(String.class);

List<Integer> ages = age.get(new TypeReference<List<Integer>>() {});
Object ageObject = age.get();

4.3.2. Column

The Column is a small piece of the column family entity. Each column has a tuple where the name
represents a key and the value itself as a Value implementation.

25

Column document = Column.of("name", "value");
Value value = document.getValue();
String name = document.getName();

With this interface, we may have a column inside a column.
Column subColumn = Column.of("subColumn", column);

The way to store a subcolumn will also depend on each driver’s implementation as well as the
information.

To access the information from Column, it has an alias method to Value; thus, you can do a

conversion directly from Column interface.

Column age = Column.of("age", 29);

String ageString = age.get(String.class);

List<Integer> ages = age.get(new TypeReference<List<Integer>>() {});
Object ageObject = age.get();

4.4. Entity

The Entity is the body of the information that goes to the database; each database has an Entity:

* ColumnEntity
* DocumentEntity

* KeyValueEntity
4.4.1. ColumnFamilyEntity
The ColumnFamilyEntity is an entity to column family database type. It is composed of one or more

columns. As a result, the Column is a tuple of name and value.

ColumnEntity entity = ColumnEntity.of("columnFamily");
entity.add(Column.of("id", Value.of(10L)));
entity.add(Column.of("version", 0.001));
entity.add(Column.of("name", "Diana"));
entity.add(Column.of("options", Arrays.asList(1, 2, 3)));

List<Column> columns = entity.getColumns();
Optional<Column> id = entity.find("id");

4.4.2. DocumentEntity

The DocumentEntity is an entity to document collection database type. It is composed of one or more

26

documents. As a result, the Document is a tuple of name and value.

DocumentEntity entity = DocumentEntity.of("documentFamily");
String name = entity.getName();

entity.add(Document.of("id", Value.of(10L)));
entity.add(Document.of("version", 0.001));
entity.add(Document.of("name", "Diana"));
entity.add(Document.of("options", Arrays.aslList(1, 2, 3)));

List<Document> documents = entity.getDocuments();
Optional<Document> id = entity.find("id");
entity.remove("options");

4.4.3. KeyValueEntity

The KeyValueEntity is the simplest structure; it has a tuple and a key-value structure. As the
previous entity, it has direct access to information using alias method to Value.

KeyValueEntity<String> entity = KeyValueEntity.of("key", Value.of(123));
KeyValueEntity<Integer> entity2 = KeyValueEntity.of(12, "Text");

String key = entity.getKey();

Value value = entity.getValue();

Integer integer = entity.get(Integer.class);

4.5. Manager

The Manager is the class that pushes information to a database and retrieves it. The manager might
have a synchronous and asynchronous implementation.

* DocumentCollectionManager

* DocumentCollectionManagerAsync

¢ ColumnConfiguration

* ColumnConfigurationAsync

BucketManager

4.5.1. Document Manager
The manager class to a document type can be synchronous or asynchronous:

* DocumentCollectionManager: To do synchronous operations.

* DocumentCollectionManagerAsync: To do asynchronous operations.

DocumentCollectionManager

The DocumentCollectionManager is the class that manages the persistence on the synchronous way to

27

document collection.

DocumentEntity entity = DocumentEntity.of("collection");
Document diana = Document.of("name", "Diana");
entity.add(diana);

List<DocumentEntity> entities = Collections.singletonList(entity);
DocumentCollectionManager manager = //instance;

//insert operations

manager.insert(entity);

manager.insert(entity, Duration.ofHours(2L));//inserts with 2 hours of TTL
manager.insert(entities, Duration.ofHours(2L));//inserts with 2 hours of TTL
//updates operations

manager .update(entity);

manager .update(entities);

DocumentCollectionManagerAsync

The DocumentCollectionManagerAsync is the class that manages the persistence on an asynchronous
way to document collection.

DocumentEntity entity = DocumentEntity.of("collection");
Document diana = Document.of("name", "Diana");
entity.add(diana);

List<DocumentEntity> entities = Collections.singletonList(entity);
DocumentCollectionManagerAsync managerAsync = //instance

//insert operations

managerAsync.insert(entity);

managerAsync.insert(entity, Duration.ofHours(2L));//inserts with 2 hours of TTL
managerAsync.insert(entities, Duration.ofHours(2L));//inserts with 2 hours of TTL
//updates operations

managerAsync.update(entity);

managerAsync.update(entities);

Sometimes on an asynchronous process, it’s important to know when this process is over, so the
DocumentCollectionManagerAsync also has callback support.

Consumer<DocumentEntity> callBack = e -> {};
managerAsync.insert(entity, callBack);
managerAsync.update(entity, callBack);

Search information on a document collection

The Document Communication API has support to retrieve information from both ways;
synchronous and asynchronous, from the DocumentQuery class. The DocumentQuery has information

28

such as sort type, document, and also the condition to retrieve information.

The condition on DocumentQuery is given from DocumentCondition, which has the status and the
document. E.g. The condition behind is to find a name equal "Ada".

DocumentCondition nameEqualsAda = DocumentCondition.eq(Document.of("name", “Ada”));

Also, the developer can use the aggregators such as AND, OR, and NOT.

DocumentCondition nameEqualsAda = DocumentCondition.eq(Document.of("name", "Ada"));
DocumentCondition youngerThan2Years = DocumentCondition.lt(Document.of("age", 2));
DocumentCondition condition = nameEqualsAda.and(youngerThan2Years);
DocumentCondition nameNotEqualsAda = nameEqualsAda.negate();

If there isn’t a condition in the query, that means the query will try to retrieve all information from
the database, similar to a “select * from database” in a relational database, just remembering that
the return depends on the driver. It is important to say that not all NoSQL databases have support
for this resource. DocumentQuery also has pagination feature to define where the data starts, and its
limits.

DocumentCollectionManager manager = //instance;

DocumentCollectionManagerAsync managerAsync = //instance;

DocumentQuery query = DocumentQueryBuilder.select().from("collection").where("age").
1t(10).and("name").eq("Ada").orderBy("name").asc().1imit(10).skip(2).build();
List<DocumentEntity> entities = manager.select(query);

Optional<DocumentEntity> entity = manager.singleResult(query);
Consumer<List<DocumentEntity>> callback = e -> {};

managerAsync.select(query, callback);

Removing information from Document Collection

Such as DocumentQuery, there is a class to remove information from the document database type: A
DocumentDeleteQuery type.

It is smoother than DocumentQuery because there isn’t pagination and sort feature, once this
information is unnecessary to remove information from database.

DocumentCollectionManager manager = //instance;

DocumentCollectionManagerAsync managerAsync = //instance;

DocumentDeleteQuery query = DocumentQueryBuilder.delete().from("collection").where(
"age").gt(10).build();

manager .delete(query);

managerAsync.delete(query);

managerAsync.delete(query, v -> {});

29

4.5.2. Column Manager
The Manager class for the column family type can be synchronous or asynchronous:

* ColumnFamilyManager: To do synchronous operations.

* ColumnFamilyManagerAsync: To do asynchronous operations.

ColumnFamilyManager

The ColumnFamilyManager is the class that manages the persistence on the synchronous way to
column family.

ColumnEntity entity = ColumnEntity.of("columnFamily");
Column diana = Column.of("name", "Diana");
entity.add(diana);

List<ColumnEntity> entities = Collections.singletonList(entity);
ColumnFamilyManager manager = //instance;

//inserts operations

manager.insert(entity);

manager.insert(entity, Duration.ofHours(2L));//inserts with 2 hours of TTL
manager.insert(entities, Duration.ofHours(2L));//inserts with 2 hours of TTL
//updates operations

manager .update(entity);

manager .update(entities);

ColumnFamilyManagerAsync

The ColumnFamilyManagerAsync is the class that manages the persistence on the asynchronous way to
column family.

Column diana = Column.of("name", "Diana");
entity.add(diana);

List<ColumnEntity> entities = Collections.singletonList(entity);
ColumnFamilyManagerAsync managerAsync = null;

//inserts operations

managerAsync.insert(entity);

managerAsync.insert(entity, Duration.ofHours(2L));//inserts with 2 hours of TTL
managerAsync.insert(entities, Duration.ofHours(2L));//inserts with 2 hours of TTL
//updates operations

managerAsync.update(entity);

managerAsync.update(entities);

Sometimes on an asynchronous process, is important to know when this process is over, so the
ColumnFamilyManagerAsync also has callback support.

30

Consumer<ColumnEntity> callBack = e -> {};
managerAsync.insert(entity, callBack);
managerAsync.update(entity, callBack);

Search information on a column family

The Column communication API has support to retrieve information from both ways synchronous
and asynchronous from the ColumnQuery class. The ColumnQuery has information such as sort type,
document and also the condition to retrieve information.

The condition on ColumnQuery is given from ColumnCondition, which has the status and the column.
E.g. The condition behind is to find a name equal "Ada".

ColumnCondition nameEqualsAda = ColumnCondition.eq(Column.of("name"”, “Ada”));

Also, the developer can use the aggregators such as AND, OR, and NOT.

ColumnCondition nameEqualsAda = ColumnCondition.eq(Column.of("name", "Ada"));
ColumnCondition youngerThan2Years = ColumnCondition.1t(Column.of("age", 2));
ColumnCondition condition = nameEqualsAda.and(youngerThan2Years);
ColumnCondition nameNotEqualsAda = nameEqualsAda.negate();

If there isn’t condition at the query, that means the query will try to retrieve all information from
the database, look like a “select * from database” in a relational database, just to remember the
return depends on from driver. It is important to say that not all NoSQL databases have support for
this resource.

ColumnQuery also has pagination feature to define where the data starts, and its limits.

ColumnFamilyManager manager = //instance;

ColumnFamilyManagerAsync managerAsync = //instance;

ColumnQuery query = ColumnQuery query = ColumnQueryBuilder.select().from("collection"
).where("age").1t(10).and("name").eq("Ada").orderBy("name").asc().1limit(10).skip(2).bu
ild();

List<ColumnEntity> entities = manager.select(query);
Optional<ColumnEntity> entity = manager.singleResult(query);

Consumer<List<ColumnEntity>> callback = e -> {};
managerAsync.select(query, callback);

Removing information from Column Family

Such as ColumnQuery, there is a class to remove information from the column database type: A
ColumnDeleteQuery type.

