
Mylar: a degree-of-interest model for IDEs

Mik Kersten and Gail C. Murphy
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver, BC, V6T 1Z4, Canada

{beatmik, murphy}@cs.ubc.ca

ABSTRACT
Even when working on a well-modularized software system,
programmers tend to spend more time navigating the code than
working with it. This phenomenon arises because it is impossible
to modularize the code for all tasks that occur over the lifetime of
a system. We describe the use of a degree-of-interest (DOI) model
to capture the task context of program elements scattered across a
code base. The Mylar tool that we built encodes the DOI of
program elements by monitoring the programmer’s activity, and
displays the encoded DOI model in views of Java and AspectJ
programs. We also present the results of a preliminary diary study
in which professional programmers used Mylar for their daily
work on enterprise-scale Java systems.

Keywords
Development tools, software evolution, program structure,
program views, software tasks, task representation

1. INTRODUCTION
To make a change to a large software system, programmers must
repeatedly visit multiple places in the code. For instance, they
may need to examine the code corresponding to a cohesive
portion of the program’s execution as part of a change task. In an
object-oriented program, this code is typically scattered across
several methods in multiple classes. In an aspect-oriented
programming (AOP) [11] implementation, this code may also be
spread across advice in one or more aspects.
Integrated development environments (IDEs) views are intended
to help a programmer find, examine, and navigate between the
places of interest in the code. For example, a cross-reference
search can produce a view listing all of the methods called from a
constructor of interest. To support AOP, the IDE may provide a
view showing all of the methods affected by a particular advice.
When the system is small, the elements related to the task-at-hand
are easy to find in such views. However, as the size of the system
increases the utility of these views decreases. The elements
relevant to the current task become a small subset of those shown

in the IDE views. As a result, in an enterprise-scale system the
large number of elements unrelated to the current task occludes
the relevant information. Current IDE’s force programmers to
work with long scrolling lists when trying to find the elements
related to a task, and to synthesize information spread across
multiple lists in different views. As a result, programmers spend
more time looking for related information than they do
performing the task.
To help programmers focus and work on the code related to a
task, we have developed the Mylar1 tool. Mylar monitors a
programmers’ activities and captures the relevance of code
elements to their task in a degree-of-interest (DOI) model, loosely
based on the model introduced by Card [1] (Section 3). For
example, when a programmer selects or edits a program element,
Mylar increases the interest level of that element. Mylar uses the
DOI model to populate Java [5] and AspectJ [10] views within the
Eclipse2 IDE
To provide initial evidence that there is value in this approach, we
present the results of a diary study in which six senior
programmers at IBM used the Mylar tool in their daily work on
enterprise-scale systems implemented in Java (Section 4). Based
on this experience, we have built additional IDE views and
features intended to help programmers work with crosscutting and
inheritance structure in large systems (Section 5.3). The use of
Mylar has also provided feedback about how the DOI model can
evolve to better capture and represent a programmer’s activities,
and how we can make views actively find and display code
relevant to the current context (Section 5.1). Mylar is unique in
surfacing the scattered code related to a task without requiring
special behavior on the part of the programmer (Section 6).

2. EXAMPLE
Consider the case of a programmer trying to understand why
some of the test cases for de-serialization are failing in the
moderately sized Web Services Invocation Framework (WSIF)3.
To complete this debugging task, the programmer must examine
the test cases, the classes that are failing to de-serialize, and the
serialization policy employed in the system. To describe the
limitations of existing IDE views when working with this task, we

1 Mylar is also a polyester film used for solar eclipse viewing.

The Mylar tool is a DOI viewing layer for the Eclipse IDE.
2 http://eclipse.org, AspectJ plugin: http://eclipse.org/aspectj
3 http://ws.apache.org/wsif (1,897 classes)

first present the use of the Eclipse Java Development Tools (JDT)
and then the AspectJ Development Tools (AJDT). We then
introduce the Mylar views, which extend the JDT and AJDT.
Using the Eclipse JDT, the programmer decides to find all
subtypes in the WSIF code base that implement the
Serializable interface, and to inspect the setter methods in
those classes. Despite the support that Eclipse provides in the Java
Type Hierarchy view and search functionality, the programmer
finds it a lengthy and tedious process to investigate the relevant
system structure, in part because the classes involved with the
particular failures are a small subset of the de-serialization
concern in WSIF. Figure 1 shows a snapshot of Eclipse after
finding the Serializable interface, inspecting the interface in
the hierarchy, and searching for all references to
Serializable within the WSIF project.

1. The Package Explorer has become difficult to use
because it includes thousands of nodes—a result of only
a handful of navigation clicks through project files and
related library classes. Hierarchical relationships are no
longer visible without scrolling through the tree.

