Generation of Workflow Code from DSMs

Stephan Roser, Florian Lautenbacher, and Bernhard Bauer

Programming Distributed Systems Lab, University of Augsburg, Germany
{roser|lautenbacher|bauer@ds-lab.org}

Abstract. To use process models not only for documentation purposes but also for execution with workflow
engines, models need to be seamlessly transformed into executable workflow code. In practice however, existing
model and code generations show a number of limitations: different process engines require different workflow
code and domain-specific models need (often complex) graph transformation algorithms to come from a graph-
based to a block-based structure. In this paper we describe these issues in detail and develop a model and code
generation framework that fosters workflow code generation from domain-specific models.

1 Introduction

Model-driven software development (MDSD) embodies software engineering approaches focusing
on creating models rather than program code. MDSD uses models to raise the level of abstraction at
which developers create and evolve software [9] and reduces complexity of the software artifacts by
separating concerns and aspects of a system under development [10]. The OMG™s Model Driven
Architecture®) (MDA®)) [18], a specific MDSD approach, suggests to apply models at three levels
of abstraction. Multiple model transformations have to be developed transforming and integrating
knowledge captured in the various models. However, this is an overhead that prevents many projects
from increasing their productivity. The software factory initative from Microsoft@®) [9] focuses on
domain specific languages (DSLs) and customized development processes. Software factory schemas
are used to describe the assets for software development like DSLs, patterns, frameworks, and tools.
The Generic Modeling Environment (GME) ! is a configurable toolkit for creating domain-specific
modelling and program synthesis environments. MetaEdit+ from MetaCase 2 allows the defintion
of DSLs and customized diagram types. Code generators can be written that improve productivity
by generating code directly from higher-level models.

In the AgilPro project® [4] - Agile Business Processes - we have developed a modelling language,
a modelling tool, and a model and code generation framework that allow the definition of DSLs
for process-oriented application domains and the generation of executable workflow code. In this
paper we present the techniques we use in the generation framework. The main achievements of
the generation framework are to provide component-based design, which fosters the reuse and
composition of parts of generation solutions, and to decouple domain aspects from computational
aspects in the code generation. The generation framework aims to enable people with no or little
experience in code generation and workflow technology to generate workflow code from higher-level
models in reasonable time.

2 Context

During the last decade in the ERP domain agile processes got more and more important. In order
to improve existing products or customize them to the needs of the end-user most changes need
! http://www.isis.vanderbilt.edu/projects/gme/

2 http://www.metacase.com/
3 http://www.agilpro.eu/

to be done on the flow of services but not on the offered services. This results from changes in
jurisdiction, new products, standards, or requirements of the customers. In most organisations there
is a need for loosely-coupled components. Service-oriented Architecture (SOA) and Web service
technology as an implementation of SOA are one way for achieving this. AgilPro is a tool-suite and
process integration framework based on SOA. It allows the user to model their business processes,
preview and execute them on a process engine.

The core of the AgilPro solution is a domain-specific model (DSM) that conforms to a DSL for
process modelling and contains predefined model elements (e.g. applications, services, etc.) for a
particular domain. The AgilPro modelling tool further provides the possibility to define multiple
concrete syntaxes, for example one that especially suits the ERP domain. The AgilPro modelling
tool offers (at least) two views on the DSM, a business view and a technical view. The business
view abstracts from technical details such as which web services are invoked, how the data mapping
between different applications works, etc.. This is part of the technical view where an IT expert
can specify the relevant data for an execution of the process - if not already predefined in the DSM.
The model and code generation framework is used to generate executable workflow code.

The AgilPro metamodel is graph-based as most business process languages and rests upon
the UML 2 metamodel for activity diagrams. It extends it with information about responsibilities
or functions like in ARIS [23] or data and events similar to BPMN [19]. Henceforth, it tries to
combine the best practices of the currently existing process modelling languages. To enable domain-
specific modelling for e.g. ERP, CRM, or financial service applications, the metamodel and the
AgilPro modelling tool allows to define model templates. These model templates contain predefined
elements of and information about the application domain, but also syntactical information. This
are for example data types or applications with specific (execution) information or icons from
the ERP domain. These predefined elements become automatically part of AgilPro modeller’s
modelling palette and complete together with the AgilPro metamodel the specific DSL. Since such
DSLs cannot be executed on current process engines directly, one needs to transform them to
an executable language. We use WS-BPEL [5], which is the quasi standard for orchestrating web
services and supported by several process engines, for illustration purposes in the rest of this paper.