31

It is smoother than ColumnQuery because there isn’t pagination and sort feature, once this
information is unnecessary to remove information from database.

ColumnFamilyManager manager = //instance;
ColumnFamilyManagerAsync managerAsync = //instance;

ColumnDeleteQuery query = ColumnQueryBuilder.delete()
.from("collection").where("age").qt(10).build();

manager .delete(query);

managerAsync.delete(query);
managerAsync.delete(query, v -> {});

4.5.3. BucketManager

The BucketManager is the class which saves the KeyValueEntity on a synchronous way in key-value
database.

BucketManager bucketManager= null;

KeyValueEntity<String> entity = KeyValueEntity.of("key", 1201);
Set<KeyValueEntity<String>> entities = Collections.singleton(entity);
bucketManager.put("key", "value");

bucketManager.put(entity);

bucketManager.put(entities);

bucketManager.put(entities, Duration.ofHours(2));//two hours TTL
bucketManager.put(entity, Duration.ofHours(2));//two hours TTL

Removing and retrieve information from a key-value database

With a simple structure, the bucket needs a key to both retrieve and delete information from the
database.

Optional<Value> value = bucketManager.get("key");

Iterable<Value> values = bucketManager.get(Collections.singletonList("key"));
bucketManager.remove("key");
bucketManager.remove(Collections.singletonList("key"));

4.5.4. Querying by text at Communication API

The communication API also has a query as text. These queries will convert to an operation that
already exists in the Manager interface from the query method, thereby, these operations might
return an UnsupportedOperationException if a NoSQL has no support for that procedure.

This query has basic principles:

e All instructions end with a break like \n

32

e It is case-sensitive
» All keywords must be in lowercase
» The goal is to look like SQL, however simpler

* Even passing in the syntax and parsing the query, a specific implementation may not support an
operation. E.g., Column family may not support query in a different field that is not the ID field.

Key-Value
The key-value has three operations: put, remove and get. ====== Get

Retrieving data for an entity is done using a GET statement:

get_statement ::= GET ID ('," ID)*

//sample

get "Apollo" //to return an element where the id is 'Apollo’
get "Diana" "Artemis" //to return a list of values from the ids

Remove

To delete one or more entities, use the remove statement

del statement ::= GET ID (',' ID)*
//sample
remove "Apollo"

remove "Diana" "Artemis"

Put

To either insert or override values from a key-value database, use the put statement.
put_statement ::= PUT {KEY, VALUE, [TTL]}
//sample
put {"Diana" , "The goddess of hunt"}//adds key -diana and value ->"The goddess of

hunt"
put {"Diana" , "The goddess of hunt", 10 second}//also defines a TTL of 10 seconds

Column and Document

Both have sample syntax that looks like an SQL query, however, remember it has a limitation and
does not support joins. Document types are usually more queriable than a column type. They have
four operations: insert, update, delete, and select.

Insert

Inserting data for an entity is done using an INSERT statement:

33

\

insert_statement ::= INSERT entity_name (name = value, (',' name = value) *) || JSON
[TTL]

//sample

insert God (name = "Diana", age = 10)

insert God (name = "Diana", age = 10, power = {"sun", "god"})
insert God (name = "Diana", age = 10, power = {"sun", "god"}) 1 day

insert God {"name": "Diana", "age": 10, "power": ["hunt", "moon"]}
insert God {"name": "Diana", "age": 10, "power": ["hunt", "moon"]} 1 day

Update

Updating an entity is done using an update statement:

update_statement ::= UPDATE entity_name (name = value, (',"' name = value) *) || JSON
//sample

update God (name = "Diana", age = 10)

update God (name = "Diana", age = 10, power = {"hunt", "moon"})

update God {"name": "Diana", "age": 10, "power": ["hunt", "moon"]}

Delete

Deleting either an entity or fields uses the delete statement

delete_statement ::= DELETE [simple_selection (',' simple_selection)]
FROM entity_name
WHERE where_clause

//sample

delete from God

delete name, age ,adress.age from God where id = "Diana"

Select

The select statement reads one or more fields for one or more entities. It returns a result-set of the
entities matching the request, where each entity contains the fields for corresponding to the query.

34

select_statement ::= SELECT (select_clause | '*')
FROM entity_name
[WHERE where clause]
[SKIP (integer)]
[LIMIT (integer)]
[ORDER BY ordering_clause]
//sample
select * from God
select name, age, adress.age from God order by name desc age desc
select * from God where birthday between "01-09-1988" and "01-09-1988" and salary = 12
select name, age, adress.age from God skip 20 limit 10 order by name desc age desc

WHERE

The WHERE clause specifies a filter to the result. These filters are boolean operations that are
composed of one or more conditions appended with the and (AND) and or (OR) operators.

Conditions

Conditions perform different computations or actions depending on whether a boolean query
condition evaluates to true or false. The conditions are composed of three elements:

1. Name, the data source or target, to apply the operator
2. Operator, that defines comparing process between the name and the value.
3. Value, that data that receives the operation.

Operators

The Operators are:

Table 5. Operators in a query

Operator Description
= Equal to
> Greater than
< Less than
>= Greater than or equal to
&« Less than or equal to
BETWEEN TRUE if the operand is within the range of
comparisons
NOT Displays a record if the condition(s) is NOT TRUE
AND TRUE if all the conditions separated by AND is
TRUE
OR TRUE if any of the conditions separated by OR is
TRUE
LIKE TRUE if the operand matches a pattern
IN TRUE if the operand is equal to one of a list of
expressions
The value

The value is the last element in a condition, and it defines what’ll go to be used, with an operator, in
a field target.

There are six types:

* Number is a mathematical object used to count, measure and also label, where if it is a decimal,
will become double, otherwise, long. E.g.: age = 20, salary = 12.12

* String: one or more characters among either two double quotes, ", or single quotes, '. E.g.: name

35

= "Ada Lovelace", name = 'Ada Lovelace'

» Convert: convert is a function where given the first value parameter as number or string, it will
convert to the class type of the second one. E.g.: birthday = convert("03-01-1988",
java.time.LocalDate)

* Parameter: the parameter is a dynamic value, which means it does not define the query; it’ll
replace in the execution time. The parameter is at @ followed by a name. E.g.: age = @age

* Array: A sequence of elements that can be either number or string that is between braces { }.
E.g.: power = {"Sun", "hunt"}

* JSON: JavaScript Object Notation is a lightweight data-interchange format. E.g.: siblings =
{"apollo": "brother", "zeus": "father"}

SKIP

The SKIP option to a SELECT statement defines where the query should start.

LIMIT

The LIMIT option to a SELECT statement limits the number of rows returned by a query.

ORDER BY

The ORDER BY clause allows selecting the order of the returned results. It takes as argument a list of
column names along with the order for the column (ASC for ascendant and DESC for the
descendant, omitting the order being equivalent to ASC).

TTL

Both the INSERT and PUT commands support setting a time for data in an entity to expire. It
defines the time to live of an object that is composed of the integer value and then the unit that
might be day, hour, minute, second, millisecond, nanosecond. E.g.: tt1 10 second

PreparedStatement and PreparedStatementAsync

To run a query dynamically, use the prepare method in the manager for instance. It will return a
PreparedStatement interface. To define a parameter to key-value, document, and column query, use
the "@" in front of the name.

PreparedStatement preparedStatement = documetManager.prepare("select * from Person
where name = @name");

preparedStatement.bind("name", "Ada");

List<DocumentEntity> adas = preparedStatement.getResultList();

PreparedStatementAsync preparedStatement = documetManagerAsync.prepare("select * from
Person where name = @name");

preparedStatement.bind("name", "Ada");

Consumer<List<DocumentEntity>> callback = ...;
preparedStatement.getResultList(callback);

36

A For graph API, check Gremlin

4.6. Factory
The factory class creates the Managers.

* ColumnFamilyManagerAsyncFactory
* ColumnFamilyManagerFactory

* BucketManagerFactory

* DocumentCollectionManagerFactory

* DocumentCollectionManagerAsyncFactory

4.6.1. Column Family Manager Factory
The factory classes have the duty to create the column family manager.

* ColumnFamilyManagerAsyncFactory
* ColumnFamilyManagerFactory

The ColumnFamilyManagerAsyncFactory and ColumnFamilyManagerFactory create the manager
synchronously and asynchronously respectively.

ColumnFamilyManagerFactory factory = //instance
ColumnFamilyManagerAsyncFactory asyncFactory = //instance
ColumnFamilyManager manager = factory.get("database");
ColumnFamilyManagerAsync managerAsync = asyncFactory.getAsync("database");

The factories were separated intentionally, as not all databases support synchronous and
asynchronous operations.

4.6.2. Document Collection Factory

The factory classes have the duty to create the document collection manager.

* DocumentCollectionManagerFactory
* DocumentCollectionManagerAsyncFactory

The DocumentCollectionManagerAsyncFactory and DocumentCollectionManagerFactory create the
manager synchronously and asynchronously respectively.

DocumentCollectionManagerFactory factory = //instance
DocumentCollectionManagerAsyncFactory asyncFactory = //instance
DocumentCollectionManager manager = factory.get("database");
DocumentCollectionManagerAsync managerAsync = asyncFactory.getAsync("database");

37

https://tinkerpop.apache.org/gremlin.html

The factories were separated intentionally, as not all databases support synchronous and
asynchronous operations.

4.6.3. Bucket Manager Factory

The factory classes have the duty to create the bucket manager.

BucketManagerFactory bucketManager= //instance
BucketManager bucket = bucketManager.getBucketManager("bucket");

Beyond the BucketManager, some databases have support for particular structures represented in
the Java world such as List, Set, Queue e Map.

List<String> 1list = bucketManager.getlList("list", String.class);

Set<String> set = bucketManager.getSet("set", String.class);

Queue<String> queue = bucketManager.getQueue("queue", String.class);

Map<String, String> map = bucketManager.getMap("map", String.class, String.class);

These methods may return a java.lang.UnsupportedOperationException if the database does not
support any of the structures.

4.7. Configuration

The configuration classes create a Manager Factory. This class has all the configuration to build the
database connection.

