
1

MDM5 API Technology Proposal
1. OSGi Runtime

Equinox1 , the Eclipse runtime will be used as the application’s core runtime. Following a short
description of the Core & Compendium / Enterprise OSGi services that are planned to be used
to build a modular, dynamic and distributed application.

1.1. Configuration Admin

The Configuration Admin will be used to deploy service component configurations to boot the
application. Furthermore the Configuration Admin can be used to update already deployed
service configurations at runtime. Service component configurations can be stored in one or
multiple JSON or XML file(s).

1.2. Declarative Services (DS)

Declarative Services is the OSGi way of Dependency Injection. Any deployed service
component configuration results in a service component instance. Such a service component
instance is then dynamically instantiated and activated as soon as all of its mandatory
service component dependencies are satisfied. A service component dependency states,
that a service component instance of a certain type must be up and running, before the
declaring service component can be activated. This very dynamic and complex part is
completely manged by the OSGi Declarative Services. Therefore a service component must
statically declare all of it’s service component dependencies, regardless of whether they are
mandatory or not. In some rare cases it is not possible to statically declare service component
dependencies, then a ServiceTracker can be used to get notified as soon as the required
service is up and running.

Dependency Injection Methods

Care should be taken when implementing OSGi DS related methods ((de-)activate,
(un-)bindXX, etc.). The Java keyword synchronized, for example, should not be used to
avoid increasing startup times while activating service component instances or binding service
component dependencies to keep total boot time of the application as short as possible. Long
running initialization tasks should be done in a background thread.

1 https://www.eclipse.org/equinox/

https://www.eclipse.org/equinox/
https://www.eclipse.org/equinox/

MDM5 API Technology Proposal

2

A bound service (mandatory or optional) should always be stored in an AtomicReference. If
more than one service is bound a 'copy on write' collection like CopyOnWriteArrayList should
be used to store bound services. AtomicReference and CopyOnWriteArrayList will both ensure
atomic service updates which are required in a dynamic environment where services can come
and go at any time.

The Whiteboard Pattern

The Whiteboard Pattern2 is the OSGi way of a Listener concept. Instead of resolving an event
source and registering a Listener to it, the Listener itself is published under its implemented
interface(s) in the OSGi service registry. The Event source on the other side declares a
service component dependendcy on the listener interface it wants to work with. At runtime the
Declarative Services will bind any available service component instance which is published
under the listener interface to the event source service.

1.3. Remote Services

The OSGi service registry is used to register services under a subset of the implemented
interfaces to be retrieved and used by others, the consumers. A consumer does not
necessarily need to be registered as a service in the service registry but may use any of the
registered ones.

Service Distribution

Services and their consumers are loosely coupled. Therefore a distribution provider may use
this loose coupling to export a service by creating an endpoint for it. On the other side the
distribution provider creates a proxy that accesses the endpoint of the exported service and
registers it as an imported service in another framework service registry.

If an endpoint becomes unreachable due to network failures, the distribution provider is notified
and consequently unregisters affected service proxies from the importing framework service
registry. Finally, in the planned environment, Declarative Services comes into play and notifies
all affected consumers of the detached remote services.

Furthermore if the service component configuration of an exported service is modified, any
consumer, local or remote, will be notified about that change via Declarative Services or an
associated ServiceTracker, if the service was retrieved that way.

2 http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

MDM5 API Technology Proposal

3

Service Discovery

In a distributed environment exported services, more specifically their endpoints, have to be
discovered and announced to the distribution provider and vice versa. There is a very large
number of ways how services, exported by other frameworks, can be discoverd.

Eclipse Communication Framework (ECF)

The Eclipse Communication Framework3 is a fully-compliant and transport independent
implementation of the OSGi Remote Services4 standard which effectively extends an OSGi
Framework with remote capabilities. It comes with various available Distribution and Discovery
Providers listed in the table below.

Table 1. Available Providers in Eclipse ECF

Distribution Provider Discovery Provider

ECF Generic - TCP-based protocol EDEF5 - XML file based discovery.

r-OSGi - Another TCP-based protocol. Apache Zookeeper6 - A popular server-
based service discovery system that’s part
of the Apache Hadoop project.

Java Messaging Service (JMS)7 - API for
sending messages between clients.

Zeroconf8 - A multicast-based protocol
originally created by Apple for printer and
other device discovery.

REST9 - Access services using HTTP via
GET, PUT, POST and DELETE actions.