OfferID Offer position ___‘_7_‘__..----’::;:13 Sales Assistant -

/
> Offer.Offer 1000 v »{ sdd Offer To 828 Portal) -®
T LR
- EIRY
/ k)
."‘“ ‘\-‘ ""’ F, l \
P -
Offar header . ! Py L Zﬂ Q
e Seller Partal Web Brawser
/ o, ' - . = Vs 1
7 e e /
"/ - I_\, e
n g .
& W
Offer Management Head of Sales Departrnent POF Wiewer

Fig. 1. Create Offer Process Modelled with AgilPro Light Modeller

Figure 1 shows a Create Offer process that is modelled with the AgilPro Light Modeler (LiMo).
A complete process model comprises processing steps, input and output data, applications that

are used to execute the processing steps, and roles that perform the processing steps. In the Create
Offer process the processing step Create Offer has an OfferID and Offer header as input data
and produces an Offer as output. Create Offer is performed by the Sales Assistant and makes
use of the Offer Management system for execution. If the offer has a value that is greater than
or equal to 1,000, the head of the sales department has to check the offer. Finally, the offer is
added to a B2B portal by the sales assistant. What is not shown in the process diagram is the
additional information of the predefined elements that complete the DSL. In the Create Offer
process, these are for example the attributes of the data types like ‘dioParameter’ for OfferID
or information about the AgilPro integration framework Java adapters, which are called for the
applications like ’eu.emundo.agilpro.fw.fe.intf.GenericUi” for Offer Management. This additional
information is used by the code generation to directly generate executable BPEL code.

3 Challenges of the Code Generation

To develop a code generation that generates executable workflow code directly from higher-level
process descriptions like in AgilPro, one has to deal with a variety of challenges.

3.1 Process (Graph) Transformation

An important challenge is the translation of the higher-level processes into constructs that are
provided through the target process execution language. BPEL for example is a so-called block-
structured language. There, language elements that represent the control flow are composed in a
cycle-free tree-structure without goto-statements. [16,22] describe approaches of how to translate
process graphs into block-structured BPEL code. The process graph has to be analyzed and even
restrutured in order to map the graph to the BPEL elements. These approaches are based on the
identification of single-entry-single-exit (SESE) components in the control flow. To identify SESEs,
algorithms like [12] from compiler theory or the token flow algorithm [8,19] can be used.

As a result, one has to implement quite complex graph transformation algorithms to real-
ize (e.g. BPEL) workflow generation from higher-level process graphs. It is certainly possible to
implemented these transformations (some good examples can be found in [22]) with nearly any
model-to-model or model-to-code transformation approach. However, most model-to-model and
model-to-code transformation approaches qualify themselves a lot better for describing relation-
sships between elements and implementing generation patterns than for implementing complex
graph transformation algorithms. To realize preprocessing and graph transformation algorithms
like [8,12,22] common programming languages like Java or C are better suited.

3.2 Usage of Process Execution Environments and Engines

Though process execution languages have a well-defined syntax and semantics, different process
execution programs can be used to achieve the same external behaviour (effects) of a process
(execution) engine. Hence, code generations templates have to be adjusted in the way process
engines are used and implement the particular execution patterns. Moreover, code generation
templates also encode domain knowledge, like the specific data types. The following examples
illustrate two different ways of using BPEL to execute the invocation of a CreateOffer service.
While the first example represents code generation from process models whose semantics is similar
to BPEL code, the second example demonstrates code generation from higher-level process models.

1
2

4

6

8

10

12

14

16

The second example demonstrates quite well, that for a range of realistic application scenarios
sophisticated execution and invocation patterns have to be encoded into code generations.