Once there are a large diversity configuration flavors on such as P2P, master/slave, thrift
communication, HTTP, etc. The implementation may be different, however, they have a method to
return a Manager Factory. It is recommended that all database driver providers have a properties
file to read this startup information.

4.7.1. Settings

The Settings interface represents the settings used in a configuration. It extends looks like a
Map<String, Object>; for this reason, gives a key that can set any value as configuration.

Settings settings = Settings.builder().put("key", "value").build();
Map<String, Object> map =;
Settings settings = Settings.of(map);

Each property unit has a tuple where the key is the name, and the value is the property
configuration. Each NoSQL has its configuration properties. Also, some standard configurations
might be used to the NoSQL databases:

* jakarta.nosql.user: to set a user in a NoSQL database

* jakarta.nosql.password: to set a password in a database

38

* jakarta.nosql.host: the host configuration that might have more than one with a number as a
suffix, such as jakarta.nosql.host-1=localhost, jakarta.nosql.host-2=host2

* jakarta.nosql.settings.encryption: A configuration to set the encryption to settings property.

To read the property information, it will follow the same principal and priority

ﬁ from Eclipse MicroProfile Configuration and Configuration Spec JSR 382.
Therefore, it will read from the {@link System#fgetProperties(),Systemfigetenv() and
Settings.

Encryption

In cryptography, encryption is the process of encoding a message or information in such a way that
only authorized parties can access it and those who are not authorized cannot. The settings
encryption is the process to hide critical information such as password, user and so on.

To enable the property encryption put the value in the ENC(value), then it will check the
jakarta.nosqgl.settings.encryption to verify each implementation encryption it will use to the
property. It uses the Java Service Loader resource implementing the SettingsEncryption interface.
There is two default implementation:

» Symmetric-Key Cryptography is an encryption system in which the same key is used for the
encoding and decoding of the data. The safe distribution of the key is one of the drawbacks of
this method, but what it lacks in security it gains in time complexity. The SettingsEncryption has
two properties configurations. To active wuse the value symmetric in the
jakarta.nosql.settings.encryption property. It requires a password and to set the value set the
property on jakarta.nosql.encryption.symmetric.password.

* Public-key cryptography, or asymmetric cryptography, is a cryptographic system that uses pairs
of keys: public keys which may be disseminated widely, and private keys which are known only
to the owner. The generation of such keys depends on cryptographic algorithms based on
mathematical problems to produce one-way functions. Effective security only requires keeping
the private key private; the public key can be openly distributed without compromising
security. To active use the value asymmetric in the jakarta.nosql.settings.encryption property.
It requires a private key to encryption and public key to the decryption process. To set there is
the jakarta.nosql.encryption.asymmetric.private and
jakarta.nosql.encryption.asymmetric.public respectively both value can be either absolute path
or resource path. Stressing, it works in a lazy way, therefore, it will require the private key
when encryption and public key when to decryption it will be used.

In the Communication core API, there is an executable class that returns the encryption, the
EncryptionPropertyApp class.

Demo execution using symmetric encryption.

java -cp diana-core-VERSION.jar -Djakarta.nosql.settings.encryption="symmetric"
-Djakarta.nosql.encryption.symmetric.password="password"
org.jnosql.diana.api.EncryptionPropertyApp "sensible data"

The output: ENC(g9EdKdpjqQIkIqHP1IZTKQ==)

39

The next step is to put this sensitive data on the settings.

Settings settings = Settings.builder().put("sensible", "ENC(g9EdKdpjqQJlkIqHP1JZTKQ==)
").build();

Q It is essential to define the encryption configuration when the Application run.

4.7.2. Document Configuration

On the document collection configuration, there are two classes, DocumentConfiguration and
DocumentConfigurationAsync to DocumentCollectionManagerFactory and
DocumentCollectionManagerAsyncFactory respectively.

DocumentConfiguration configuration = //instance

DocumentConfigurationAsync configurationAsync = //instance
DocumentCollectionManagerFactory managerFactory = configuration.get();
DocumentCollectionManagerAsyncFactory managerAsyncFactory = configurationAsync
.getAsync();

If a database has support for both synchronous and asynchronous, it may use
UnaryDocumentConfiguration that implements both document configurations.

UnaryDocumentConfiguration unaryDocumentConfiguration = //instance
DocumentCollectionManagerFactory managerFactory = unaryDocumentConfiguration.get();
DocumentCollectionManagerAsyncFactory managerAsyncFactory =
unaryDocumentConfiguration.getAsync();

4.7.3. Column Configuration

On the column family configuration, there are two classes, ColumnConfiguration and
ColumnConfigurationAsync to ColumnFamilyManagerFactory and ColumnFamilyManagerAsyncFactory
respectively.

ColumnConfiguration configuration = //instance

ColumnConfigurationAsync configurationAsync = //instance

ColumnFamilyManagerFactory managerFactory = configuration.get();
ColumnFamilyManagerAsyncFactory managerAsyncFactory = configurationAsync.getAsync();

If a database has support for both synchronous and asynchronous, it may use
UnaryColumnConfiguration that implements both document configurations.

40

UnaryColumnConfiguration unaryDocumentConfiguration = //instance
ColumnFamilyManagerFactory managerFactory = unaryDocumentConfiguration.get();
ColumnFamilyManagerAsyncFactory managerAsyncFactory = unaryDocumentConfiguration
.getAsync();

4.7.4. Key Value Configuration

On the key-value configuration, there is KeyValueConfiguration to BucketManagerFactory.

KeyValueConfiguration configuration = //instance
BucketManagerFactory managerFactory = configuration.get();

4.8. The diversity on NoSQL database

In NoSQL world, beyond the several types, it’s trivial a particular database has features that do
exist on this provider. When there is a change among the types, column family, and document
collection, there is a considerable change. Notably, with a switch to the same kind such as column
family to column family, e.g., Cassandra to HBase, there is the same problem once Cassandra has
featured such as Cassandra query language and consistency level. The communication API allows
looking the variety on NoSQL database. The configurations classes, and entity factory return
specialist class from a provider.

public interface ColumnFamilyManagerFactory<SYNC extends ColumnFamilyManager>
extends AutoCloseable {

SYNC get(String database);
}

A ColumnFamilyManagerFactory returns a class that implements ColumnFamilyManager. E.g.: Using a
particular resource from Cassandra driver.

41

42

CassandraConfiguration condition = new CassandraConfiguration();
try(CassandraDocumentEntityManagerFactory managerFactory = condition.get()) {
CassandraColumnFamilyManager columnEntityManager = managerFactory.get(KEY_SPACE);
ColumnEntity entity = ColumnEntity.of (COLUMN_FAMILY);
Column id = Column.of("id", 10L);
entity.add(id);
entity.add(Column.of("version", 0.001));
entity.add(Column.of("name", "Diana"));
entity.add(Column.of("options", Arrays.asList(1, 2, 3)));
columnEntityManager.save(entity);
//common implementation
ColumnQuery query = ColumnQuery.of(COLUMN_FAMILY);
query.and(ColumnCondition.eq(id));
Optional<ColumnEntity> result = columnEntityManager.singleResult(query);
//cassandra implementation
columnEntityManager.save(entity, ConsistencylLevel.THREE);
List<ColumnEntity> entities = columnEntityManager.cql("select * from
newKeySpace.newColumnFamily");
System.out.println(entities);

}

Chapter 5. Mapping API Introduction

The mapping level, to put it differently, has the same goals as either the JPA or ORM. In NoSQL
world, the OxM then converts the entity object to a communication model.

This level is in charge to do integration among technologies such as Bean Validation. The Mapping
API has annotations that make the Java developer’s life easier. As a communication project, it must
be extensible and configurable to keep the diversity of NoSQL database.

To go straight and cover the four NoSQL types, this API has four domains:

« jakarta.nosql.mapping.column
« jakarta.nosql.mapping.document
« jakarta.nosql.mapping.graph

« jakarta.nosql.mapping.keyvalue

o The package name might change on the Jakarta EE process.

5.1. The Mapping structure

The mapping API has six parts:

» The persistence-core: The mapping common project.

» The persistence-configuration: The configuration in mapper.

* The persistence-column: The mapping to column NoSQL database.

» The persistence-document: The mapping to document NoSQL database.
» The persistence-key-value: The mapping to key-value NoSQL database.
* The persistence-graph: The mapping to Graph NoSQL database.

* The persistence-validation: The support to Bean Validation

Q Each module works separately as a Communication APIL
o Like communication API, there is a support for database diversity. This project has
extensions for each database types on the database mapping level.

5.2. Models Annotation

As mentioned previously, the Mapping API has annotations that make the Java developer’s life
easier; these annotations have two categories:

e Annotation Models

* Qualifier annotation

43

5.2.1. Annotation Models

The annotation model is to convert the entity model to the entity on communication, the
communication entity:

* Entity

e Column

MappedSuperclass
« Id

Embeddable

¢ Convert

The Jakarta NoSQL Mapping does not require the getter and setter methods to the fields, however,
the Entity class must have a non-private constructor with no parameters.

Entity

This annotation maps the class to Eclipse Jakarta NoSQL. It has a unique attribute called name. This
attribute is to inform either the column family name or the document collection name, etc. The
default value is the simple name of a class; for example, given the org.jakarta.nosql.demo.Person
class, the default name will be Person.

public class Person {

¥

(nnamen)
public class Person {
}

An entity as a field will incorporate as a sub-entity. E.g., In a document, this entity field will convert
to a subdocument.

44

@Entity
public class Person {

@Id
private Long 1id;

@Column
private String name;

@Column
private Address address;

@Entity
public class Address {

@Column
private String street;

@Column
private String city;

}
{
"_id":10,
"name":"Ada Lovelave",
"address":{
"city":"Sdo Paulo",
"street":"Av nove de julho"
}
}
Column

This annotation is to define which fields on an Entity will be persisted. It also has a unique attribute
name to specify that name on Database, and the default value is the field name.

45

public class Person {
private String nickname;
("native_mapper")
private String name;
private List<String> phones;

//ignored
private String address;

MappedSuperclass

If this annotation is on the parent class, it will persist its information as well. So, beyond the son
class, it will store any field that is in Parent class with Column annotation.

public class Dog extends Animal {

private String name;

public class Animal {

private String race;

private Integer age;

On this sample above, when saving a Dog instance, it saves the Animal case too; explicitly, will save
the field’s name, race, and age.