2. Using the Java Search features to look for references to
Serializable within the project returns 144 items.
There is no convenient way to search for only those
elements related to the context of the failing test cases.
Instead, the search result list requires manual inspection
to find elements of interest.

3. The Outline view is less populated than the other views
since the current class is small, but it still needs to be
scrolled to find the setter methods of interest.

4. The Type Hierarchy shows all types in the project that
extend Serializable, and contains thousands of
elements. Despite the fact that the list is limited to the
project’s working set of elements, a very small subset
of the types in the view is involved in the failing test
cases of interest.

Part of the problem in this scenario is that the serialization policy
is a crosscutting concern. To cleanly capture the structure and
behavior of this concern, the programmer can use AspectJ to
express the serialization policy in a single aspect as shown in
Figure 1. The AJDT Eclipse plugin makes the resulting
crosscutting structure explicit in the Outline view. Although the
modularity of the code base improves, the programmer finds that
the AJDT views manifest similar problems to the Java views.

5. As the programmer explores the many “advises” links
looking for those related to the failure, the Package
Explorer tree expands. The need to navigate the
crosscutting effects of advice, spread across many
classes, causes the number of elements in the Package
Explorer to grow even faster than it did in the Java case.

6. The Aspect Visualiser view contains many files, the
names of which are hard to read. This view
communicates that the aspect affects many places in the
current project. But it does not indicate which parts of
this crosscutting structure are interesting to the task-at-
hand. The large number of affected source lines
presented occludes the subset of join points related to
the failing test cases, and the programmer must
manually inspect the view by repeatedly zooming,
scrolling, and navigating.

Whether used with plain Java or AspectJ these IDE views fail to
show the subset of the structure relevant to the programmer’s
task. The views cannot be configured in a way that captures the
elements that the programmer needs to edit, the inheritance
context of the Serializable classes that are causing the test
case to fail, and the crosscutting context of the system-wide
serialization policy. The IDE tools show whole-system slices of
the program structure rather than helping the programmer focus
on the program elements important to the task-at-hand. When
working on any task not encapsulated by a single file module or
structure view, the programmer must navigate between files,
repeatedly refer to lists of open files, perform multiple searches,

Figure 1: Java project, left and AspectJ project, right (figure numbers correspond to list items above)

and repeatedly inspect search results looking for those relevant to
the task. The programmer must commit the context of the task to
memory. The burden of filtering the views based on the task
context is placed on the programmer instead of the tool.
To address these problems we built the Mylar Eclipse plugin,
which automatically encodes the context of the programmer’s
task in a DOI model and exposes it in IDE views (Figure 2). The
default highlighting scheme visible uses colored shading to
indicate the programmer’s relative interest in the element. A
darker shade indicates a higher DOI. Since Eclipse already uses
highlighting to indicate the currently selected element, Mylar uses
bold font to indicate the currently selected element. Figure 2
shows how the Mylar views present program elements related to
the task context. Section 3.2 describes the views in detail.

1. Mylar Package Explorer: interest-based filtering is
enabled, so only the files and libraries relevant to the
task are visible. The number of filtered elements is
indicated on the parent label. The auto expand and filter
mode reduces the need to manually expand and scroll
the tree by actively maintaining the visibility of high-
interest elements, which helps bring the hierarchical
relationships into view. Note that a vertical scrollbar

can appear in the Mylar views, but is less common
when interest-based filtering is enabled. A highlight-
only mode can be toggled, in which no elements are
filtered and items of interest stand out through
highlighting.

2. Mylar Problems List: problems of interest are
highlighted to stand out from the large number of items
typically populating this view. This view is populated
identically to the JDT/AJDT problems list, but
corresponding program elements are additionally
displayed and used to highlight the DOI of the problem.

3. Mylar Outline: interest-based filtering is turned on to
show only the members related to the task.. The Mylar
editor has an option to actively fold and unfold elements
according to interest—reflecting the filtering state of the
Mylar Outline. If advice links are present in the Mylar
Outline view (as in Figure 1, #5) they appear similar to
the links visible in the Active Pointcut Navigator.

4. Active Pointcut Navigator: this view is actively updated
to show how high-interest elements fit into the
crosscutting structure of the system (Section 5.3.2).

Figure 2: Mylar views (figure numbers correspond to list items above)

3. MYLAR
Mylar monitors programmer activity in the Eclipse IDE, encodes
it into a DOI model, and displays the interest level in structure
views.