Ezample 1 The BPEL generation developed in the SPL4AOX project [20, p.78ff] was based on the
action semantics of UML. Similar BPEL code generations have been described for example in [5].
Listing 1.1 depicts the BPEL code that is generated to invoke the CreateOffer service, that gets
an OfferID as input and provides an Offer as output (see Figure 1 in Section 2).

Listing 1.1. BPEL code generated in SPL4AOX

<invoke name="CreateOffer"

partnerLink="CreateOffer_Prov" portType="CreateOffer"
operation="in" inputVariable="0fferID" outputVariable="Offer">
</invoke>

Example 2 For our usage of the JBoss workflow engine in the AgilPro project multiple BPEL
instructions are necessary to obtain the same computational result as in example 1. Listing 1.2
depicts the sample code that is necessary to invoke the CreateOffer service depicted in Figure 1. One
important issue to recognize is, that the process execution engine has an execution context in which
information about the process execution can transiently be stored. Variables like nextActionReq
are containers in this execution context which consist of attributes (parts) like ticketnumber or
NamelN. We use the ticketnumber for correlation in the JBoss engine. DataTypelN, ValuelN, and
NamelN contain the information that is also used by the data object of the AgilPro integration
framework. The code of Listing 1.2 is generated as follows:

1. Before the processing step CreateOffer is started, the input data OfferID is copied to the

execution context. This is done by an assign and an invoke for each input data (line 1-25).

In the lines 26-39 the execution of the processing step CreateOffer is started.

3. The receive statement (line 40-45) waits for the completion of the processing step, which can
also be human interaction input. Line 46-58 stops the task execution in the process engine.

4. Finally, the result data Offer (line 59-83) is fetched from the process execution context.

o

Listing 1.2. BPEL code generated in AgilPro

<assign name="set_DTO_OfferID">

<copy>
<from part="Ticketnumber" variable="nextActionReq"/>
<to part="Ticketnumber" variable="setValueToObjectReq"/>
</copy>

<copy>
<from expression="string('dioParameter')"/>
<to part="DataTypeIN" variable="setValueToObjectReq"/>
</copy>

<copy>
<from expression="string('ID')"/>
<to part="ValueIN" variable="setValueToObjectReq"/>
</copy>

<copy>
<from expression="string('0fferID')"/>
<to part="NameIN" variable="setValueToObjectReq"/>
</copy>

</assign>

<invoke name="setValueToObject_OfferID"
portType="agi:AgilproIssuer" partnerLink="agilpro"
operation="setValueToObject" inputVariable="setValueToObjectReq">
<correlations>
<correlation pattern="out" set="atmInteraction"/>
</correlations>

</invoke>

<assign name="startAction_CreateOffer">

30

32

34

36

38

40

42

44

46

50

52

54

56

58

75
76

78

80

82

</assign>
<invoke name="startAction_CreateOffer"
portType="agi:AgilproIlssuer" partnerLink="agilpro"
operation="startAction" inputVariable="startActionReq">
<correlations>
<correlation pattern="out" set="atmInteraction"/>
</correlations>
</invoke>
<receive
portType="atm:FrontEnd" partnerLink="atm"
operation="nextAction" variable="nextActionReq">
<correlations>
<correlation set="atmInteraction"/>
</correlations>
</receive>
<assign name="endAction_CreateOffer">

</assign>

<invoke name="endAction_CreateOffer"
portType="agi:Agilprolssuer" partnerLink="agilpro"
operation="endAction" inputVariable="endActionReq">
<correlations>
<correlation pattern="out" set="atmInteraction"/>
</correlations>

</invoke>

<assign name="get_DTO_Offer">

</assign>
<invoke name="getValueFromObject_Offer" partnerLink="agilpro"
portType="agi:AgilproIlssuer" operation="getValueFromObject"
inputVariable="getValueFromObjectReq" outputVariable="getValueFromObjectRes">
<correlations>
<correlation pattern="out" set="atmInteraction"/>
</correlations>
</invoke>

3.3 Challenges Summary

Most people and organisations aiming to develop model or code transformations only want to be
concerned with those parts of their solution that are really specific to their usage scenario. They
want to be able to reuse parts of existing solutions and compose them with minimal effort. As
described in the previous sections, there arise a variety of challenges when people want to derive
executable process descriptions (code or models) from higher-level process models. In Section 5 we
present a model and code generation framework that allows us as far as possible to address the
various challenges separately. The following list summarizes the requirements for the framework.