Id

It shows which attribute is the id, or the key in key-value types. Thus, the value will be the
remaining information. It has an attribute as the Column to define the native name. However, the
default value of this annotation is _id. The way of storing the class will depend on the database
driver.

46

public class User implements Serializable {

private String userName;
private String name;

private List<String> phones;

}

Embeddable

Defines a class whose instances are stored as an intrinsic part of an owning entity and share the
identity of the object.

public class Book {

private String name;

private Author author;

public class Author {

private String name;

private Integer age;

Convert

As Communication, the Mapping API has a converter at abstraction level. This feature is useful, e.g.,
to cipher a field, String to String, or just to do a conversion to a custom type using annotation. The
Converter annotation has a parameter, and an AttributeConverter implementation class can be
used. E.g., the sample below shows how to create a converter to a custom Money class.

47

@Entity

public class Worker {
@Column
private String name;
@Column
private Job job;
@Column("money")
@Convert(MoneyConverter.class)
private Money salary;

}

public class MoneyConverter implements AttributeConverter<Money, String>{
@0verride
public String convertToDatabaseColumn(Money attribute) {
return attribute.toString();

}

@0verride

public Money convertToEntityAttribute(String dbData) {
return Money.parse(dbData);

}

}
public class Money {
private final String currency;

private final BigDecimal value;

Collection

The Mapping layer has support for java.util.Collection to both simple elements such as String,
Integer, that will send to the communication API the exact value and class that has fields inside,
once the class has either Entity or Embedded annotation; otherwise, will post as the first scenario,
like String or any amount without converter process.

It has support to:

o java.util.Deque

e java.util.Queue

o java.util.List

o java.util.Iterable

o java.util.NavigableSet
o java.util.SortedSet

o« java.util.Collection

48

@Entity
public class Person {

eId
private Long 1id;

@Column
private String name;

@Column
private List<String> phones;

@Column

private List<Address> address;
}
@Embeddable

public class Address {

@Column
private String street;

@Column
private String city;

}
{
"_id": 10,
"address":[
{
"city":"Sdo Paulo",
"street":"Av nove de julho"
¥
{
"city":"Salvador",
"street":"Rua Engenheiro Jose Anasoh"
¥
1,
"name": "Name",
"phones"”: [
"234",
"432"
]
¥

49

5.2.2. Qualifier annotation

That is important to work with more than one type of the same application.

private DocumentRepository repositoryA;

private DocumentRepository repositoryB;

Two injections with the same interface, CDI throws an ambiguous exception. There is the Database
qualifier to fix this problem. It has two attributes:

* DatabaseType: The database type, key-value, document, column, graph.

non

» provider: The provider’s database name, e.g., "cassandra"”, "hbase", "mongodb". So, using the
Database qualifier:

(value = DatabaseType.DOCUMENT, provider
private DocumentRepository repositoryA;

“databaseA”)

(value = DatabaseType.DOCUMENT, provider
private DocumentRepository repositoryB;

“databaseB”)

Beyond this annotation, the producer method with the entity manager is required.

The benefit of using this qualifier instead of creating a new one is that if the Manager Entity is
produced using Database as a qualifier, it will create classes such as DocumentRepository,
ColumnRepository, etc. automatically.

5.2.3. ConfigurationUnit

Storage of the database’s configuration such as password and users outside the code is important;
Eclipse Jakarta NoSQL has the ConfigurationUnit annotation that reads the configuration from a file
such as XML, YAML, and JSON file. The default configuration structure is within either a META-INF
or WEB-INF folder. The ConfigurationUnit has three fields.

* fileName: the field name at the folder, the default value is nosql. json

* name: the name works as ID to find the respective configuration. The default value is empty
which will work when there is just a configuration at the file.

» database: to inject the Template, Repository and manager communication the database name is
required.

* repository: Defines a source implementation to the repository. This attribute is used where
there are two or more mappers within an application classpath, e.g., mapper-document and
mapper-column. Otherwise, it will return an Ambiguous dependency error.

 qualifier: A qualifier that provides various implementations of a particular repository type.
E.g.: when there are several configurations to a specific bean type.

50

Injection of the code

With the configuration file, the next step is to inject the dependency into the application. The
default behavior supports the following classes:

BucketManagerFactory

* DocumentCollectionManagerAsyncFactory

DocumentCollectionManagerAsyncFactory
* ColumnFamilyManagerAsyncFactory

* ColumnFamilyManagerAsyncFactory

(fileName = "column.xml", name = "name")
private ColumnFamilyManagerFactory<?> factoryA;

(fileName = "document.json", name = "name-2")
private DocumentCollectionManagerFactory factoryB;

private BucketManagerFactory factoryB;

To templates and managers classes the databases field are required:

* BucketManager

* KeyValueTemplate

* DocumentCollectionManager
* DocumentCollectionManagerAsync
* DocumentTemplate

* DocumentTemplateAsync

* ColumnFamilyManager

e ColumnFamilyManagerAsync
* ColumnTemplate

* ColumnTemplateAsync

* Graph

* GraphTemplate

* Repository

51

52

@Inject
@ConfigurationUnit(fileName = "key-value.json", name = "name", database = "database")
private KeyValueTemplate keyValueTemplate;

@Inject
@ConfigurationUnit(fileName = "column.json", name = "name", database = "database")
private ColumnTemplate columnTemplate;

@Inject
@ConfigurationUnit(fileName = "document.json", name = "name", database = "database")
private DocumentTemplate documentTemplate;

@Inject
@ConfigurationUnit(fileName = "graph.json", name = "name", database = "database")
private GraphTemplate graphTemplate;

@Inject
@ConfigurationUnit(fileName = "document.json", name = "name", database = "database")
private PersonRepository repositorySupplier;

When there is more than one mapper implementation at the application classpath
use the repository attribute, otherwise, it will return an Ambiguous dependency
error.

@Inject

@ConfigurationUnit(fileName = "document.json", name = "name", database = "database",
repository = DOCUMENT)

private PersonRepository personRepository;

@Inject

@ConfigurationUnit(fileName = "column.json", name = "name", database = "database",
repository = COLUMN)

private PersonRepository personRepository;

o When there is more than one configuration to a repository type, the qualifier field
is required.

@Inject

@ConfigurationUnit(fileName = "document.json", name
qualifier = "databaseA")

private PersonRepository personRepository;

"nameA", database

@Inject

@ConfigurationUnit(fileName = "document.json", name = "nameB", database
qualifier = "databaseB")

private PersonRepository personRepository;

The configuration structure

Each configuration has four fields:

* The name: the name of the configuration, it works as an ID
* description: a description of the configuration, it won’t be used
 provider: the classpath of a configuration implementation.

* settings: the entry list, as a Map, to be used when it creates the instances.

JSON file structure

"description”:"that is the description”,

"name" :"name",

"provider":"class",

"settings":{
"key":"value"
}
b
{
"description":"that is the description”,
"name": "name-2",
"provider":"class",
"settings":{
"key":"value"
}
}
]
XML file structure

"database",

"database",

53

<?xml version="1.0" encoding="UTF-8"?>
<configurations>
<configuration>
<description>that is the description</description>
<name>name</name>
<provider>class</provider>
<settings>
<entry>
<key>key2</key>
<value>value2</value>
</entry>
<entry>
<key>key</key>
<value>value</value>
</entry>
</settings>
</confiquration>
</configurations>

YAML file structure

configurations:
- description: that is the description
name: name
provider: class
settings:
key: value
key2: value2

5.3. Template classes

The template offers convenient operations to create, update, delete, query, and provides a mapping
between your domain objects and communication API. The templates classes have the goal to
persist an Entity Model through a communication API. It has three components:

* Converter: That converts the Entity to a communication level API.

* EntityManager: The EntityManager for communication.

* Workflow: That defines the workflow when either you save or update an entity. These events
are useful when you, e.g., want to validate data before being saved. See the following picture:

The default workflow has six events:

1. firePreEntity: The Object received from mapping.

2. firePreEntityDataBaseType: Just like the previous event, however, to a specific database; in

other words, each database has a particular event.

3. firePreAPI: The object converted to a communication layer.

54

4. firePostAPI: The entity connection as a response from the database.

5. firePostEntity: The entity model from the API low level from the firePostAPI.

6. firePostEntityDataBaseType: Just like the previous event, however, to a specific database. In

other words, each database has a particular event.

5.3.1. DocumentTemplate

This template has the duty to be a bridge between the entity model and communication API to
document collection. It has two classes; DocumentTemplate and DocumentTemplateAsync - one for the

synchronous and the other for the asynchronous work.

The DocumentTemplate is the document template for the synchronous tasks. It has three components:

* DocumentEntityConverter: That converts an entity to communication API, e.g., The Person to

DocumentEntity.
* DocumentCollectionManager: The document collection entity manager.

* DocumentWorkflow: The workflow to update and insert methods.

DocumentTemplate template = //instance

Person person = new Person();

person.setAddress("0lympus");

person.setName("Artemis Good");

person.setPhones(Arrays.asList("55 11 94320121", "55 11 94320121"));
person.setNickname("artemis");

List<Person> people = Collections.singletonList(person);
Person personUpdated = template.insert(person);
template.insert(people);

template.insert(person, Duration.ofHours(1L));

template.update(person);
template.update(people);

To both remove and retrieve information from document collection, there are DocumentQuery

and DocumentDeleteQuery.

