
Models of Thumb: Assuring Best Practice Source Code in
Large Java Software Systems

T. J. Halloran William L. Scherlis
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213�

thallora � wls � @cs.cmu.edu

Abstract

We explore a scalable programmer-in-the-loop approach
to improving Java source code quality, which focuses on
“routine” code quality concerns. We specifically explore
overspecific variable declarations, for which we introduce a
novel analysis, and ignored exceptions (for which the anal-
ysis is straightforward).

In order to assess feasibilty of our approach, we have
developed several style checkers for Java programs and
applied them to a 2MLOC corpus of deployed production
code. Our analysis of the corpus indicates that fully 20%
of Java exceptions are ignored and 60% of those lack an
explanatory comment. In addition, 4% of all variable dec-
larations overspecify the variable type (i.e., fail to abstract
to an appropriate level of the inheritance hierarchy).

We consider issues of adoptability and the user experi-
ence. For example, we introduce an annotation scheme for
documenting programmer intent with respect to violation of
these style rules. We also describe a capability in our pro-
totype tool to offer repairs to the programmer when quality
issues are raised. This is a factor in the design of the anal-
yses.

We call the overall approach “models of thumb” be-
cause it is designed to assist in identifying and addressing
code quality criteria usually expressed in the literature as
informal rules of thumb. A “model of thumb” includes a
precise characterization of the particular quality attribute,
scalable analyses for compliance, and rules for suggesting
repairs to violation.

1 Introduction

“There may be ten ways to write code for some
task T. Of those ten ways, seven will be awkward,
inefficient, or puzzling.” — Guy L. Steele Jr. [3]

For code and low-design, rules of thumb develop that
describe programming practices that have conventionally
proven effective and maintainable—practices that are asso-
ciated with high quality source code. While these practices
are captured in books such as [17, 18, 3], and while there are
tools to support checking of style and correctness, there is
nonetheless limited tool support for advising programmers
on improving semantic aspects of quality.

The need for tool support—that is effectively
adoptable—is great. Programming teams generally
work under schedule pressure and therefore focus on
functionality, whose benefits are immediate, rather than
quality, whose benefits are diffuse and deferred, and whose
attributes appear to be be subjective or difficult to measure.
In addition, the explosion of API size and complexity (and
corresponding documentation size and complexity) can
lure busy programmers to simply “clone” example code
provided with an API or found on the Internet—examples,
as previous work has noted, that can contain significant
problems [20].

We are exploring a scalable programmer-in-the-loop ap-
proach to improving Java source code quality that focuses
on “routine” code quality concerns. These are concerns that
may not be as semantically deep as overall functionality or
correctness or performance, but that go beyond concrete-
syntactic style or compliance with naming conventions.

In order to illustrate our approach and the adoptability
considerations we address, we have developed two style
checkers for Java programs and applied them to a large
(2MLOC) code base of production code. In this paper, we

Java Total Prototype
Name Description kSLOC Analysis Duration

Jakarta Ant 1.5 Java-based build tool (similar to make) 64 2 min
Jakarta Tomcat 4.0.4 Java Servlet and Java Server Pages (JSP) web server 66 2 min
Sun J2SDK 1.4.0 01 Core APIs for Java 1.4 508 34 min
NetBeans 3.2.2 Java Integrated Development Environment (IDE) 571 60 min
Eclipse 2.0 Java IDE 792 121 min

Total: 2,001 219 min

Table 1. Java software systems examined for code quality.

present the analytic basis for these style checkers, we de-
scribe the overall approach to design of the user (program-
mer) experience, and we sketch the implementation strat-
egy. Most significantly, we report on the results of these
analyses in the code base.

We call our approach “models of thumb” because it can
help a lead or QA programmer identify and answer diffi-
cult code quality questions, and indeed provide some over-
all indication of the quality of code, at least with respect
to the specific attributes analyzed. For example: Does my
team’s code follow best practice? How well? Where are
the problems? Similarly, individual programmers receiving
notification of an identified code quality issue can expect
help answering: Why is this a problem? What are possible
solutions?