— Since there exists a hugh diversity of modelling languages and projects providing means to model
processes (like UML activities, BPDM, PIM4SOA [20, p.51ff], AgilPro, etc.), the framework
shall allow to decouple code generation from the format of the input models.

— It is necessary to apply more or less complex graph transformation algorithms to translate
higher-level process models to workflow executable code like BPEL or XPDL [26].

— Depending on the process execution environment the code generation has to encode complex
invocation patterns that include knowledge about the respective workflow execution engine.
The framework has to provide means to easily describe, maintain and reuse these generation
patterns independent of other information that is necessary for the code generation.

4 Technological Background

According to Czarnecki and Helsen [6] the majority of currently available MDSD tools sup-
port template-based model-to-text generation (e.g., openArchitectureWare [17], JET [11], or An-
droMDA [3]). A template usually consists of the target text containing slices of metacode to access
information from the source and to perform code selection and iterative expansion. Template
approaches usually offer user-defined scheduling in the internal form of calling a template from
within another template. In the case of our application scenario templates are a good choice to
implement the (complex) invocation patterns for the respective workflow language and platform.
Templates are close to the structure of the code to be generated and are perfectly suitable to
iterative development as they can be easily derived from examples.

However, template-based approaches are not the best choice when the generated output of the
code generation depends on some structure or additional information of the model. In our appli-
cation scenario this is the control flow of the process. In workflow code generation the generated
code often has a fix sequence of processing steps, like for example in BPEL, that depends on the
control flow of the described process. Such problems can be addressed with visitor-based code gen-
eration approaches, for examples see Jamda* or MetaEdit+. These approaches provide a visitor
mechanism to traverse the internal representation of a model that triggers the code generation.

Finally, our solution also needs to solve the problem of (often complex) graph analysis and
transformation. This can be done in a preprocessing step before the real code generation. Graph
transformation algorithms are implemented in programming languages like Java and work on an
internal model representation. Hence, the graph analysis and transformation can be seen as a
model-to-model transformation that realizes a direct manipulation approach [6].

5 Model & Code Generation Framework

To deal with the challenges described in Section 3.3 we applied the separation of concerns paradigm
to the model and code generation framework. Solutions of the described challenges can be inte-
grated in the framework from separate components, which overlap as little as possible. This allows
flexible reuse and combination of components in the model and code generation framework.

We made the observation that solutions for some of the described challenges highly depend
on the application domain, the modelling context, and the execution environment, while others
are independent of the application domain. Hence, we introduced a common process modelling
format and divided the framework into a domain specific and a domain independent part like in
compiler theory [1], where an intermediate language is used to allow language independent code
optimization. However, it is not totally correct to identify a front end and a back end like in
compiler construction, since the front end (the adapter for DSL model (I)) and the code generator
(the generation templates (IV)) both depend on the DSL specific process format and thus are not
independent from each other. Figure 2 depicts a structural view on the generation framework.

— The process transformer and optimizer (II) and the process visitor (III) are domain indepen-
dent. They address general graph transformation problems and graph traversing independent
to any concrete process modelling languages. These components access process descriptions
that are represented in a common process modelling format. The framework makes use of a

* http://sourceforge.net/projects/jamda

Process Transform erH 111

- > rocess Visitor
and Optimizer Process Visitor

»

common process modelling format

DSL specific process format

v

Adapter for ! Code and Model v

DSL Process Models Generation Templates

r Y

Fig. 2. Model & Code Generation Framework

process modelling format that was derived from the Standard Workflow Models [14]. For block-
structured graphs it provides a common process modelling format that is based on BPEL.