55

DocumentQuery query = select().from("Person").where("address").eq("0lympus").build();

List<Person> peopleWholiveOnOlympus = template.find(query);
Optional<Person> artemis = template.singleResult(select().from("Person")
.where("nickname").eq("artemis").build());

DocumentDeleteQuery deleteQuery = delete().from("Person").where("address").eq("

Olympus").build();
template.delete(deleteQuery);

Both DocumentQuery and DocumentDeleteQuery query won’t convert the Object to native fields.
However, there is DocumentQueryMapperBuilder that creates both queries types reading the
Class then switching to the native fields through annotations.

public class Person {
("native_id")
private long 1id;

private String name;

private int age;

private DocumentQueryMapperBuilder mapperBuilder;

public void mapper() {
DocumentQuery query = mapperBuilder.selectFrom(Person.class).where("id").qgte(10)
.build();
//translating: select().from("Person”).where("native_id").qte(10L).build();
DocumentDeleteQuery deleteQuery = mapperBuilder.deleteFrom(Person.class).where("id"
).eq("20").build();
//translating: delete().from("Person").where("native_id").gte(10L).build();
}

To use a document template, just follow the CDI style and put an @Inject on the field.

private DocumentTemplate template;

The next step is to produce a DocumentCollectionManager:

56

public DocumentCollectionManager getManager() {
DocumentCollectionManager manager = //instance
return manager;

To work with more than one Document Template, there are two approaches:

1) Using qualifiers:

(value = DatabaseType.DOCUMENT, provider
private DocumentTemplate templateA;

"databaseA")

"databaseB")

(value = DatabaseType.DOCUMENT, provider
private DocumentTemplate templateB;

//producers methods

(value = DatabaseType.DOCUMENT, provider
public DocumentCollectionManager getManagerA() {
DocumentCollectionManager manager = //instance
return manager;

"databaseA")

(value = DatabaseType.DOCUMENT, provider = "databaseB")
public DocumentCollectionManager getManagerB() {
DocumentCollectionManager manager = //instance
return manager;

2) Using the DocumentTemplateProducer class:

private DocumentTemplateProducer producer;

public void sample() {
DocumentCollectionManager managerA = //instance;
DocumentCollectionManager managerB = //instance
DocumentTemplate templateA = producer.get(managerA);
DocumentTemplate templateB = producer.get(managerB);

57

5.3.2. DocumentTemplateAsync

The DocumentTemplateAsync is the document template for the asynchronous tasks. It has two
components:

* DocumentEntityConverter: That converts an entity to communication API, e.g., The Person to
DocumentEntity.

* DocumentCollectionManagerAsync: The asynchronous document collection entity manager.

DocumentTemplateAsync templateAsync = //instance

Person person = new Person();

person.setAddress("0lympus");

person.setName("Artemis Good");

person.setPhones(Arrays.asList("55 11 94320121", "55 11 94320121"));
person.setNickname("artemis");

List<Person> people = Collections.singletonList(person);

Consumer<Person> callback = p -> {};
templateAsync.insert(person);
templateAsync.insert(person, Duration.ofHours(1L));
templateAsync.insert(person, callback);
templateAsync.insert(people);

templateAsync.update(person);

templateAsync.update(person, callback);
templateAsync.update(people);

For information removal and retrieval, there are DocumentQuery and DocumentDeleteQuery
respectively; also, the callback method can be used.

Consumer<List<Person>> callBackPeople = p -> {};
Consumer<Void> voidCallBack = v ->{};
templateAsync.find(query, callBackPeople);
templateAsync.delete(deleteQuery);
templateAsync.delete(deleteQuery, voidCallBack);

To use a document template, just follow the CDI style and put an @Inject on the field.

private DocumentTemplateAsync template;

The next step is to produce a DocumentCollectionManagerAsync:

58

public DocumentCollectionManagerAsync getManager() {
DocumentCollectionManagerAsync managerAsync = //instance
return manager;

To work with more than one Document Template, there are two approaches:

1) Using qualifiers:

(value = DatabaseType.DOCUMENT, provider
private DocumentTemplateAsync templateA;

"databaseA")

"databaseB")

(value = DatabaseType.DOCUMENT, provider
private DocumentTemplateAsync templateB;

//producers methods

(value = DatabaseType.DOCUMENT, provider = "databaseA")
public DocumentCollectionManagerAsync getManagerA() {
DocumentCollectionManager manager = //instance
return manager;

}

(value = DatabaseType.DOCUMENT, provider = "databaseB")
public DocumentCollectionManagerAsync getManagerB() {
DocumentCollectionManager manager = //instance
return manager;

2) Using the DocumentTemplateAsyncProducer:

private DocumentTemplateAsyncProducer producer;

public void sample() {
DocumentCollectionManagerAsync managerA = //instance;
DocumentCollectionManagerAsync managerB = //instance
DocumentTemplateAsync templateA = producer.get(managerA);
DocumentTemplateAsync templateB = producer.get(managerB);

5.3.3. ColumnTemplate

This template has the duty to be a bridge between the entity model and the communication to a
column family. It has two classes; ColumnTemplate and ColumnTemplateAsync - one for the synchronous
and the other for the asynchronous work.

The ColumnTemplate is the column template for the synchronous tasks. It has three components:
* ColumnEntityConverter: That converts an entity to communication API, e.g., The Person to
ColumnFamilyEntity.
* ColumnCollectionManager: The communication column family entity manager.

* ColumnWorkflow: The workflow to update and insert methods.

ColumnTemplate template = //instance

Person person = new Person();

person.setAddress("0lympus");

person.setName("Artemis Good");

person.setPhones(Arrays.asList("55 11 94320121", "55 11 94320121"));
person.setNickname("artemis");

List<Person> people = Collections.singletonList(person);

Person personUpdated = template.insert(person);
template.insert(people);
template.insert(person, Duration.ofHours(1L));

template.update(person);
template.update(people);

For information removal and retrieval, there are ColumnQuery and ColumnDeleteQuery
respectively; also, the callback method can be used.

ColumnQuery query = select().from("Person").where("address").eq("0lympus").build();

List<Person> peopleWholiveOnOlympus = template.select(query);
Optional<Person> artemis = template.singleResult(select().from("Person").where(
"nickname").eq("artemis").build());

ColumnDeleteQuery deleteQuery = delete().from("Person").where("address").eq("0lympus"
).build()
template.delete(deleteQuery);

Both ColumnQuery and ColumnDeleteQuery won’t convert the Object to native fields. However,
there is ColumnQueryMapperBuilder that creates both query types, reading the Class then
switching to the native fields through annotations.

60

@Entity
public class Person {

@Id("native_id")
private long 1id;

@Column
private String name;

@Column

private int age;
}
@Inject

private ColumnQueryMapperBuilder mapperBuilder;

public void mapper() {
ColumnQuery query = mapperBuilder.selectFrom(Person.class).where("id").qgte(10).
build();
//translating: select().from("Person").where("native_id").gte(10L).build();
ColumnDeleteQuery deleteQuery = mapperBuilder.deleteFrom(Person.class).where("id")
.eq("20").build();
//translating: delete().from("Person").where("native_id").gte(10L).build();
+

To use a column template, just follow the CDI style and put an @Inject on the field.

@Inject
private ColumnTemplate template;

The next step is to produce a ColumnFamilyManager:

@Produces

public ColumnFamilyManager getManager() {
ColumnFamilyManager manager = //instance
return manager,

To work with more than one Column Template, there are two approaches:

1) Using qualifiers:

61

(value = DatabaseType.COLUMN, provider = "databaseA")
private ColumnTemplate templateA;

(value = DatabaseType.COLUMN, provider = "databaseB")
private ColumnTemplate templateB;

//producers methods

(value = DatabaseType.COLUMN, provider = "databaseA")
public ColumnFamilyManager getManagerA() {
ColumnFamilyManager manager =//instance
return manager;

(value = DatabaseType.COLUMN, provider = "databaseB")
public ColumnFamilyManager getManagerB() {
ColumnFamilyManager manager = //instance
return manager;

2) Using the ColumnTemplateProducer class:

private ColumnTemplateProducer producer;

public void sample() {
ColumnFamilyManager managerA = //instance;
ColumnFamilyManager managerB = //instance
ColumnTemplate templateA = producer.get(managerA);
ColumnTemplate templateB = producer.get(managerB);

}

ColumnTemplateAsync

The ColumnTemplateAsync is the document template for the asynchronous tasks. It has two
components:

¢ ColumnEntityConverter: That converts an entity to communication API, e.g., The Person to
ColumnFamilyEntity.

* ColumnFamilyManagerAsync: The asynchronous communication column family entity
manager.

62

ColumnTemplateAsync templateAsync = //instance

Person person

= new Person();

person.setAddress("0lympus");

person.setName("Artemis Good");

person.setPhones(Arrays.asList("55 11 94320121", "55 11 94320121"));
person.setNickname("artemis");

List<Person> people = Collections.singletonList(person);

Consumer<Person> callback = p -> {};

templateAsync.
templateAsync.
templateAsync.
templateAsync.

templateAsync.
templateAsync.
templateAsync.

insert(person);

insert(person, Duration.ofHours(1L));
insert(person, callback);
insert(people);

update(person);
update(person, callback);
update(people);

For information removal and retrieval, there are ColumnQuery and ColumnDeleteQuery,
respectively; also, the callback method can be used.

Consumer<List<Person>> callBackPeople = p -> {};
Consumer<Void> voidCallBack = v ->{};

templateAsync.
templateAsync.
templateAsync.

select(query, callBackPeople);
delete(deleteQuery);
delete(deleteQuery, voidCallBack);

To use a column template just follow the CDI style and put an @Inject on the field.

private ColumnTemplateAsync template;

The next step is to produce a ColumnFamilyManagerAsync:

public ColumnFamilyManagerAsync getManager() {
ColumnFamilyManagerAsync managerAsync = //instance
return manager;

To work with more than one Column Template, there are two approaches:

1) Using qualifiers:

63

"databaseA")

(value = DatabaseType.COLUMN, provider
private ColumnTemplateAsync templateA;

"databaseB")

(value = DatabaseType.COLUMN, provider
private ColumnTemplateAsync templateB;

//producers methods

"databaseA")

(value = DatabaseType.COLUMN, provider

public ColumnFamilyManagerAsync getManagerA() {

ColumnFamilyManagerAsync manager = //instance
return manager;

(value = DatabaseType.COLUMN, provider = "databaseB")
public ColumnFamilyManagerAsync getManagerB() {
ColumnFamilyManagerAsync manager = //instance
return manager;

2) Using the ColumnTemplateAsyncProducer:

private ColumnTemplateAsyncProducer producer;

public void sample() {
ColumnFamilyManagerAsync managerA = //instance;
ColumnFamilyManagerAsync managerB = //instance
ColumnTemplateAsync templateA = producer.get(managerA);
ColumnTemplateAsync templateB = producer.get(managerB);

}

5.3.4. Key-Value template

The KeyValueTemplate is the template for synchronous tasks. It has three components: The
KeyValueTemplate is responsible for the persistence of an entity in a key-value database. It is
composed basically of three components.