Generally speaking, a “model of thumb” for a particu-
lar quality attribute is based upon four key elements: (1) a
precise characterization, (2) scalable analyses for compli-
ance, (3) rules for suggesting repairs to violation, and (4)
providing an appropriately collaborative user experience—
respecting the programmer’s role as the final decision au-
thority.

Note that scalability in the analyses may be achieved
through the use of “mechanical” code annotations in the
sense of [11, 4, 10, 9], with a potential slight impact in
adoptability due to the “expression cost” incurred (as dis-
cussed in those papers).

We describe our experience with a prototype tool that im-
plements two well accepted Java rules of thumb as “models
of thumb”: overspecific variable declarations and ignored
exceptions. We report empirical data and results from ap-
plying our tool on five large Java software systems. Our
tool was developed as a plug-in to the Eclipse open source
Java IDE. Our use of Eclipse provides useful infrastructure
and a ready context for adoption, though at present it does
not support the “nightly build” model.

Our principal results are (1) precise specifications for
“models of thumb” for the two quality attributes mentioned
above (and detailed below), (2) evidence that the supporting
analyses for overspecified variable declarations and catch-
ing overly broad exception types, while semantically sig-

nificant, are nonetheless tractable for large-scale Java pro-
grams without requirement for programmer annotation1, (3)
empirical evidence of the extent of quality anomalies in
widely used production code, (4) techniques for tools to
provide concrete advice to programmers to improve code
with respect to the two rules of thumb, and (5) techniques
for programmers to formally document cases where there
are sound reasons to violate a model of thumb in some code
segment. Most significantly, we combine these elements
into an overall technique that appears to be potentially both
adoptable and useful.

We discovered that we needed to undertake several iter-
ations in creating the precise definitions of the two models
of thumb (based on the informally articulated rules in the
literature). Once a candidate model was developed an im-
plemented, we then assessed the empirical data from its ap-
plication to the corpus of code. On this basis, we refined the
model in order to provide more useful results—i.e., fewer
false positives, better solution recommendations, and better
annotations for formally documenting exceptional cases.

Table 1 identifies the Java systems examined, including a
short descriptions, code size2, and wall clock time required
for our prototype tool to perform its analysis3.

1.1 This paper

We start by describing the code quality models, the anal-
ysis approach, and related empirical results for overspecific
variable declarations and for ignored exceptions. We then
consider user experience issues. We then report a surpris-
ing but straightforward finding regarding unnecessary im-
port statements within the Java software we examined.

1The analysis for ignored exceptions is trivial.
2This does not include the extensive NetBeans test infrastructure—total

NetBeans code size is 616 kSLOC
3Our prototype tool was benchmarked on a dual-processor 1GHz Pen-

tium III with 1GB of memory running stock Red Hat 7.3 Linux and Eclipse
2.0.1

1 import java.util.*;
2 class ContainerFolly {
3 private ArrayList log = new ArrayList();
4 void log(Object newEntry) {
5 log.add((new Date()) + ": " + newEntry);
6 }
7 void print() {
8 ListIterator entry = log.listIterator();
9 while (entry.hasNext()) {

10 System.out.println(entry.next());
11 }
12 }
13 }
14 class ContainerSavvy {
15 private Collection log = new ArrayList();
16 void log(Object newEntry) {
17 log.add((new Date()) + ": " + newEntry);
18 }
19 void print() {
20 Iterator entry = log.iterator();
21 while (entry.hasNext()) {
22 System.out.println(entry.next());
23 }
24 }
25 }

Figure 1. ContainerFolly and ContainerSavvy.

2 Overspecific variable declarations

Java libraries and APIs often declare a hierarchy of pub-
lic classes and interfaces. It is common for the interface
hierarchy to allow selection of specific functionality while
the class hierarchy allows selection of a concrete implemen-
tation. It is conventional practice for a savvy programmer
to select: (1) an interface at the highest level of abstrac-
tion appropriate to the problem and (2) a concrete class
with desirable implementation characteristics (e.g., perfor-
mance, memory usage, etc.). By following this practice, the
source code is more maintainable because the design de-
cision about the concrete class selection is localized. An
overspecific variable is a variable declared using a type that
is not at the highest abstraction appropriate for its actual use.
In this section we describe a code quality model used to as-
sist a programmer with discovering where declared variable
types have been overspecific and with taking corrective ac-
tion.