— The other two components of the framework, the adapter for DSL process models (I) and the
code and model generation templates (IV), directly access the process modelling format of the
DSL that is used for modelling the input model. Hence, adapters and generation templates have
always to be used in combination, i.e. they must use the same DSL specific process format.

The model and code generation framework not only allows to plug together components via
common interfaces, but also provides a workflow that composes these components. Once the frame-
work is configured, i.e. the components are registered and plugged in, the user only has to provide
the input model and start the generation workflow of the framework. Figure 3 shows this generation
workflow. It depicts the four states of the workflow execution (a)-(d) and the transitions.

(b) transform common process graph
@ I

|| OI
traverse standard process graph & &
L.
apply code generation templates v
(a) (d)

create common process model WI

(¥) DSL specific process format (2) Common process modelling format

Fig. 3. Code Generation

(a) The first state of the workflow comprises the input process model that is represented in a format
specific to the DSL used for modelling the input process.

(b) The second state is reached by applying the adapter on the input model. The adapter creates a
representation of the input process in the common process modelling format. To ensure trace-
ability between the processing steps of the two process models, it further links the processing
steps in the common representation format to the processing steps of the input model.

(¢) The process transformer restructures and optimizes the process represented in the common
process modelling format. For example it generates a block-structured graph. Though in state
(c) the control flow of the two process representations differs, their processing steps are still
linked to the respective processing steps of the other representation format.

(d) The last transition is used for model and code generation and ends in the final state (d) of the
framework’s workflow. Therefore the process visitor traverses the process of state (c) that is
represented in the common process modelling format. The code or model generation templates
are called via a notification mechanism provided by the framework.® Like we can see in Figure
3 the workflow terminates with state (d) when the code or a new model was generated.

The main power of the model and code generation framework lies in the process transformer
and optimizer (II) and the combination of a visitor-based and a template-based code generation
approach ((II1) and (IV)). (II) identifies SESEs in the process descriptions [8,12]. SESEs are the
basis for graph transformations that allow to generated block-structured (BPEL) code [22]. SESEs
are also used to test the soundness of the process’s control flow in reasonable time [24]. (III)
and (IV) combine the advantages of vistor-based and template-based code generation approaches.
The process visitor traverses the process flow of the input model and calls templates for workflow
code generation. The visitor allows to generate the workflow code in the sequence that is given
be the process’s control flow. This is especially important for e.g. Sequences in BPEL, where the
process steps are performed according to the order they have in the BPEL text file. The template
mechanism has the advantage that generation templates can easily be derived from examples [6].

The framework allows graph transformation and flexible higher-level process descriptions into
constructs that are provided through the target process execution language and supports users to
easily implement code generation for process execution via complex invocation patterns.

6 Case Study for Workflow Code Generation

This section presents a case study that illustrates the code generation for the Create Offer process
introduced in Figure 1 of Section 2.

6.1 Configuration of the Generation Framework

To generate BPEL code the generation framework has to be configured first. Hence, the process
transformer that transforms arbitrary processes into BPEL and the process traverser that can pro-
cess common block-structured process models are registered at the framework. While the process
traverser is already provided by the framework, we use the Token Analysis component® as a pro-
cess transformer. The adapter for AgilPro LiMo models and the respective BPEL code generation
templates for the AgilPro JBoss workflow engine (jJBPM) are also registered at the framework.
Now, the workflow of the generation framework can be executed as shown in Figure 3.

5 The framework implements the notification mechanism with the publish-subscribe pattern [7].
5 http://sourceforge.net/projects/tokenanalysis/

6.2 Creation of Common Process Model

In the first step of the framework’s workflow the adapter for AgilPro LiMo process models generates
a representation of the input process in the common process modelling format. The resulting
process is depicted in Figure 4 in UML concrete syntax (the common process modelling format
itself has no concrete syntax representation). Further the adapter connects the respective processing
steps of the two process representations.