* KeyValueEntityConverter: That converts an entity to communication AP, e.g., The Person to
KeyValueEntity.

* BucketManager: The key-value entity manager.

* KeyValueWorkflow: The workflow to put method.

64

KeyValueTemplate template = null;

User user = new User();

user.setNickname("ada");

user.setAge(10);

user.setName("Ada Lovelace");

List<User> users = Collections.singletonlList(user);

template.put(user);
template.put(users);

Optional<Person> ada = template.get("ada", Person.class);
Iterable<Person> usersFound = template.get(Collections.singletonList("ada"), Person
.class);

To key-value templates, both Entity and @Id, are required. The @Id identifies the
A key, and the whole entity will be the value. The API won’t cover how this value
persists this entity at NoSQL database.

To use a key-value template, just follow the CDI style and put an @Inject on the field.

private KeyValueTemplate template;

The next step is to produce a BucketManager:

public BucketManager getManager() {
BucketManager manager = //instance
return manager;,

To work with more than one key-value Template, there are two approaches: 1) Using qualifiers:

65

"databaseA")

(value = DatabaseType.KEY_VALUE, provider
private KeyValueTemplate templateA;

(value = DatabaseType.KEY_VALUE, provider
private KeyValueTemplate templateB;

"databaseB")

//producers methods

(value = DatabaseType.KEY_VALUE, provider
public BucketManager getManagerA() {
DocumentCollectionManager manager =//instance
return manager;

"databaseA")

(value = DatabaseType.KEY_VALUE, provider
public DocumentCollectionManager getManagerB() {
BucketManager manager = //instance
return manager;

"databaseB")

2) Using the KeyValueTemplateProducer class:

private KeyValueTemplateProducer producer;

public void sample() {
BucketManager managerA = //instance;
BucketManager managerB = //instance
KeyValueTemplate templateA = producer.get(managerA);
KeyValueTemplate templateB = producer.get(managerB);

5.3.5. Graph template

The GraphTemplate is the column template for synchronous tasks. It has three components: The
GraphTemplate is responsible for the persistence of an entity in a Graph database using Apache
Tinkerpop. It is composed basically of three components.

* GraphConverter: That converts an entity to communication API, e.g., The Person to Vertex.

* Graph: A Graph is a container object for a collection of Vertex, Edge, VertexProperty, and
Property objects.

* GraphWorkflow: The workflow to update and insert methods.

66

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/

GraphTemplate template = //instance

Person person = new Person();

person.setAddress("0lympus");

person.setName("Artemis Good");

person.setPhones(Arrays.asList("55 11 94320121", "55 11 94320121"));
person.setNickname("artemis");

List<Person> people = Collections.singletonList(person);

Person personUpdated = template.insert(person);
template.insert(people);
template.insert(person, Duration.ofHours(1L));

template.update(person);
template.update(people);

Create the Relationship Between Them (EdgeEntity)

Person poliana =...//instance;

Book shack =...//instance;

EdgeEntity edge = graphTemplate.edge(poliana, "reads", shack);
reads.add("where", "Brazil");

Person out = edge.getOutgoing();

Book in = edge.getIncoming();

Querying with traversal

Traversals in Gremlin are spawned from a TraversalSource. The GraphTraversalSource is the
typical "graph-oriented" DSL used throughout the documentation and will most likely be the most

used DSL in a TinkerPop application.

To run a query in Graph with Gremlin, there are traversal interfaces. These interfaces are lazy; in

other words, they just run after any finalizing method.
E.g.
In the scenario, there is a marketing campaign, and the target is:

* An engineer
* The salary is higher than $3,000

* The age is between 20 and 25 years old

67

List<Person> developers = graph.getTraversalVertex()
.has("salary", gte(3_000D))
.has("age", between(20, 25))
.has("occupation”, "Developer")
.<Person>stream().collect(toList());

The next step is to return the engineer’s friends.

List<Person> developers = graph.getTraversalVertex()
.has("salary", gte(3_000D))
.has("age", between(20, 25))
.has("occupation", "Developer")
.<Person>stream().out("knows").collect(tolList());

To use a graph template, just follow the CDI style and put an @Inject on the field.

private GraphTemplate template;

The next step: make a Graph instance eligible to CDI, applying the producers method:

public Graph getManager() {
Graph graph = //instance
return graph;

To work with more than one Graph Template, there are two approaches:

1) Using qualifiers:

68

(value = DatabaseType.GRAPH, provider = "databaseA")
private GraphTemplate templateA;

(value = DatabaseType.GRAPH, provider = "databaseB")
private GraphTemplate templateB;

//producers methods

(value = DatabaseType.GRAPH, provider = "databaseA")
public Graph getManagerA() {
Graph manager =//instance
return graph;

(value = DatabaseType.GRAPH, provider = "databaseB")
public Graph getManagerB() {
Graph graph = //instance
return graph;

2) Using the GraphTemplateProducer class:

private GraphTemplateProducer producer;

public void sample() {
Graph graphA = //instance;
Graph graphB = //instance
GraphTemplate templateA = producer.get(graphA);
GraphTemplate templateB = producer.get(graphB);
}

5.3.6. Querying by text at Mapping API

As in communication layer, the Mapping has a query by text. Both communication and Mapping
have the query and prepare methods, however, at the Mapping API, it will convert the fields and
entities to native names from the Entity and Column annotations.

Key-Value

In the Key-value database, there is a KeyValueTemplate in this NoSQL storage technology. Usually, all
the operations are defined by the ID. Therefore, it has a smooth query.

69

KeyValueTemplate template = ...;
List<User> users = template.query("get \"Diana\"");
template.query("remove \"Diana\"");

Column-Family

The column family has a little more complex structure; however, the search from the key is still
recommended. E.g.: Both Cassandra and HBase have a secondary index, yet, neither have a
guarantee about performance, and they usually recommend having a second table whose rowkey is
your "secondary index" and is only being used to find the rowkey needed for the actual table. Given
Person as an entity, then we would like to operate from the field ID, which is the entity from the
Entity.

ColumnTemplate template = ...;
List<Person> result = template.query("select * from Person where id = 1");

Q The main difference to run using a template instead of in a manager instance is
the template will do a mapper as ColumnQueryMapperBuilder does.

Document Collection

The document types allow more complex queries, so with more complex entities with a document
type, a developer can find from different fields more easily and naturally. Also, there are NoSQL
document types that support aggregations query, however, Eclipse Jakarta NoSQL does not support
this yet. At the Eclipse Jakarta NoSQL API perspective, the document and column type is pretty
similar, but with the document, a Java developer might do a query from a field that isn’t a key and
neither returns an unsupported operation exception or adds a secondary index for this. So, given
the same Person entity with document NoSQL type, a developer can do more with queries, such as
"person" between "age".

DocumentTemplate template = ...;
List<Person> result = template.query("select * from Person where age > 10");

Q The main difference to run using a template instead of in a manager instance is
the template will do a mapper as DocumentQueryMapperBuilder does.

Graph

If an application needs a recommendation engine or a full detail about the relationship between
two entities in your system, it requires a graph database. A graph database has the vertex and the
edge. The edge is an object that holds the relationship information about the edges and has
direction and properties that make it perfect for maps or human relationship. To the Graph API,
Eclipse Jakarta NoSQL uses the Apache Tinkerpop. Likewise, the GraphTemplate is a wrapper to
convert a Java entity to Vertex in TinkerPop.

70

GraphTemplate template =...;
List<City> cities = template.query("g.V().hasLabel('City')");

PreparedStatement preparedStatement = documentTemplate.prepare("select * from Person
where name = @name");

preparedStatement.bind("name", "Ada");

List<Person> adas = preparedStatement.getResultList();

//to graph just keep using gremlin

PreparedStatement prepare = graphTemplate().prepare("g.V().hasLabel(param)");
prepare.bind("param", "Person");

List<Person> people = preparedStatement.getResultList();

5.4. Repository

In addition to a template class, the Mapping API has the Repository. This interface helps the Entity
repository to save, update, delete and retrieve information. To use Repository, you just need to
create a new interface that extends the Repository.

interface PersonRepository extends Repository<Person, String> {

}

The qualifier is mandatory to define the database type that will be used at the injection point
moment.

(DatabaseType.DOCUMENT)
private PersonRepository documentRepository;

(DatabaseType.COLUMN)
private PersonRepository columnRepository;

(DatabaseType.KEY_VALUE)
private PersonRepository keyValueRepository;

(DatabaseType.GRAPH)
private PersonRepository graphRepository;

And then, make any manager class (ColumnFamilyManager, DocumentCollectionManager,
BucketManager, and Graph) eligible to CDI defining a method with Produces annotation.

71

public DocumentCollectionManager getManager() {
DocumentCollectionManager manager = //instance
return manager;

}

public ColumnFamilyManager getManager() {
ColumnFamilyManager manager = //instance
return manager;

}

public BucketManager getManager() {
BucketManager manager = //instance
return manager;

}

public Graph getGraph() {
Graph graph = //instance
return graph;

}

To work with multiple databases, you can use qualifiers:

(value = DatabaseType.DOCUMENT , provider
private PersonRepository documentRepositoryA;

"databaseA")

(value = DatabaseType.DOCUMENT , provider
private PersonRepository documentRepositoryB;

"databaseB")

(value = DatabaseType.COLUMN, provider = "databaseA")
private PersonRepository columnRepositoryA;

(value = DatabaseType.COLUMN, provider = "databaseB")
private PersonRepository columnRepositoryB;

(value = DatabaseType.KEY_VALUE, provider = "databaseA")
private UserRepository userRepositoryA;

(value = DatabaseType.KEY_VALUE, provider
private UserRepository userRepositoryB;

"databaseB")

72

(value = DatabaseType.GRAPH, provider = "databaseA")

private PersonRepository graphRepositoryA;

(value = DatabaseType.GRAPH, provider = "databaseB")
private PersonRepository graphRepositoryB;

//producers methods

(value = DatabaseType.COLUMN, provider = "databaseA")
public ColumnFamilyManager getColumnFamilyManagerA() {
ColumnFamilyManager manager =//instance
return manager;

}

(value = DatabaseType.COLUMN, provider = "databaseB")
public ColumnFamilyManager getColumnFamilyManagerB() {
ColumnFamilyManager manager = //instance
return manager;

}

(value = DatabaseType.DOCUMENT, provider = "databaseA")
public DocumentCollectionManager getDocumentCollectionManagerA() {
DocumentCollectionManager manager = //instance
return manager;

}

(value = DatabaseType.DOCUMENT, provider = "databaseB")
public DocumentCollectionManager DocumentCollectionManagerB() {
DocumentCollectionManager manager = //instance
return manager;

}

(value = DatabaseType.KEY_VALUE, provider
public BucketManager getBucket() {
BucketManager manager =//instance
return manager;

"databaseA")

(value = DatabaseType.KEY_VALUE, provider
public BucketManager getBucketB() {
BucketManager manager = //instance
return manager;,

"databaseB")

73

(value = DatabaseType.GRAPH, provider = "databaseA")
public Graph getGraph() {
Graph graph =//instance

return graph;

(value = DatabaseType.GRAPH, provider = "databaseB")

public Graph getGraphB() {
Graph graph = //instance
return graph;

So, Eclipse Jakarta NoSQL will inject automatically.