Service-Location Protocol (SLP)10 - An
IETF service discovery standard.

XMPP - An open standard protocol allows
exchanging messages and presence
informations in real-time.

DNS-Service Discovery (DNS-SD)11 - A
discovery protocol based upon dynamic
DNS.

3 https://eclipse.org/ecf/
4 https://osgi.org/download/r5/osgi.cmpn-5.0.0.pdf
5 http://wiki.eclipse.org/File-based_Discovery_with_the_Endpoint_Description_Extender_Format
6 http://zookeeper.apache.org/
7 https://en.wikipedia.org/wiki/Java_Message_Service
8 http://en.wikipedia.org/wiki/DNS-SD#Apple.27s_multicast_DNS.2FDNS-SD
9 https://wiki.eclipse.org/Tutorial:_Creating_a_RESTful_Remote_Service_Provider
10 http://en.wikipedia.org/wiki/Service_Location_Protocol
11 http://en.wikipedia.org/wiki/DNS-SD#DNS-based_service_discovery

https://eclipse.org/ecf/
https://osgi.org/download/r5/osgi.cmpn-5.0.0.pdf
http://wiki.eclipse.org/File-based_Discovery_with_the_Endpoint_Description_Extender_Format
http://zookeeper.apache.org/
https://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/DNS-SD#Apple.27s_multicast_DNS.2FDNS-SD
https://wiki.eclipse.org/Tutorial:_Creating_a_RESTful_Remote_Service_Provider
http://en.wikipedia.org/wiki/Service_Location_Protocol
http://en.wikipedia.org/wiki/DNS-SD#DNS-based_service_discovery
https://eclipse.org/ecf/
https://osgi.org/download/r5/osgi.cmpn-5.0.0.pdf
http://wiki.eclipse.org/File-based_Discovery_with_the_Endpoint_Description_Extender_Format
http://zookeeper.apache.org/
https://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/DNS-SD#Apple.27s_multicast_DNS.2FDNS-SD
https://wiki.eclipse.org/Tutorial:_Creating_a_RESTful_Remote_Service_Provider
http://en.wikipedia.org/wiki/Service_Location_Protocol
http://en.wikipedia.org/wiki/DNS-SD#DNS-based_service_discovery

MDM5 API Technology Proposal

4

Distribution Provider Discovery Provider

JGroups12 - Allows to adopt the JGroup
protocol to an ECF container

An illustration of Eclipse ECF’s architecture is shown below. One can use any of the available
providers or implement the ECF Remote Service API for a custom distribution provider or
the discovery provider API for a custom distribution provider. The OSGi Remote Service
specification makes it very simple to distribute a service across multiple OSGi frameworks
by simply adding some specific properties to the deployed service component configuration.
A Framework can contain multiple distribution providers, each independently exporting and
importing services.

Figure 1. Eclipse ECF Architecture13

Example with Zookeeper discovery

The Eclipse ECF distribution comes with many examples which demonstrate some of the
available distribution and discovery providers. We will take a deeper look at an example
with asynchronous remote service access where the remote service is discovered via
Zoodiscovery.

12 https://wiki.eclipse.org/EIG:JGroups_provider
13 https://wiki.eclipse.org/OSGi_Remote_Services_and_ECF

https://wiki.eclipse.org/EIG:JGroups_provider
https://wiki.eclipse.org/OSGi_Remote_Services_and_ECF
https://wiki.eclipse.org/EIG:JGroups_provider
https://wiki.eclipse.org/OSGi_Remote_Services_and_ECF

MDM5 API Technology Proposal

5

This example consists of 3 bundles:

• Service API Bundle exports the service interface and may export an appropriate interface,
which remote consumers can use to access the service asynchronously. This bundle has
to be loaded in both, host and consumer, frameworks.

• Service host implements the service interface and registers it in the service registry.

• Service consumer wants to uses the service and therefore requests it from the service
registry.

That alone is a working example of providing and consuming a service in one framework. To
make the service remotely available in other frameworks it is at least required to add some
properties to the service host. Then the chosen discovery provider has to be configured. On
the consumer side additional code will be required to access the service asynchronously.

Adding properties to the service host

The host publishes its implementation of the service in the service registry. It is not required
to change that implementation. Only its service component configuration requires some
additional properties:

• service.exported.interfaces This property takes a list of interfaces under which this
service will be available on the consumer-side. The value "*" stands for all.