As a concrete example, contrast the ContainerFolly
implementation with the ContainerSavvy implementa-
tion listed in Figure 1. In both cases a simple log class is
implemented using the standard Java container class, Ar-
rayList. Both implementations compile with no warn-
ings and exhibit identical behavior. We assert, and believe
the implementers of the Java container library would agree,

that ContainerSavvy makes superior use of the library,
because the ContainerSavvy code makes “better” type
selections for the variables log and entry. Although
the types in ContainerFollymatch the concrete object
types created by the program, they are overspecific based
upon their actual use within the program. That is, they
overconstrain the range of possible implementations, pos-
sibly (1) hindering evolution, and (2) confusing readers of
the code.

2.1 Analysis

We describe the analysis used by our tool prototype by
stepping through an example evolution from Container-
Folly to ContainerSavvy. We also discuss program-
mer interaction with this analysis. Our desired result, for
each declared variable, is a set of more abstract supertypes
that the declaration may be changed to without altering pro-
gram behavior.

The analysis first creates a list of all variable declarations
within the software component. Declarations using Java
primitive types are ignored because they cannot be over-
specific. For ContainerFolly this list includes:

Variable Type Location
log ArrayList line 3

newEntry String line 4
entry ListIterator line 8

For each variable three sets are constructed: m contain-
ing invoked methods, f containing accessed fields, and t
containing types at which the variable is assigned. In Fig-
ure 1 variable use is underlined, field and method use are
italicized, and declared types are in bold. For our example
m, f , and t are:

log: m � �
add() � listIterator() �

f � �
t � �

newEntry: m � �
f � �
t � �

String �
entry: m � �

hasNext() � next() �
f � �
t � �

Sets m and f collect any method and field uses. Note that
use need not be local to a single compilation unit for public
and package visible fields and methods. Because the need
for set t is not obvious we explain it further. Our ability
to change the type of a variable is constrained not only by
the fields and methods it uses, but also by the type of any
variable to which it is assigned. The simplest case is the
use of a variable as the right-hand-side of an assignment.
The type of the left-hand-side of the assignment becomes
a constraint on our ability to abstract the variable’s type.
This is because down-casting a variable requires an explicit
cast in the Java language. In addition to the assignment
statement, this situation occurs when a variable appears in
a return statement, in a method call as an actual parameter,

and in an array literal expression.
As m, f , and t are constructed we record the locations

within the program where each use occurs. This informa-
tion is used by the user interface to communicate the sup-
porting evidence to the programmer.

Next, a set a of ancestor types is constructed for each
variable from its declared type. We define a function
ancestor ��� that returns the set of all supertypes of the type
passed to the function. For Java this includes all super-
classes and superinterfaces.

log: a � ancestor � ArrayList �
� �

AbstractList �
AbstractCollection � Object �
Serializable � RandomAccess �
List � Collection � Cloneable �

newEntry: a � ancestor � String �
� �

Object � Comparable �
CharSequence � Serializable �

entry: a � ancestor � ListIterator �
� �

Iterator �
The set a gives us all the potential compatible types for a

variable, however this set must be constrained by m, f , and
t. First, we constrain a by t so that a type change will not
introduce any undesired down-casting. We remove all types
in t plus their ancestor types from a and call this set ac.

ac � a ��� t � ancestor � t �	�
For our example ac becomes:

log: ac � a
newEntry: ac � �

entry: ac � a
The set ac is constrained by method and field use,

recorded in m and f , to create a final set of compatible types
we call c. To assist with the definition of c, we define a
function fields ��� that returns the set of defined fields for a
specified type and a function methods ��� that returns the set
of defined methods for a specified type.

c ��
 x � ac �� y � f � � z � m �
y � fields � x ��� z � methods � x ���

The definition of c may notionally be viewed as a table
with field and method use (f and m) as columns and the
possible types (ac) as rows. A “defined” is placed in a ta-
ble position if the type at that row defines the method or
field at that column. If every entry for specific a row is “de-
fined” then that type is considered compatible and becomes
a member of set c. Table 2 provides an example for the
variable log. The types marked with a * are compatible
and are members of c. Hence, for our example we find:

log: c � �
AbstractList � List �

newEntry: c � �
entry: c � �

Iterator �
Our analysis is now able to present to the program-

mer that the type of log may be changed to either Ab-
stractList or List and that the type of entry may

ArrayList: Constrained log: Field & Method Use
Ancestor Types (ac) add() listIterator()

AbstractList* defined defined
AbstractCollection defined
Object
Serializable (interface)
RandomAccess (interface)
List* (interface) defined defined
Collection (interface) defined
Cloneable (interface)

Table 2. Use driven compatible type analysis.

be changed to Iterator. Because newEntry’s result is
the empty set, its type must remained unchanged.