PersonRepository repository = //instance

Person person = new Person();
person.setNickname("diana");
person.setName("Diana Goodness");

List<Person> people = Collections.singletonList(person);

repository.save(person);
repository.save(people);

5.4.1. Query by method
The Repository also has a method query from the method name. These are the keywords:

* findBy: The prefix to find some information.

* deleteBy: The prefix to delete some information.
Also, the operators:

* And

* Or

* Between

* LessThan

* GreaterThan

* LessThanEqual

* GreaterThanEqual
* Like

° In

* OrderBy

74

e OrderBy_\ \ \ Desc

* OrderBy__\ \ ASC

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByAddress(String address);
Stream<Person> findByName(String name);
Stream<Person> findByNameOrderByNameAsc(String name);
Optional<Person> findByNickname(String nickname);

void deleteByNickName(String nickname);

Using these keywords, Mapping will create the queries.

Special Parameters

In addition to the use of use the query method, the repository has support to a special instance at
the parameters in a method:

» Pagination: This parameter enables the resource of pagination at a repository.

 Sort: It appends sort in the query dynamically if the query method has the 0derBy keyword. This
parameter will add the sort after the sort information from the method.

 Sorts: It is a group of a sort, therefore, it appends one or more sort dynamically.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findA1ll(Pagination pagination);
List<Person> findByName(String name, Sort sort);

List<Person> findByAgeGreaterThan(Integer age, Sorts sorts);

This resource allows pagination and a dynamical sort in a smooth way.

75

PersonRepository personRepository = ...;

Sort sort = Sort.asc("name");

Sorts sorts = Sorts.sorts().asc("name").desc("age");
Pagination pagination = Pagination.page(1).size(10);

List<Person> all = personRepository.findAll(pagination);//findAll by pagination

List<Person> byName = personRepository.findByName("Ada", sort);//find by name order by
name asc

List<Person> byAgeGreaterThan = personRepository.findByAgeGreaterThan(22, sorts)
;//find age greater than 22 sort name asc then age desc

ﬁ All these special instances must be at the end, thus after the parameters that will
be used at a query.

5.4.2. Using Repository as an asynchronous way

The RepositoryAsync interface works similarly as Repository but with asynchronous work.

(DatabaseType.DOCUMENT)
private PersonRepositoryAsync documentRepositoryAsync;

(DatabaseType.COLUMN)
private PersonRepositoryAsync columnRepositoryAsync;

In other words, just inject and then create an Entity Manager async with producers method.

PersonRepositoryAsync repositoryAsync = //instance
Person person = new Person();
person.setNickname("diana");

person.setName("Diana Goodness");

List<Person> people = Collections.singletonList(person);

repositoryAsync.save(person);
repositoryAsync.save(people);

Also, delete and retrieve information with a callback.

76

interface PersonRepositoryAsync extends RepositoryAsync<Person, Long> {
void findByNickname(String nickname, Consumer<List<Person>> callback);
void deleteByNickName(String nickname);

void deleteByNickName(String nickname, Consumer<Void> callback);

Q In the key-value resource, the Repository does not support method query
resource; this database type has key oriented operations.

5.4.3. Using Query annotation

The Repository interface contains all the trivial methods shared among the NoSQL implementations
that a developer does not need to care. Also, there is a query method that does query based on the
method name. Equally important, there are two new annotations: The Query and param, that
defines the statement and set the values in the query respectively.

public interface PersonRepository extends Repository<Person, Long> {
("select * from Person")
Optional<Person> findByQuery();

("select * from Person where id = @id")
Optional<Person> findByQuery(("id") String id);

Remember, when a developer defines who that repository will be implemented
o from the CDI qualifier, the query will be executed to that defined type, given that,
gremlin to Graph, Jakarta NoSQL key to key-value and so on.

5.4.4. How to Create Repository and RepositoryAsync implementation
programmatically

The Mapping API has support to create Repository programmatically to each NoSQL type, so there
are ColumnRepositoryProducer, DocumentRepositoryProducer,
KeyValueRepositoryProducer, GraphRepositoryProducer to column, document, key-value,
graph repository implementation respectively. Each producer needs both the repository class and
the manager instance to return a repository instance. The ColumnRepositoryAsyncProducer and
DocumentRepositoryAsyncProducer have a method to create a RepositoryAsync instance that
needs both an interface that extends RepositoryAsync and the manager async.

77

Graph repository producer

private GraphRepositoryProducer producer;

public void anyMethod() {
Graph graph = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, graph);

Key-value repository producer

private KeyValueRepositoryProducer producer;

public void anyMethod() {
BucketManager manager = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, manager);

Column repository producer

private ColumnRepositoryProducer producer;

private ColumnRepositoryAsyncProducer producerAsync;

public void anyMethod() {
DocumentCollectionManager manager = ...;//instance
DocumentCollectionManagerAsync managerAsync = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, graph);
PersonRepositoryAsync personRepositoryAsync = producerAsync.get
(PersonRepositoryAsync.class, graph);

}

78

Document repository producer

@Inject
private DocumentRepositoryProducer producer;

@Inject
private DocumentRepositoryAsyncProducer producerAsync;

public void anyMethod() {
DocumentCollectionManager manager = ...;//instance
DocumentCollectionManagerAsync managerAsync = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, graph);
PersonRepositoryAsync personRepositoryAsync =
producerAsync.get(PersonRepositoryAsync.class, graph);

}

private ColumnRepositoryProducer producer;

private ColumnRepositoryAsyncProducer producerAsync;

public void anyMethod() {
ColumnFamilyManager manager = ...;//instance
ColumnFamilyManagerAsync managerAsync = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, manager);
PersonRepositoryAsync personRepositoryAsync = producerAsync.get
(PersonRepositoryAsync.class, managerAsync);

}

private DocumentRepositoryProducer producer;

private DocumentRepositoryAsyncProducer producerAsync;

public void anyMethod() {
DocumentCollectionManager manager = ...;//instance
DocumentCollectionManagerAsync managerAsync = ...;//instance
PersonRepository personRepository = producer.get(PersonRepository.class, manager);
PersonRepositoryAsync personRepositoryAsync = producerAsync.get
(PersonRepositoryAsync.class, managerAsync);

}

5.5. Pagination

Pagination is the process of separating the contents into discrete pages. Each page has a list of

79

entities from the database. The pagination allows retrieving a considerable number of elements
from datastore into small blocks, e.g., returns ten pages with one hundred elements instead of
return one thousand in a big shot at the storage engine.

At this project, there an interface that represents the pagination there is the Pagination interface.

First page

Second page

™y

—_—, P
|

Third page

Fourth page -

P

Figure 11. The pagination, instead of query a bunch of elements. The pagination process allows retrieving a
small fixed block of entities in a database.

Pagination pagination = Pagination.page(1).size(2);

//it creates a pagination instance where it is the first page and each page has the
size of two each one.

long pageNumber = pagination.getPageNumber();

Pagination next = pagination.next();

The Column-Family, Document and Graph API has method such as skip and limit
to jump values into a query and to define a maximum size of elements to return in
a query respectively.

5.5.1. Column

A ColumnQueryPagination is a specialization of ColumnQuery that allows the pagination resource at the
query. Thus it overwrites the skip and limit and use the values from a Pagination instance.

80

Pagination pagination = ...;
ColumnQuery query =...;

ColumnQueryPagination queryPagination = ColumnQueryPagination.of(query, pagination);

ColumnQueryPagination nextQueryPagination =
queryPagination.next();

Template

Through the Template there are two ways to use the pagination resource. The first one is to define
the value as ColumnQuery. Thus it will return a query as a list; however, it will break the results into

pages.

ColumnTemplate template =...;

Pagination pagination = Pagination.page(1).size(1);

ColumnQuery query = ColumnQueryPagination.of(select().from("person”).build(),
pagination);

List<Person> people = template.select(query);

The second one is representing the page with the Page instance. A page is a fixed-length contiguous
block of entities from the database, it has the feature to generate the next page.

ColumnTemplate template =...;

Pagination pagination = Pagination.page(1).size(1);

ColumnQueryPagination query = ColumnQueryPagination.of(select().from("person").build(
), pagination);

Page<Person> firstPage = template.select(query);

List<Person> firstPageContents = page.getContent();

Page<Person> secondPage = firstPage.next();

Query Mapper

From a mapper query is possible either creates a query that executes using the pagination or
creates a Page instance.

ColumnQueryMapperBuilder mapperBuilder = ...;

Pagination pagination = Pagination.page(2).size(2);

ColumnQuery query = mapperBuilder.selectFrom(Person.class).build(pagination);
Page<Person> page = mapperBuilder.selectFrom(Person.class).page(template, pagination);
List<Person> people = mapperBuilder.selectFrom(Person.class).execute(template,
pagination);

81

Repository
A Repository interface also allows using the pagination feature at these interfaces. To enable it

creates a Pagination parameter as the last parameter.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findAll(Pagination pagination);
Set<Person> findByName(String name, Pagination pagination);

Page<Person> findByAge(Integer age, Pagination pagination);

5.5.2. Document

A DocumentQueryPagination is a specialization of DocumentQuery that allows the pagination resource at
the query. Thus it overwrites the skip and limit and use the values from a Pagination instance.