3.1 Mylar DOI model
The Mylar DOI model is loosely based on the model proposed for
DOI trees [1]. The Mylar model associates an interest value with
each Java or AspectJ program element. When a program element
is selected or edited, its DOI value increases. Over time, if the
element is not selected or edited, its interest value decays. At any
point in time, the interest values of the program elements reflect a
relevance ranking of an element to a particular task. The model
does not store any structural relationships between elements or
navigation paths, and instead relies on structure views to display
the relationships between interesting elements (Section 5.3).
From the programmer’s point of view, the model represents the
subset of program elements in the IDE that are relevant to the
current task. The accuracy and stability of the model are
determined by parameters for interest increase, decrease, and
periodic decay. If interest increases too eagerly, the structure
views will become overly populated with elements. Too fast a
decay can result in only a handful of recently-selected elements
remaining in the model. We discuss the tuning of encoding and
decay parameters in Section 3.3.
One of our goals is to make the Mylar model predictable enough
for programmers to avoid the frustrations that users have
experienced with adaptive interfaces [3]. As a result, we designed
the model to be an encoding of programming activity rather than a
machine learning or statistical process. In the cases where there is
a mismatch between the elements in the model and the task, the
programmer can set the interest on an element manually, or erase
the entire model (e.g., if they move on to a different task). Both
of these events are logged in detail, and have provided input for
making the Mylar model more aware of the programmer’s task
(Section 5.1).

3.2 Displaying DOI in structure views
The driving principle of the Mylar User Interface (UI) design is to
surface the DOI model seamlessly in the Eclipse views that
display program elements. For example, Mylar overlays the
interest level in the editor and in the three views that appear by
default in the Java perspective: the Package Explorer, Outline,
and Problems List views. The Mylar versions of the editor and
views provide a superset of the functionality of those that they
replace and are fully compatible with the programmers’ existing
use of those views. The Mylar views are intended to be used
instead of the corresponding Java and AspectJ views. However,
there is no restriction in how the views are set up, and both Mylar
and standard views can be used simultaneously.
Mylar visualizes the DOI of a program element through
highlighting. The default highlighting mode visible in Figure 2 is
a hot/cold color scheme, where hot means interesting. As an
element becomes more interesting its highlight color darkens. At
this stage of the implementation, the goal was to ensure that
programmers noticed the highlighting (rose coloring) and could
distinguish the Mylar views from the standard views (light blue
background). Determining the effectiveness of the highlighting
scheme is left to future work.

Mylar views also support the filtering of uninteresting elements
(Figure 2, #1). To make the filtering explicit, a parent element is
annotated to show how many elements of the total number of
children are visible (e.g., “3..10”). A parent node that filters
children can be asked to temporarily show all its children so that a
filtered element can be quickly added to the visible elements of
interest. In views that support collapsing elements, such as the
Package Explorer tree view and the Java editor folding support,
automatic management of the expansion state of the views and
editor ensures that only elements of interest are visible.

3.3 Integrating Mylar into Eclipse
Our design goals for Mylar include tight integration with Eclipse,
production-quality performance, and robustness. These goals are
required to support the study of real-world use of Mylar on large
systems (Section 4). To help meet these goals, we decided to
integrate the Mylar model with the existing Eclipse
IJavaElement hierarchy4 used by the Eclipse Java structure
views. The Mylar model is best conceptualized as an actively
updated index over this program element hierarchy. Each
element in the model is a lazily-updated proxy for an
IJavaElement. In addition, each element in the model stores a
float value that represents the interest in that element. The float
values have an unspecified range, and views render interest-
highlighting relative to that range. By convention elements with a
negative interest value are considered uninteresting, and hidden
when interest-based filtering is enabled. Each selection of a Java
element made by the programmer contributes to the interest level
(+1 by default), as does each keystroke made while editing the
Java element (+0.1 by default). Each selection also has the effect
of decaying the interest values of the other elements in the model
(-0.1 by default). To reduce memory overhead elements with a
low value (-10 by default) are purged from the model. The
scaling parameters for each of the model update operations affect
the stability of the model. The default values were hand tuned
based on usage statistics from developing Mylar in bootstrap
mode5. Automatic tuning of model parameters is discussed in
Section 5.1.
The Mylar UserListener monitors the Eclipse Workbench
selection and viewer services, is notified of every selection and
keystroke, and resolves the program element corresponding to the
event (Figure 4). The listener informs the DoiModelManager,
which updates the model based on the selection and editing
activity. The same information is passed to the
UsageStatisticsManager, which maintains a table of
usage statistics for tuning of the DOI function and for study
purposes (Figure 3).

4 The org.eclipse.jdt.core.IJavaElement hierarchy

represents the containment hierarchy of all Java elements,
starting with the project and ending with members. Storing of
the org.aspectj.asm.IProgramElement nodes is also
supported since, as of AJDT v1.1.12, AspectJ elements are not
integrated into the IJavaElement hierarchy.