& Checl: Offer Conditions

[Offer>=1000]

@ Create Offer & Add Offer Position @ Acked Offer to B2B Paortal
[Offer<1000]

Fig. 4. Create Offer Process as Common Process Model

6.3 Transformation of Common Process Graph

The process transformer transforms the process generated by the adpater into a block-structured
process. Figure 5 depicts this block-structured process. As we can see, an alternative block was
generated from the decision and merge gateways.

[Gffer=1000] @ Checl: Offer Conditions

@ Create Offer @ Ackd Offer Position @ Ackd Offer to B2B Portal
[Offer<1000]

Fig. 5. Block-structured Create Offer Process as Standard Process Model in UML Syntax

6.4 Generating the BPEL Code

In a last step the block structured process is traversed and the BPEL code generation templates
are applied. In the following we present some code excerpts generated by the code generation for
the Create Offer process. Before the process visitor starts, statical information like partnerLinks,
variables, and correlationSets are generated for the BPEL process. Further some initial invocations
on the process engine are made. Then the visitor starts to traverse the block-structured process
description. For each processing step a scope is generated that gets the name of the step and
contains the further processing instructions that are necessary for this step. The first process step
the visitor accesses is the Create Offer step. For this step the BPEL workflow code depicted in
Listing 1.2 of Section 3.2 is generated within a scope element.

7 Conclusions

In the context of executable BPEL workflow code, there exist a variety of solutions that provide
hardly more than another concrete syntax (graphical instead of textual) for BPEL (cp. UML
profile for BPEL [2], Oracle BPEL Process Manager [21], or the ActiveBPEL designer [15]). These
solutions do not narrow the gap between higher-level process descriptions and workflow execution.
Tool chains that allow model-driven development and the generation of BPEL code like the IBM
Tool Suite’, still have restrictions that prevent all process models from being fully transformed [25,
p-109]. These approaches further require manual model refinement at multiple abstraction levels.
[13] describes a generic mapping approach of business process models to other process-oriented
representations by the means of XPDL. To our experience a generation of XPDL from higher-level
process models does not have to deal with the same challenges than a generation of BPEL, since
the sequence of model elements in a XPDL model does not determine the process’s control flow
and XPDL does not require block-structured processes.

In this paper we developed a model and code generation framework that fosters the generation
of executable workflow code. The generation framework separates tasks that occur during workflow
code generation into separate, reusable components. Its main contribution is to decouple compo-
nents that depend on the domain and the execution environment from components that deal with
computational aspects like control flow analysis and transformation. This allows better reuse of the
knowledge encoded into adapters, graph-transformation algorithms and code generation templates.
If e.g. BPEL code in another version (2.0 instead of 1.1) shall be generated from a model, only the
respective code generation templates have to be adjusted. The framework combines the advantages
of visitor-based approaches, template-based approaches, and graph transformation techniques. The
visitor allows to generate the workflow code in the sequence that is given be the process’s control
flow and the templates can be derived from examples. For the components that realize the process
transformer and optimizer one is free in the choice of an implementation technology.

The generation framework can be applied to any DSL that is concerned with process description.
For the DSMs only the respective adapter(s) have to be implemented. Adapters for DSMs can parse
XMI files or access modelling APIs. The generation framework can even be applied, when the source
model does not contain all necessary information to generate executable workflow code. In this
case the generation templates are replaced with code that constructs a refined model. An example
would be to generate a BPEL UML profile [2] model, which is manually refined.

We have implemented workflow code generations in various projects. In the SPL4AOX project
(see Example 1 in Section 3.2) we had an effort of about 2.5 man month to specify and implement
BPEL code generation with the oAW Xpand and the oAW Extend language. The input models for
this transformation are constrained to block-structured process models. Our second implementation
was done for a prototype of the AgilPro project (see Example 2 in Section 3.2). We used JET
templates combined with Java code. The solution is able to deal with a limited set of cycles in the
control flow. The effort was approximately 1 man month, where most of the time was spent on
constraining and transforming the control flow of the input models. However, the parts of the this
implementation did not lend themselves for reuse, since graph transformation and code generation
was combined. Based on these experiences we developed the generation framework and a graph
transformation component with an effort of 4 man month®. Finally, another person, which had no
experience with code generation and workflows, implemented the code generation for AgilPro in

" http:/ /www-306.ibm.com /software /websphere/
8 The implementation is part of the Workflow Generation Framework project at http: / /sourceforge.net /projects/wi-codegen

3 days with our generation framework. This person simply had to copy the process graph of the
input model in the AgilPro adapter and derive the generation templates from examples.