Pagination pagination = ...;
DocumentQuery query =...;

DocumentQueryPagination queryPagination = DocumentQueryPagination.of(query,
pagination);

DocumentQueryPagination nextQueryPagination =
queryPagination.next();

Template

Through the Template there are two ways to use the pagination resource. The first one is to define
the value as DocumentQuery. Thus it will return a query as a list; however, it will break the results
into pages.

DocumentTemplate template =...;

Pagination pagination = Pagination.page(1).size(1);

DocumentQuery query = DocumentQueryPagination.of(select().from("person").build(),
pagination);

List<Person> people = template.select(query);

The second one is representing the page with the Page instance. A page is a fixed-length contiguous
block of entities from the database, it has the feature to generate the next page.

82

DocumentTemplate template =...;

Pagination pagination = Pagination.page(1).size(1);

DocumentQueryPagination query = DocumentQueryPagination.of(select().from("person™)
.build(), pagination);

Page<Person> firstPage = template.select(query);

List<Person> firstPageContents = page.getContent();

Page<Person> secondPage = firstPage.next();

Query Mapper

From a mapper query is possible either creates a query that executes using the pagination or
creates a Page instance.

DocumentQueryMapperBuilder mapperBuilder = ...;

Pagination pagination = Pagination.page(2).size(2);

DocumentQuery query = mapperBuilder.selectFrom(Person.class).build(pagination);
Page<Person> page = mapperBuilder.selectFrom(Person.class).page(template, pagination);
List<Person> people = mapperBuilder.selectFrom(Person.class).execute(template,
pagination);

Repository

A Repository interface also allows using the pagination feature at these interfaces. To enable it
creates a Pagination parameter as the last parameter.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findAl1l(Pagination pagination);
Set<Person> findByName(String name, Pagination pagination);

Page<Person> findByAge(Integer age, Pagination pagination);

5.5.3. Graph

At the Graph database, the Pagination implementation works within a GraphTraversal. A
GraphTraversal is a DSL that is oriented towards the semantics of the raw graph.

Pagination pagination = Pagination.page(1).size(1);
Page<Person> page = template.getTraversalVertex()
.orderBy("name")
.desc()
.page(pagination);

83

Repository

A Repository interface also allows using the pagination feature at these interfaces. To enable it
creates a Pagination parameter as the last parameter.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findAll(Pagination pagination);

Set<Person> findByName(String name, Pagination pagination);

' Graph repository implementation does not support the Page conversion.

5.6. Bean Validation

The Mapping has support to use Bean Validation (BV), which supports a plugin that, basically,
listens to an event from preEntity and executes the BV.

public class Person {

private String name;

(21)

private Integer age;

("100")

private BigDecimal salary;

(min = 1, max = 3)

private List<String> phones;

In case of a validation problem in the project, a ConstraintViolationException will be thrown.

84

http://beanvalidation.org/

Person person = Person.builder()
.withAge(10)
.withName("Ada")
.withSalary(BigDecimal.ONE)
.withPhones(singletonList("123131231"))
.build();

repository.save(person);//throws a ConstraintViolationException

85

Chapter 6. References

6.1. Frameworks

Spring Data
http://projects.spring.io/spring-data/

Hibernate OGM
http://hibernate.org/ogm/

Eclipselink

http://www.eclipse.org/eclipselink/

Jdbc-json
https://github.com/jdbc-json/jdbc-cbh

Simba

http://www.simba.com/drivers/

Apache Tinkerpop
http://tinkerpop.apache.org/

Apache Gora
http://gora.apache.org/about.html

Spring Data

http://projects.spring.io/spring-data/

6.2. Databases

ArangoDB
https://www.arangodb.com/

Blazegraph
https://www.blazegraph.com/

Cassandra

http://cassandra.apache.org/

CosmosDB

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

Couchbase

https://www.couchbase.com/

Elastic Search

86

http://projects.spring.io/spring-data/
http://hibernate.org/ogm/
http://www.eclipse.org/eclipselink/
https://github.com/jdbc-json/jdbc-cb
http://www.simba.com/drivers/
http://tinkerpop.apache.org/
http://gora.apache.org/about.html
http://projects.spring.io/spring-data/
https://www.arangodb.com/
https://www.blazegraph.com/
http://cassandra.apache.org/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.couchbase.com/

https://www.elastic.co/

Grakn
https://grakn.ai/

Hazelcast

https://hazelcast.com/

Hbase
https://hbase.apache.org/

Infinispan

http://infinispan.org/

JanusGraph IBM

https://www.ibm.com/cloud/compose/janusgraph

Janusgraph

http://janusgraph.org/

Linkurio

https://linkurio.us/

Keylines

https://cambridge-intelligence.com/keylines/

MongoDB

https://www.mongodb.com/

Neo4]
https://neodj.com/

OriendDB
https://orientdb.com/why-orientdb/

RavenDB
https://ravendb.net/

Redis
https://redis.io/

Riak
http://basho.com/

Scylladb
https://www.scylladb.com/

Stardog

87

https://www.elastic.co/
https://grakn.ai/
https://hazelcast.com/
https://hbase.apache.org/
http://infinispan.org/
https://www.ibm.com/cloud/compose/janusgraph
http://janusgraph.org/
https://linkurio.us/
https://cambridge-intelligence.com/keylines/
https://www.mongodb.com/
https://neo4j.com/
https://orientdb.com/why-orientdb/
https://ravendb.net/
https://redis.io/
http://basho.com/
https://www.scylladb.com/

https://www.stardog.com/

TitanDB

http://titan.thinkaurelius.com/

Memcached

https://memcached.org/

6.3. Articles

Graph Databases for Beginners: ACID vs. BASE Explained

https://neo4j.com/blog/acid-vs-base-consistency-models-explained/

Base: An Acid Alternative
https://queue.acm.org/detail.cfm?id=1394128

Understanding the CAP Theorem

https://dzone.com/articles/understanding-the-cap-theorem

Wikipedia CAP theorem
https://en.wikipedia.org/wiki/CAP_theorem

List of NoSQL databases
http://nosql-database.org/

Data access object Wiki

https://en.wikipedia.org/wiki/Data_access_object

CAP Theorem and Distributed Database Management Systems

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-
5c2be977950e

Oracle Java EE 9 NoSQL view
https://javaee.github.io/javaee-spec/download/JavaEE9.pdf

88

https://www.stardog.com/
http://titan.thinkaurelius.com/
https://memcached.org/
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://queue.acm.org/detail.cfm?id=1394128
https://dzone.com/articles/understanding-the-cap-theorem
https://en.wikipedia.org/wiki/CAP_theorem
http://nosql-database.org/
https://en.wikipedia.org/wiki/Data_access_object
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://javaee.github.io/javaee-spec/download/JavaEE9.pdf

	Eclipse Jakarta NoSQL
	Table of Contents
	Eclipse Jakarta NoSQL
	Chapter 1. One Mapping API, multiples databases
	1.1. Beyond JPA
	1.2. A Fluent API
	1.3. Let’s not reinvent the wheel: Graph
	1.4. Particular behavior matters in NoSQL database
	1.5. Key features

	Chapter 2. Let’s talk about standard to NoSQL database in Java
	2.1. Key-value
	2.2. Document collection
	2.3. Column Family
	2.4. Graph
	2.5. Multi-model database
	2.6. Scalability vs Complexity
	2.7. BASE vs ACID
	2.8. CAP Theorem
	2.9. The diversity in NoSQL
	2.10. Standard in SQL

	Chapter 3. The main idea behind the API
	Chapter 4. Communication API Introduction
	4.1. The API structure
	4.2. Value
	4.2.1. Make custom Writer and Reader

	4.3. Element Entity
	4.3.1. Document
	4.3.2. Column

	4.4. Entity
	4.4.1. ColumnFamilyEntity
	4.4.2. DocumentEntity
	4.4.3. KeyValueEntity

	4.5. Manager
	4.5.1. Document Manager
	DocumentCollectionManager
	DocumentCollectionManagerAsync
	Search information on a document collection
	Removing information from Document Collection

	4.5.2. Column Manager
	ColumnFamilyManager
	ColumnFamilyManagerAsync
	Search information on a column family
	Removing information from Column Family

	4.5.3. BucketManager
	Removing and retrieve information from a key-value database

	4.5.4. Querying by text at Communication API
	Key-Value
	Column and Document
	WHERE
	Conditions
	Operators
	The value
	SKIP
	LIMIT
	ORDER BY
	TTL
	PreparedStatement and PreparedStatementAsync

	4.6. Factory
	4.6.1. Column Family Manager Factory
	4.6.2. Document Collection Factory
	4.6.3. Bucket Manager Factory

	4.7. Configuration
	4.7.1. Settings
	Encryption

	4.7.2. Document Configuration
	4.7.3. Column Configuration
	4.7.4. Key Value Configuration

	4.8. The diversity on NoSQL database

	Chapter 5. Mapping API Introduction
	5.1. The Mapping structure
	5.2. Models Annotation
	5.2.1. Annotation Models
	Entity
	Column
	MappedSuperclass
	Id
	Embeddable
	Convert
	Collection

	5.2.2. Qualifier annotation
	5.2.3. ConfigurationUnit
	Injection of the code
	The configuration structure

	5.3. Template classes
	5.3.1. DocumentTemplate
	5.3.2. DocumentTemplateAsync
	5.3.3. ColumnTemplate
	ColumnTemplateAsync

	5.3.4. Key-Value template
	5.3.5. Graph template
	Create the Relationship Between Them (EdgeEntity)
	Querying with traversal

	5.3.6. Querying by text at Mapping API
	Key-Value
	Column-Family
	Document Collection
	Graph

	5.4. Repository
	5.4.1. Query by method
	Special Parameters

	5.4.2. Using Repository as an asynchronous way
	5.4.3. Using Query annotation
	5.4.4. How to Create Repository and RepositoryAsync implementation programmatically

	5.5. Pagination
	5.5.1. Column
	Template
	Query Mapper
	Repository

	5.5.2. Document
	Template
	Query Mapper
	Repository

	5.5.3. Graph
	Repository

	5.6. Bean Validation

	Chapter 6. References
	6.1. Frameworks
	6.2. Databases
	6.3. Articles