5 All but the initial implementation of the model and test suite
have been developed using the Mylar views.

Figure 3: Mylar model and usage statistics views

The DOI model is kept in memory and is lazily written to disk in
order to persist across Eclipse sessions. The memory footprint of
the model is dominated by the Java elements that the model
references, since Eclipse would normally reclaim memory used
by these elements. However, the additional elements referred to
by the model are by definition the ones that are used more
frequently, so the relatively small space overhead of keeping the
model elements in memory results in a small performance

improvement, since the common elements do not need to be re-
created. A relevant implementation detail of the model is the fact
that it updates several indices on each modification. These indices
include one that propagates the interest values of children to
parents in order to speed-up rendering for filtering views, a list of
highest-interest elements to speed-up auto-expansion of tree
views, and a list of candidate elements that may be added to the
DOI model with the next selection. The index maintenance is
necessary to prevent costly computation that would need to be
done when rendering the active Mylar views (Section 5.3) which
are updated on each model modification (e.g., on every selection
change in the editor).

4. VALIDATION OF THE MODEL
The goal of Mylar is to enable programmers to spend more time
working on code than they spend navigating it. The larger a
system, the more likely it is that a programmer will need to focus
on a subset of the crosscutting code as part of a task. For this
reason, we chose to do a diary study [13] on the use of Mylar by
professional programmers who work on enterprise-scale systems.
The programmers were asked to use the experimental Mylar tool
and to provide daily qualitative reports of their experiences. We
augmented the diary study format with quantitative measurement
by recording the programmers’ activity (Section 3.3).
Our study tested programmers working with plain Java code. We
placed this constraint on the participants for two reasons. First, we
wanted to test our encoding of interest values while ensuring that
the programmers’ tasks remained consistent with their daily work.
We also wanted to validate the Mylar model on large systems.
Since AOP is still early in the adoption phase for enterprise
application development, we did not have access to programmers
actively developing large production applications with AspectJ.
We believe that the model requirements for the Java case are

ca.ubc.mylar

UserListener

ca.ubc.mylar.ui

..views

..model

..monitor

DoiModelManager

Eclipse
Workbench
selection and
viewer
services

usage

model

..editor

IModelListener
*

Eclipse Java
Model

 PackageExplorer

 ActiveFoldProvider

UsageStatisticsManager

Eclipse Java
editor

Eclipse JDT
UI views

 ProblemsList

 OutlinePage

ViewerFilter

HighlightProvider

..support

LabelProvider

Figure 4: Overview of the Mylar architecture

similar to those for the AspectJ case, even though the views vary
(Section 2).

4.1 Diary study format
The participants in our diary study were six senior IBM Toronto
Lab programmers working in Eclipse on projects involving
WebSphere6, XDE7 and Eclipse plugins. We also involved a
summer intern for the purpose of having a more interruptible
subject who could test any patches and releases made during the
study. We did not include her in there results, which are limited to
professional developers. For the duration of the study one of the
authors was collocated with all but one participant. However, to
minimize the time taken from the participants, support and
interaction over the week was kept to a minimum and was
provided through email. During the five day study, the
programmers used a configuration of Eclipse that included the
Mylar Package Explorer, Outline, and Problems List.
Programmers were suggested to try, but not forced to use the
Mylar views. To support our goal of producing an intuitive user
interface that exposed DOI, without diverging too much from the
feel of Java views, we provided no training on Mylar and required
the programmers to read only a single page of documentation.
Before the week of the study we collected baseline data about the
programmers’ Eclipse usage, logging their edits and selections as
they worked, and capturing summary data. A sample snapshot of
this data, captured by the Mylar Monitor (Section 3.3), is visible
in the Usage Statistics view (Figure 3). The total number of hours
that Eclipse was active on the programmers’ machines was 25.5
hours for the 3 days of baseline monitoring.
The following week we ran the diary study; during the study we
logged 57.0 hours of Eclipse usage over 5 days. At the end of
each day we asked the participants to send their usage data and
answers to a one page survey of their day’s experiences. At the
end of the week we conducted half-hour wrap-up interviews with
each of the programmers.

4.2 Results
Before the study, subjects were informed about the Mylar tool and
each was given a questionnaire asking about their experiences

6 http://www.ibm.com/software/info1/websphere

using Eclipse. The problems cited include a dislike of the way in
which editors and files are handled, and overpopulation of tree
views such as the Package Explorer.
“I wish the content in the navigator view and the package explorer
view can be more condensed.”
“User has to filter out unwanted files explicitly… I use package
explorer mainly for looking at what files or Java classes I have.
Sometimes there are files I am not interested in.”
“I don't like managing the expansion state of Trees”
The first two results reported below are quantitative and derived
from the Mylar Monitor usage data. The latter two are qualitative
results synthesized from the daily diary and wrap-up interview
responses.