Our analysis has not changed ContainerFolly into
ContainerSavvy: specifically we did not find that the
programmer should use the Collection interface for
log rather than the identified List interface. This is be-
cause of the programmer-specified call to listItera-
tor() at line 8 which is not available in the Collection
interface. We have, however, improved the the implemen-
tation of ContainerFolly. If the programmer imple-
ments our suggestions, it might be noticed that line 13 now
appears strange:

Iterator entry = log.listIterator();

Investigation would lead the programmer to discover
that List has a method called iterator() returning a
Iterator object rather than a ListIterator object.
With this change in place, our analysis would find Col-
lection to be a compatible type for the variable log and
report such to the programmer, thus concluding our evolu-
tion from ContainerFolly to ContainerSavvy.

2.2 Annotations

A limitation of our analysis is that it is unable to rec-
ommend, in most cases, one specific “best” type. This
limitation exists because (1) there is a practical tension
between abstraction and understandability—The most ab-
stract type may obfuscate the code, and (2) the results may
be ambiguous—which interface from multiple possible in-
heritance paths is optimal or is the most abstract superclass
the right choice? To enable a “best” type recommendation
we propose a formal annotation which allows the class au-
thor to specify what supertypes are ideal for variables refer-
encing objects of that class. This annotation is placed in the
JavaDoc comment for a class definition. Here is a reason-
able annotation for the ArrayList class:

/** @typerecommendation Collection,List */
public class ArrayList extends AbstractList

implements List, RandomAccess, Cloneable,
java.io.Serializable {...}

Overspecific Variable Declaration
Heuristically Removed

Variable Throwable String Only Reported
Decl. Total (t) Subclass Variable Object # with

Name Uses (u) # %u # %t # %t # %t # %t /kSLOC Inter.

Ant 13,953 1,892 13.6 855 45.2 474 25.1 129 6.8 434 22.9 6.7 159
Tomcat 13,970 1,953 14.0 890 45.6 487 24.9 91 4.7 485 24.8 7.3 325
J2SDK 116,397 9,074 7.8 3,068 33.8 1,748 19.3 608 6.7 3,650 40.2 7.2 2,083
NetBeans 99,201 13,689 13.8 4,676 34.2 2,269 16.6 893 6.5 5,851 42.7 10.2 2,837
Eclipse 178,872 17,178 9.6 5,670 33.8 2,339 13.6 844 4.9 8,325 48.5 10.5 5,647

Table 3. Overspecific variable declaration empirical results.

The @typerecommendation annotation contains an
ordered list of supertypes, best to worst, that are rec-
ommended for variables referencing the class. For Ar-
rayList objects, Collection is annotated as the best
type, with List also recommended if Collection is not
possible (due to variable use). The annotation is intended to
be complete in the sense that if neither Collection nor
List are allowed, then ArrayList is to be used directly
as the variable type. If a class is designed to always use it-
self as the variable type this can be annotated via a @type-
recommendation annotation with no types following it.
This annotation directly conveys class author design intent
which we incorporate into our model to define the best prac-
tice against which compliance is assured. Note that the in-
formation conveyed by the @typerecommendation can
be formatted and displayed in the class JavaDoc, making it
useful for documentation as well.