Time saving using the generation framework in contrast to other approaches will always depend

on the complexity of the input graphs (e.g. with or without cycles) and on the experience of the
generation developer. However, our model and code generation framework makes it possible for
people with no or little experience in code generation and graph transformation to produce workflow
code at reasonable time.

References

1.
2.

10.

11.
12.

13.

14.

15.
16.

17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison Wesley, 1986.

J. Amsden, T. Gardner, C. Griffin, and S. Iyengar. Draft uml 1.4 profile for automated business processes with a mapping
to bpel 1.0, version 1.1. IBM developerworks, 2003.

AndroMDA. Andromda. http://www.andromda.org/.

B. Bauer, G. Palfinger, F. Lautenbacher, and S. Roser. ”agilpro”: Modellierung, simulation und ausfiihrung agiler
prozesse. Objekt Spektrum, 2007.

BPEL4WS. Business process execution language for web services version 1.1, 2003.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches. IBM Systems Journal, 45(3):621—
645, 2006.

E. Gamma, R. Helm, and R. E. Johnson. Design Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman, 1995.

M. Goétz, S. Roser, F. Lautenbacher, and B. Bauer. Using token analysis to transform graph-oriented process models to
bpel. 2007.

J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley Publishing Inc., 2004.

B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and the ugly. IBM Systems Journal, 45(3):451—
461, 2006.

JET. Java emitter templates (jet). http://www.eclipse.org/modeling/m2t/.

R. Johnson, D. Pearson, and K. Pingali. The program structure tree: computing control regions in linear time. In
Conference on Programming language design and implementation, pages 171-185. ACM Press, 1994.

J. Jung. Meta-modelling support for a general process modelling tool. In 5th OOPSLA Workshop on Domain-Specific
Modeling, 2005.

B. Kiepuszewski, A. H. ter Hofstede, and W. M. van der Aalst. Fundamentals of control flow in workflows. Acta
Informatica, 39(3):143-209, 2003.

P. T. Maurer. Activebpel 3.0 from active endpoints, inc. SOA World Magazine, pages 22—23, 2006.

J. Mendling, K. Lassen, and U. Zdun. Transformation strategies between block-oriented and graph-oriented process
modelling languages. In Multikonferenz Wirtschaftsinformatik (MKWI), volume 2, pages 297-312. GITO-Verlag, 2006.
oAW. openarchitectureware (oaw). http://www.openarchitectureware.org/.

OMG. Mda guide version 1.0.1. omg/2003-06-01, 2003.

OMG. Business process modeling notation specification, final adopted specification. dtc/06-02-01, 2006.

OMG. Uml profile and metamodel for services - for heterogeneous architectures (upms-ha). ad/2007-06-02, 2007.
Oracle. Oracle® BPEL Process Manager, Developer’s Guide, 2005.

C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M. van der Aalst. Pattern-based translation of bpmn process models
to bpel web services. International Journal of Web Services Research (JWSR), 2007.

A.-W. Scheer. Aris - vom geschéaftsprozess zum anwendungssystem. Springer Verlag, 1998.

J. Vanhatalo, H. Vélzer, and F. Leymann. Faster and more focused control-flow analysis for business process models
through sese decomposition. In 5th ICSOC Conference, LNCS, pages 43-55. Springer, 2007.

U. Wahli, L. Leybovich, E. Prevost, R. Scher, A. Venancio, S. Wiederkom, and N. MacKinnon. Business process
management: Modeling through monitoring using websphere v6 products. IBM Redbook, 2006.

WIMC. Process definition interface — xml process definition language. WFMC-TC-1025, 2005.