4.2.1 Usage statistics
Programmers used the Mylar views more than the plain Eclipse
views. The view they used most was the Mylar Package
Explorer, which is consistent with the baseline ratio of view
usage. The reason for the Outline’s lower use is that the most
active programmer, who contributed to 80% of that statistic, had
not read the page of documentation and had not enabled the Mylar
Outline view. Enabling this view was the only configuration
required of the study subjects. Once enabled, she used the Mylar
Outline almost exclusively. The complete usage statistics for the
week using Mylar are in Figure 5. Note that the “editor”
selections are the result of following references and links in the
Java editor and are independent of the Mylar views. The “other”
selections are dominated by use of the Type Hierarchy view.

4.2.2 Edit ratio
We defined the edit ratio as the number of keystrokes in the
editor over the number of structured selections made in the editor
and views (i.e., the total across the columns in Figure 5). We
hypothesized that if the elements relevant to a task are visible and
highlighted in the IDE views, programmers should spend less
time trying to find those elements, and more time working on
their task. The improvement we observed in edit ratio between
the baseline usage data and the Mylar usage data is encouraging.
Finding a meaningful statistic of this ratio was challenging not

7 http://www.ibm.com/software/awdtools/developer/rosexde

2458

750
564

323

1121

56 101 138 79
0

500

1000

1500

2000

2500

editor outline mylar
outline

package mylar
package
explorer

problems
list

mylar
problems

list

search other

Figure 5: Number of selection in plain Eclipse views vs. Mylar views

only due to the small sample size, but also to the short duration of
the study. From the daily diary responses we learned that several
programmers switched tasks between the baseline week and the
study week (e.g., one stopped developing code and moved to a
debugging stage). A similar factor was a change in the amount of
time of active Eclipse development between the baseline and
Mylar week (e.g., two programmers spent less than ½ hour in
Eclipse during the baseline week). So we feel that the average
edit ratio improvement across subjects of 15% is promising, but
overly noisy. However, the single most active programmer (she
actively worked in Eclipse for 19 hours during the week and
accounted for 40% of the activity across both weeks) reported that
she worked on the same task both weeks. Her edit ratio improved
by 49%.
During the wrap-up interview we asked the programmers if the
significant increase in the edit ratio was consistent with their
impressions. All of them agreed, stating that they did not need to
navigate or search for elements as much as they did with the plain
Eclipse views.

4.2.3 Model feedback
All of the programmers reported that the model accurately
represented the context of their task. During the wrap-up we
showed them the hidden DOI Model view (Figure 3) and asked
how closely the ranking matched their work over the week. All
reported that it closely represented the parts of the system on
which they had worked. We had built it for internal debugging
and inspection purposes. But some were surprised by the
accuracy of this view, and expressed interest in using it for their
programming activity.
Most of the programmers stated that the transparency of the
model was important to them (e.g., they knew that clicking on a
method in the editor would make it appear in the filtered Outline
view). The key shortcoming reported was the inability of the
model to understand task switching (e.g., to start on a new bug
report they would have to clear the model, even though that
model may be needed again).
Two programmers asked for a “silent activity” mode in which
usage would not be recorded when the current task diverged
momentarily. They wanted Mylar to better support debugging
activity which overpopulated the model (e.g., single-stepping
caused too many irrelevant elements to become interesting).
Overpopulation was also reported when code not relevant to the
current task was accidentally explored, and the UI for manual
interest reduction was not intuitive enough for some of the
programmers. From our own early use we knew that the stability
of the DOI function could be a problem, causing the DOI of
interesting elements to fall too quickly. As a result, we decided
on an overly conservative tuning that led to the overpopulation.

4.2.4 View feedback
Although all of the programmers liked what the views exposed,
there was a mixed response to the highlighting scheme. While
three programmers liked it and one felt neutral, two programmers
found it visually loud and disliked the intensity of the color added
to the views. For the purpose of consistency, the programmers
could not change the highlighting scheme to use a different color
or an icon annotations instead of color range. The Mylar Package
Explorer was the most liked view. Programmers found the
automatic filtering and auto-expansion mode useful because it

drastically reduced the amount of scrolling and inspection they
needed to do. Some liked the auto-expansion idea but found that
the UI interaction model differed too much from a typical tree
view (users could not collapse nodes containing children of high
interest since the collapse function was not mapped to an interest
operation on the model). Against our intuitions most of the
programmers were not interested in seeing the annotation of how
many elements were filtered, and explained that they were used to
elements missing from the Package Explorer since they regularly
used other filtering mechanisms.
The Mylar Problems List was also well liked, which was
surprising because in the baseline study only five Problems List
selections were made over all of the programmers. The subjects
reported that the interest highlighting helped with the
overpopulation of the list, and some asked for interest-based
sorting of that list.
The persistence of the model was well-liked by all the
programmers—when they restarted Eclipse after a long break the
last working context was retained. The most commonly asked for
feature was a Mylar version of the Type Hierarchy view
(discussed in Section 5.3.1) and the Content Assist popup view.
All of the programmers expressed interest in using future releases
of Mylar8.