To allow a programmer to communicate that a specific
type is needed for a variable in the case where our model
disagrees, a second annotation is introduced:

/*@spec*/ ArrayList fooList = new ArrayList();

The @spec annotation communicates that a variable
declaration is specifically required, it effectively “over-
rides” our model. This annotation can also be used at
the package or project level to specify that specific types
can be overspecific. In this case, the annotation is placed
within the programmer provided JavaDoc summary for the
package (package.html) or the project (overview-
summary.html) and its effect is limited to the implied
scope respectively. Because these files are HTML rather
than Java source code the comment context of the annota-
tion is different, for example:

<!-- @spec ArrayList,LinkedList -->
<BODY> This package ... </BODY>

The above annotation, within a package.html file,
specifies that within this package the types ArrayList
and LinkedList can be overspecific. Use of the package
or project level annotation avoids tedious annotation of a

large group of code which has some reason (e.g., legacy
code, subcontractor software, etc.) to not comply with our
model.

2.3 Empirical results

Use of the overspecific variable declarations model
within our prototype tool on the five Java systems investi-
gated found 4% of all variable declarations overspecify their
type. More detailed empirical results for this code quality
model are reported in Table 3. The second column of the
table provides a count of the total number of variable decla-
rations found within source code, providing an upper bound
on how many could possibly be overspecific. Analysis re-
sults are reported starting with the total number of over-
specific variables found, followed by the number of these
heuristically removed, and finally the number reported via
the user interface. The percentages reported are of the to-
tal and the “/kSLOC” column reports occurrence rate, on
average, per one thousand lines of Java source code.

2.3.1 Effective heuristics

Experience with our prototype caused us to add three
heuristics to our model that removed over half the results
found by our original analysis and one which identified a
“questionable” use of Java interfaces and removed it from
our model’s recommendations. The number of results that
would have been reported, but instead were heuristically re-
moved, and their percentage of the number of results origi-
nally found is reported in Figure 3 for each heuristic. These
heuristics, combined with use of our formal annotations, al-
low removal of false positive occurrences.
Throwable Subclass: Early trials with our prototype

immediately uncovered a conflict between our code qual-
ity model and the semantics of exception types as defined
within the Java language. Replacing the type of an ex-
ception type, defined as java.lang.Throwable and its
subclasses, with a more abstract type significantly changes

program behavior. Hence, our prototype removes any vari-
able with a type java.lang.Throwable or its sub-
classes from consideration by our analysis.
String Variables: Our prototype often recommended

replacing the String type with one of its interfaces. Such
a substitution, while technically legal, detracts from under-
standability of the source code, so we remove these recom-
mendations from the results. In addition, the String class
has special syntax within the Java language which its in-
terfaces are not allowed to use—recommending use of an
interface for a String variable denies maintenance pro-
grammers use of this syntax.

Only Object: A surprising number of recommenda-
tions suggested Object, the root type of all Java classes,
as the sole compatible type replacement. This recommen-
dation, as in the case of String, detracts from understand-
ability of the source code, so we also remove these recom-
mendations from the results.

Constant Interfaces: A technique for declaring a group
of constant values in Java involves creating an interface
containing these values, often referred to as a constant in-
terface, and “implementing” this interface by classes that
use the constants. This type of interface is always a bad
recommendation for our model to make—it is not really a
type, hence we ignore any interface we discover that does
not define at least one method. This heuristic only effects
recommendations, so it is not reported in Table 3, however
from Ant it removed 4 constant interfaces that would have
been suggested for 658 variables, from Tomcat it removed
5 constant interfaces that would have been suggested for
855 variables, from J2SDK it removed 1 constant interface
that would have been suggested for 1 variable, from Net-
Beans it removed 13 constant interfaces that would have
been suggested for 4,343 variables, and from Eclipse it re-
moved 4 constant interfaces that would have been suggested
for 4,527 variables.

2.3.2 Effectiveness

All changes recommended by the overspecific variable dec-
larations model are sound in the sense that, if implemented,
they will compile and not change program behavior. Be-
cause it is our goal to ensure best practice, this measure
is insufficient. Our measure of success, for this model, is
that the recommendations improve maintainability by bet-
ter use of abstraction without detracting from source code
understandability. We believe, based upon informal anal-
ysis of the reported results, the number of false positives
(in the sense that increased abstraction would detract from
code understandability) is low. But, as a small caveat, we
are not experts in the type hierarchy design of the Java sys-
tems examined. Within the type hierarchies we are knowl-
edgeable of we found the results to be accurate, to the limits