• service.exported.configs A list of configuration types that will be used to export the
service. In this example we will use the ECF Generic container and set this property to:
"ecf.generic.server".

• ecf.exported.containerfactoryargs This property is an ECF specific one and provides
additional container arguments which we set to "ecftcp://localhost:3787/server".

• ecf.exported.async.objectClass This property is ECF specific too and specifies the
interface for asynchronous access (optional).

The properties listed above can automatically be generated while deploying service
component configurations for each service component which is marked as remote available.

Zookeeper Discovery

As described in the previous chapters, with the modified service component host configuration,
the OSGi Remote Service will automatically generate an endpoint for it. The next step is
to configure the Zookeeper discovery, so that another framework can discover the exported

MDM5 API Technology Proposal

6

service and provide it to its registered services for consumption as a proxied local service. In
this example Zoodiscovery is configured via virtual machine arguments:

• zoodiscovery.autoStart If this property is defined Zoodiscovery will start automatically.

• zoodiscovery.flavor This property defines the network nodes providing exported service
endpoints. It takes following example values for host and consumer (multiple nodes can
be defined as well):

◦ Host-side: zoodiscovery.flavor.standalone=localhost:2002;clientPort=2001

◦ Consumer-side: zoodiscovery.flavor.standalone=localhost:2001;clientPort=2002

Zoodiscovery supports three different flavors (standalone, centralized and replicated). A
standalone flavor provides only its local endpoints to other nodes. A centralized flavor provides
the endpoints of all nodes from one central server (single point of failure). The replicated flavor
is more stable than the centralized one, because the endpoints are replicated over all nodes.
If one node fails, then only its local endpoints will be shut down. In case of network failures
Zoodiscovery keeps tyring to reconnect automatically, regardless of the chosen flavor.

Asynchronous service access

A remote service consumer, in most cases, does not care whether any of its bound services
is remote or not. Nevertheless it is simple to determine whether the service is local or not. A
distribution provider will always add properties to the service component’s configuration while
importing the service, among them the property service.imported will be set. Is this property
defined in the service component’s configuration, then this service is remote, otherwise not.
Sometimes it is required to access a remote service asynchronously. For this purpose an
appropriate interface must be available. Consider the following service interface in the API
bundle.

Simple service interface

public interface AnyService {

 public String doSomeThing(String from);

}

To access an implementation of that service asynchronously, ECF expects an interface
for asynchronous access. As previously described this interface has to be defined in the
service component’s host configuration with the property ecf.exported.async.objectClass.
The distribution provider on the consumer side will provide a proxy that can be cast into the
asynchronous interface. How such an interface could look is shown below:

MDM5 API Technology Proposal

7

Simple asynchronous service interface

// Options 2 and 3 are mutually exclusive - return type is the only difference!

public interface AnyServiceAsync {

 // 1 The IAsyncCallback interface is ECF specific

 public void doSomeThingAsync(String from, IAsyncCallback<String> callback);

 // 2 Requires polling for non blocking access

 public Future<String> doSomeThingAsync(String from);

 // 3 Since Java 8 - more advanced asynchronous access

 public CompletableFuture<String> doSomeThingAsync(String from);

}

As one can see the AnyServiceAsync interface defines 3 different options accessing the same
method doSomeThing of the service interface AnyService:

1. The IAsyncCallback interface causes a dependency on ECF specific bundle(s).

2. The Future is immediately returned but requires some kind of polling to determine whether
the request is finished or not.

3. Java 8 introduced the CompletableFuture. One can define a Runnable which is executed
as soon as the asynchronous call has finished → polling is not required.

1.4. Event Admin

Services in OSGi can use the Event Admin to fire (a)synchronous events, other services
can listen to without any knowledge where those events came from (Whiteboard Pattern).
Consumers implement an event handler interface and publish it in the service registry. Events
in turn consist of a topic and event properties. The Event Admin uses the topic to deliver the
event only to those who are interested in that topic. Eclipse ECF provides a distributed version
of the Event Admin. An example how this works is available in the Eclipse Wiki14 .

2. Java 8

Java 8 is the latest stable release which introduced new features like lambda expressions,
stream API, Optional, CompletableFuture, default methods in interfaces and JavaFX which
replaces Swing as the new standard for rich client development.