5. DISCUSSION
5.1 Expanding the Mylar Model
A single Mylar model exists per Eclipse workspace. The
programmers in our study indicated the desire to extend Mylar’s
model to capture the multiple and possibly disjoint tasks that they
often have active in a single workspace. To support multiple
tasks, we plan to extend the Mylar to associate a separate DOI for
each task. However, the study questionnaires pointed out that a
desirable property of the model is its close correspondence to the
programmer’s overall familiarity with a system. For example,
commonly used APIs tend to be retained by the model, making it
easy to access information that was hard to find initially. To
preserve the property of representing the programmer’s memory
of the system, we plan to percolate the task-specific interest
values to global workspace values. The Mylar views will need to
be extended to differentiate between task-specific and global
interest.
We also believe that there is utility in extending the lifetime of a
Mylar model to enable a programmer to reuse a DOI model when
working on a similar task in the future. Often, tasks are related to
bug reports. We plan on extending a Bugzilla plugin developed in
our research group to allow programmers to manage multiple DOI
models along with bug reports by associating each model with a
report. The DOI model can then be externalized as an attachment
to the Bugzilla report, and can be reloaded into the workspace.
When the report is revisited, possibly by a different programmer,
the key elements related to the report will be explicit. To indicate

8 Since we wanted to focus development effort on incorporating
study results and not supporting the study release, we asked the
subjects to uninstall the tool at the end of the week. The
following week we were forwarded an email stating that one of
the programmers found the tool too useful to uninstall, and
continued to use it.

the elements that changed with the task we plan to extend the DOI
encoding to preserve the parameters such as the number of
selections and edits.
In addition to capturing the programming task, we need the Mylar
Monitor to understand the programming mode. This was evident
from a study participant’s suggestion that debugging activity
overpopulated the model, since single stepping caused too many
elements to become automatically selected (Section 4.2). Tuning
interest increase and decay parameters based on the programming
mode could help improve the stability of the model. In addition,
we plan on modeling the interest contribution of each view. We
already make a distinction in contributions between the structure
views and the editor (Section 3.3). The stack trace selections
were not made intentionally by the user, but indirectly by the
single-stepping mechanism. Capturing the intentionality of the
selection could also enable other kinds of automated contributions
to the interest model (e.g., the profiling information of all advice
executed by the Java Virtual Machine).
The current Mylar model is not as helpful at the beginning of a
task, where there is little encoded DOI context. To facilitate
working with unfamiliar code we plan to extend the model to
support predicted interest. Mechanisms similar to the automated
search facility described in Section 5.3 could then contribute a
predicted interest level to elements that do not yet have an
encoded interest.
One programmer stated that she wanted the Mylar model to
extend to XML files and elements. Since the DOI model makes
few assumptions about the elements it captures, non-Java
elements can be represented in the model. Support for XML
could help with managing enterprise application descriptors and
aspects declared in XML languages (e.g., Spring AOP9).

5.2 Improving DOI visualization
Mylar’s default DOI visualization uses background coloring to
indicate the relative interest level of each element. Although the
study subjects liked the effect of the visualization, two said that
they prefer their IDE to be “less colorful”. In addition to
supporting configurable color schemes, we plan to provide icons
that indicate interest value.
We are also exploring DOI-specific visualizations that focus on
showing structurally similar elements arranged according to their
interest level. For example, the prototype view in Figure 6 is
intended to replace Eclipse’s editor tabs and editor list with a
visually stable rendering of files arranged according to their
interest, and ordered in columns corresponding to packages.
Another visualization of the DOI model that we are exploring is
the UML10 static class diagram notation, which can be rendered
similarly, with additionally display the class associations.