1 FactoryObj create() {
2 FactoryObj result = null;
3 try {
4 result = FactoryObj.getInstance();
5 } catch (AnyException e) {
6 //@ignore, we will return null
7 }
8 return result;
9 }

Figure 2. An annotated ignored exception.

imposed by unannotated source code (e.g., often more than
one abstract type is recommended). As a concrete example,
the model reported 1,374 overspecific variables of the type
ArrayList or LinkedList4 (another concrete imple-
mentation of the List interface) within the Java projects
examined—all shockingly similar to ContainerFolly,
except perhaps in ease of detection), and all are clearly im-
proved by our model’s recommendations. One (typical) ex-
ample found within the J2SDK java.util.logging
package is shown below5:

package java.util.logging;
public class Level implements java.io.Serializable {

private static java.util.ArrayList known =
new java.util.ArrayList();

... }

Another case, found within Tomcat, is highlighted in
Figure 3.

3 Ignored exceptions

The multitude of exceptions and the hierarchy of excep-
tions thrown by various Java libraries can be overwhelm-
ing to any programmer. In this section we describe a code
quality model to assist programmers with identifying and
correcting instances of a particular questionable approach
to exception handling. We target ignored exceptions within
Java code, where an exception is caught within the code but
no action is taken, specifically code similar to the following:

try { ... } catch (AnyException e) {}

Ignored exceptions were used by Hissem et al. in [14] as
a concrete indication of open source Java source code qual-
ity. In addition, Bloch in [3] strongly advises not ignoring
exceptions, and further urges that in rare cases where it is
appropriate, “the catch block should contain a comment
explaining why it is appropriate to ignore the exception.”

44 in Ant, 70 in Tomcat, 87 in J2SDK, 633 in NetBeans, and 580 in
Eclipse

5The private field known called add() twice, size() four times,
and get() four times and should be declared as type List

catch Ignored Exceptions (e.g., empty catch block)
Block Total (t) Commented Uncommented iAnnotated Reported (Uniannotated)

Name Uses (u) # %u # %t # %t /kSLOC # %t # %t /kSLOC

Ant 916 213 23.3 59 27.7 154 72.3 2.4 50 23.5 163 76.5 2.5
Tomcat 964 248 25.7 66 26.6 182 73.4 2.8 18 7.3 230 92.7 3.5
J2SDK 3,239 744 23.0 291 39.1 453 60.8 0.9 58 7.8 686 92.2 1.4
NetBeans 5,085 1,241 24.4 443 35.7 798 64.3 1.4 193 15.6 1,048 84.4 1.8
Eclipse 6,511 1,275 19.6 440 34.5 835 65.5 1.1 165 12.9 1,110 87.0 1.4

Table 4. Ignored exception empirical results.

The analysis to detect ignored exceptions is utterly
straightforward: We examine the abstract syntax tree
of each Java compilation unit until we encounter empty
catch statements. Note we must take care in defining
“empty”—there are numerous cases in the corpus where
catch blocks contain a single “;”.

3.1 Annotations

We provide a formal annotation to express that a spe-
cific exception is being deliberately ignored. The annota-
tion //@ignore within an empty catch block identifies
an intended ignored exception, an example is listed in Fig-
ure 2.

We demonstrate our ruthless empiricism by selecting
a form for the formal annotation on the basis of experi-
ence, listed below. The top three informal comments within
empty catch blocks are “ignore,” “do nothing,” and “swal-
low.”

Name ignore do nothing swallow

Ant 40 2 8
Tomcat 18 0 0
J2SDK 47 10 1
NetBeans 150 30 13
Eclipse 120 43 2
Total: 375 85 24

3.2 Empirical results

Use of the ignored exceptions model within our proto-
type on the five Java systems investigated found 20% of
all caught exceptions are ignored and 60% of these con-
tain no comment explaining why. More detailed empirical
results for this code quality model are reported in Table 4.
The second column provides a count of the total number
of catch blocks found within source code, providing an up-
per bound on how many could possibly be empty. Analy-
sis results are reported in three parts. First, the total count
of ignored exceptions is reported with what percentage of
overall number of exceptions it represents. Second, ignored
exceptions are separated into those that contain one or more
Java comments within their catch block and those that do

not. Third, ignored exceptions are separated into those that
have informal annotations, or iAnnotations—defined as “ig-
nore,” “do nothing,” and “swallow,” and those that do not.
The percentages reported are of the total number of ignored
exceptions. The “/kSLOC” column reports occurrence rate,
on average, per one thousand lines of Java source code.