14 https://wiki.eclipse.org/EIG:Distributed_EventAdmin_Service

https://wiki.eclipse.org/EIG:Distributed_EventAdmin_Service
https://wiki.eclipse.org/EIG:Distributed_EventAdmin_Service

MDM5 API Technology Proposal

8

2.1. The stream API in conjunction with lambda expressions

Lambda expressions allow us to treat functionality as a method argument. In the following
example a list of persons is processed to print given names of persons older than 18:

List<Person> persons = new ArrayList<>();

// .. populate list and list given names of persons older than 18

// .. using stream API

persons.stream().filter(p -> p.getAge() > 18).forEach(p ->

 System.out.println(p.getGivenName());

// .. if the collection is very large process it parallel

persons.stream().parallel().filter(p -> p.getAge() > 18).forEach(p ->

 System.out.println(p.getGivenName());

// .. the classic way

for(Person p : persons) {

 if(p.getAge() > 18) {

 System.out.println(p.getGivenName());

 }

}

Working on collections with the stream API in conjunction with lambda expressions is very
expressive, and therefore easy to read and maintain.

2.2. Optional might help to avoid occurences of
NullPointerException

The Optional is a utility class that wraps any kind of an object. It is an excellent visual feedback
to the developer, that the contained object is not always available.

List<Person> persons = new ArrayList<>();

// .. populate list and find any person who is 14 years old.

Optional<Person> person14yOldOpt = persons.stream().filter(p -> p.getAge()

 == 14).findAny();

// a person who is 14 years old may not exist

if(person14yOldOpt.isPresent()) {

 Person p = person14yOldOpt.get();

 // do something...

}

MDM5 API Technology Proposal

9

Working with services in a dynamic environment like OSGi, where services can come and go
at any time, might easily result in NullPointerException, if a check for null is missed (relevant
when services are updated at runtime or disappear due to network failures). Providing them
wrapped in an Optional might help to avoid NullPointerException in advance.

2.3. Functional-style callbacks using CompletableFuture

CompletableFuture is useful in various scenarios. One of them is asynchronous access on
remote running services. Some examples are shown in the listing below.

// .. execute a task as soon as another one is finished

CompletableFuture.runAsync(() -> System.out.println("task 1")).thenRunAsync(() ->

 System.out.println("task 2"));

// .. execut a task when others are finished

List<CompletableFuture<?>> cfs = new ArrayList<>();

// .. populate list

CompletableFuture.allOf(cfs.toArray(new

 CompletableFuture[cfs.size])).thenRunAsync(() -> System.out.println("all tasks

 successfully completed"));

2.4. Default methods in Interfaces

Finally it is possible to provide default method implementations in interfaces. Consider
following example. The interface Simple defines default implemented methods to get and set
a name. Both use the abstract method which individually has to be implemented each time
this interface is used.

public interface Simple {

 Map<String, Value> getValues();

 // it is not possible to mark default methods as final though it is implemented

 default String getName() {

 return getValues().get("Name");

 }

 // any (abstract) class implementing this interface may override

 default void setName(Value value) {

 getValues().put("Name", value);

 }

}

MDM5 API Technology Proposal

10

With Java 8 it is no longer necessary to implement various interfaces in one abstract base
class and let multiple implementations extend that class. This is sometimes done to reduce
implementation overhead or enforce identical behaviour across implementations. With default
methods in interfaces it is possible to build interfaces on top of each other. This allows to
implement more or less complex functionality in one place and share it among different classes
(very useful when designing POJOs).

3. Build System

We would prefer to use Maven as the build system for the application. While developing the
MDM5 prototype we used the tycho15 plugin to build OSGi bundles with the Manifest-first
approach (dependencies are resolved by looking at corresponding Manifest headers.) and
have therefore experience with it. Nevertheless we are open to give Gradle a try.

15 https://eclipse.org/tycho/

https://eclipse.org/tycho/
https://eclipse.org/tycho/

	MDM5 API Technology Proposal
	1. OSGi Runtime
	1.1. Configuration Admin
	1.2. Declarative Services (DS)
	Dependency Injection Methods
	The Whiteboard Pattern

	1.3. Remote Services
	Service Distribution
	Service Discovery
	Eclipse Communication Framework (ECF)
	Example with Zookeeper discovery
	Adding properties to the service host
	Zookeeper Discovery
	Asynchronous service access

	1.4. Event Admin

	2. Java 8
	2.1. The stream API in conjunction with lambda expressions
	2.2. Optional might help to avoid occurences of NullPointerException
	2.3. Functional-style callbacks using CompletableFuture
	2.4. Default methods in Interfaces

	3. Build System