Figure 6: 2D layout of high-interest files

9 http://www.springframework.org
10 http://www.omg.org/uml

5.3 Active Views
For the core Java and AJDT views described in Section 3.2 the
Mylar model need not capture any structural relationships
between the elements of interest. But when the programmer’s
task is concerned with the inheritance or crosscutting, the
relationships between elements of interest become important.
The active Mylar views differ from existing Java and AspectJ
views by eagerly presenting elements of interest. For example,
Eclipse’s Type Hierarchy view is only populated when the user
asks to see the inheritance structure for the selected element. In
contrast, Mylar’s Active Type Hierarchy is eagerly populated by
all elements of high-interest. Active views allow a programmer to
be continually aware of how the elements that are a part the task
context fit into the overall structure of the system. For this
purpose the Mylar model supports what we call implicit search—
a continuous structured search on elements with the highest
interest. The DOI model reduces the search scope to the extent
that the implicit searches can be run as low-priority background
threads that do not break the programmer’s workflow.
Another benefit of the Active Mylar views is similar to what was
reported by study subjects’ use of the Mylar Package Explorer:
the DOI model makes the structure views visually stable and
provides guaranteed visibility [12] for the elements of high
interest. This property encourages the use of visual memory for
quickly finding elements in the Mylar views. Since the study we
have implemented. but not yet validated, two Active View
prototypes—one for crosscutting structure and the other for
inheritance.

5.3.1 Active Type Hierarchy
Mylar’s Active Type Hierarchy continually invokes Java structure
searches on the program elements of highest interest, and displays
the results in a view based on the Eclipse Type Hierarchy. When
a programmer changes the body of a method of high interest, they
immediately see all of the methods overriding the one they are
editing. In addition, the programmer sees the elements of high
interest within the context of the entire system’s inheritance
structure. Whereas asking for the Type Hierarchy of library
classes often yields an over populated view (Figure 1) because it
includes the entire scope of the workspace, the Active Type
Hierarchy continually searches the inheritance structure of the
current DOI context. Any change in the DOI model invokes a
search of related suptertypes, subtypes, implementers, and
overriders. By including only the elements of high interest it
presents a concise summary of the interesting inheritance
structure even when working on systems with large library
dependencies and deep type hierarchies. The corresponding
visualization is similar to the Active Pointcut Navigator (Figure 2,
#4).

5.3.2 Active Pointcut Navigator
The Mylar DOI model enables a new kind of AspectJ view
capable of showing all of the crosscutting related to the current
context. The Active Pointcut Navigator (Figure 2, #4) shows the
programmer the effect of all the pointcut declarations in the
system. It exploits the naming of pointcuts to organize them in a
tree view showing the named pointcuts as nodes and any
pointcuts that refer to them as children. At the leaves of the tree
are advice and the corresponding affected program elements.
This view makes the effects of changing a pointcut explicit.

When a pointcut used by several other pointcuts and advice is
changed, the effects are immediately visible lower down in the
Pointcut Navigator tree, which shows the changed set of affected
elements. Note that since pointcuts are not restricted in what
other pointcuts they use, the tree structure can represent a graph.
This is not the common case, and repeated nodes are annotated.
The Active Pointcut Navigator view shows the crosscutting
structure relevant to the current context. Similar to the Active
Type Hierarchy, it accomplishes this goal by querying the
crosscutting structure of the high-interest elements and populating
the tree view with those elements, in the context of the pointcut
usage hierarchy. For example, if the high interest elements are
five method declarations and one abstract pointcut, the view is
populated with the concrete pointcut, advice that uses it, and any
advice that affect the five method declarations of interest. Updates
to the DOI model cause this active view to update by means of the
implicit search, so the programmer is continually made aware of
how the aspects in the system affect elements corresponding to
high-interest join points.

6. RELATED WORK
Several research tools provide facilities to help the programmer
explicitly declare the elements related to a task. FEAT allows the
programmer to create views of structurally related elements by
explicitly adding them to a Concern Graph [15]. JQuery can
capture the elements in Java structure queries whose results
persist in a view [8]. The Concern Manipulation Environment
provides similar structure search features in its query engine [6].
Whereas these approaches use a new view to show the program
elements related to the task-at-hand, Virtual Source Files provide
similar functionality but use a source file metaphor to group the
code itself instead of displaying links to the code [9]. These
approaches all place burden on the programmer with declaring the
task-specific program elements and queries that identify those
elements. In contrast, Mylar captures these program elements
implicitly, reducing the programmer’s effort. Mylar could also
benefit from incorporating query and concern inference results,
and correlate them to interest-increasing operations on the DOI
model.
Many IDE tools have monitored the programmer’s context to
present related program elements, starting perhaps with Interlip’s
Masterscope [16], which surfaced elements structurally related to
the current one. A key difference offered by the Mylar model is
that it provides a context beyond that of the current selection.
The filtering and folding support is related to the way in which
the Jaba tool [2] elides code regions by means of the DOI model
used in Fisheye views [4]. In contrast, Mylar’s use of DOI is not
based on tree structure navigation but on programming activity.
Mylar’s recording of programmer activity is similar to that done
in the document processing domain by the Edit and Read Wear
visualization tool which marks the frequently accessed places in a
text document [7]. Instead of capturing the unstructured places
that a document is edited, Mylar’s interest model encodes the
relevance of structured program elements. A programmer’s
context can also be inferred from analyzing the structural
navigation paths, as suggested by the automatic extraction of
concerns [14]. Mylar does not model navigation paths and instead
associates editing and navigation activity with program elements
alone. Representing navigation paths along with their DOI could
be useful extension to the model.

7. CONCLUSION
The Mylar tool focuses the elements visible in IDE views on the
context of a programmer’s task. This helps programmers spend
more time working with the multiple places in the code relevant
to their task and less time looking for those places.
Mylar demonstrates that a straightforward encoding of a degree-
of-interest model has value to programmers working on large
systems and can be surfaced predictably in IDE views, that
exposing an interest model makes programmers more productive
by helping them focus on their task (i.e., the programmers edit
more than they navigate), and that the interest model can be used
to actively show views of the crosscutting and inheritance
structure related to the task-at-hand.

8. ACKNOWLEDGMENTS
This research was funded by an IBM CAS fellowship and by
NSERC. We would like to thank Julie Waterhouse of IBM CAS
for her invaluable help in setting up the study and coordinating
participants, the IBM Toronto lab participants for their time and
feedback, Tamara Munzner for providing input on visualization
issues, and Joanna McGrenere for her input on study design.
Gregor Kiczales, Adrian Colyer, Brian de Alwis, Wes Coelho,
Andrew Eisenberg and Robert Hirschfeld also provided feedback
on the paper and/or implementation.

9. REFERENCES
[1] Card, S. K. and D. Nation. Degree-of-Interest Trees: A

Component of an Attention-Reactive User Interface.
Advanced Visual Interfaces Conference, Trento, Italy, 2002.

[2] Cockburn, A. Supporting tailorable program visualisation
through literate programming and fisheye views. Information
& Software Technology 43(13), 2001, 745-758.

[3] Findlater, L., McGrenere, J. A comparison of static,
adaptive, and adaptable menus. In Proceedings of
Computer-Interaction, 2004, 89-96.

[4] Furnas, G.W. Generalized Fisheye views. In Human Factors
in Computing Systems III. Proceedings of the CHI'86
conference. ACM, Amsterdam, 1986, 16-23.

[5] Gosling, J., Joy, B., and Steele, G., Bracha, G.: The Java
Language Specification. Second Edition. Addison-Wesley,
Reading, Massachusetts, 2000.

[6] Harrison, W., Ossher, H., Tarr, P., Kruskal, V. and Tip, F.
CAT: A Toolkit for Assembling Concerns. Research Report
RC22686, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, December, 2002.

[7] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless,
T. Edit wear and read wear. In Proceedings of the
Conference on Human Factors and Computing Systems,
1992, 3-9.

[8] Janzen, D. and De Volder, K. Navigating and querying code
without getting lost. In Proceedings of Aspect Oriented
Software Development, Boston, 2003, 178-187.

[9] Janzen, D. and de Volder, K. Programming With
Crosscutting Effective Views, In Proceedings of the European
Conference on Object-Oriented Programming, Springer-
Verlag, Oslo, 2004, 197-222.

[10] Kiczales, G., et al. An Overview of AspectJ. In Proceedings
of the European Conference on Object-Oriented
Programming. Springer-Verlag, Budapest, 2001, 327–353.

[11] Kiczales, G., et al. Aspect-Oriented Programming. In:
Proceedings of the European Conference on Object-Oriented
Programming. Springer-Verlag, Finland, 1997, 220-242.

[12] Munzner, T., Guimbretiere, F., Tasiran, S., Zhang, L. and
Zhou, Y. TreeJuxtaposer: Scalable Tree Comparison using
Focus+Context with Guaranteed Visibility. SIGGRAPH
published as ACM Transactions on Graphics 22(3), 2003,
453-462.

[13] Rieman, J. A field study of exploratory learning strategies.
ACM Transactions on Computer-Human Interaction, 3, 3,
1996, 189-218.

[14] Robillard, M. P., Murphy, G. C. Automatically Inferring
Concern Code from Program Investigation Activities. In
Proceedings of the 18th International Conference on
Automated Software Engineering, 2003, 225-234.

[15] Robillard, M. P., Murphy, G. C. FEAT. A Tool for Locating,
Describing, and Analyzing Concerns in Source Code. In
Proceedings of the International Conference on Software
Engineering, 2003, 822-823.

[16] Teitelman, W. and Masinter, L. The Interlisp programming
environment. IEEE Computer, vol. 14, 1981, 25-34.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