3.2.1 Effective heuristics

Experience with our prototype caused us to incorporate in-
formal annotations by accepting the presence of “ignore,”
“do nothing,” or “swallow” within any comment inside a
catch block as design intent to deliberately ignore that
exception. Allowing informal annotation allows heuristic
removal of a large number of false positive results by the
analysis. Nevertheless, the formal annotation is superior be-
cause it avoids potential false negative cases (although we
noted none).

Accepting any comment found within an ignored excep-
tion as an indication of design intent turns out to be a rather
bad heuristic. It misses false negative cases that document
further work is required or that a programmer didn’t know
how to deal with the caught exception. Some typical exam-
ples are:

J2SDK: javax.swing.text.html.HTMLDocument
// Should handle this better

NetBeans: org.netbeans.core.execution.SysIn
// TODO

org.netbeans.modules.httpserver.HttpServerModule
// pending - why do I get SecurityException ?

Tomcat: org.apache.jasper.compiler.XmlOutputter
// Can never happen? I assume all platforms
// support UTF-8

3.2.2 Effectiveness

We estimate that roughly 90% of the issues reported by the
ignored exceptions model are false positives from the per-
spective of program correctness—they follow a pattern we
call default-try-ignore. From the quality perspective, al-
most all require a comment explaining why the exception is
deliberately ignored6 and all should be formally annotated.

6A few rare cases contained outstanding comments explaining why the
exception was ignored that our informal annotation heuristic missed

Figure 3. “Models of Thumb” Code Quality Advice prototype running within the Eclipse Java IDE.

The default-try-ignore pattern is illustrated in the example
below:

someVariable = null; // default value
try {

someVariable = someMethodCall();
} catch (SomeException e) {}

A default value is set for someVariable, then a try block
is entered and a more specific assignment to someVariable
is attempted via a method call. If this attempt fails the ex-
ception thrown is ignored and the variable continues with
the default value it was given. The example listed in Fig-
ure 2 conforms to this pattern and is annotated correctly.

Although not part of our current prototype, the default-
try-ignore pattern has mechanical properties we are us-
ing to create a “nested” code quality model. Enforc-
ing this model would detect the default-try-ignore pat-
tern and recommend the programmer insert the annota-
tion “//@ignore, default value for someVari-
able will be used.” Where the ignored exception
model works to detect a possible code quality problem,
the default-try-ignore model works to suggest a reasonable
resolution—a helpful synergy.

The cases identified by our prototype which we believe
are actual program errors typically involved a bad variant
of the default-try-ignore pattern where the exception ig-
nored was overly broad. Catching an overly broad excep-

tion refers to a catch statement that claims to handle a very
general exception, but does not, at least not completely. An
example from Ant illustrates this problem:

ANT: org.apache.tools.ant.taskdefs.
compilers.DefaultCompilerAdapter

try {
out.close();

} catch (Throwable t) {}

The variable out is a PrintWriterwhich is declared
to possibly throw an IOException. Catching Throw-
able, the root of all Java exception classes, in this case is
overly broad—IOException should be caught. This case
is very likely a program bug.

Although not part of our current prototype, we are build-
ing a code quality model of catching an overly broad ex-
ception (which may have application independent of the ig-
nored exceptions model). The analysis for this model can
examine the statements within a try block and construct
the set of possibly thrown exceptions based upon the signa-
tures of invoked methods. This set can then be presented
to the programmer to aid analysis of any ignored excep-
tion. Furthermore, we can compare this set to the excep-
tion caught within the empty exception handler and inform
the programmer if the caught exception is not within the
set. In addition, a useful special case exists: when the set
contains only one exception and the try block only one

catch statement. If the exception in the set and the caught
exception do not match the analysis can suggest changing
them to match. This special case would apply in the Ant
example above.

4 User presentation

A screenshot of our prototype system within the Eclipse
Java IDE is shown in Figure 3. The large bottom-right
pane, labeled Code Quality Advice is the user interface
for our prototype. The surrounding panes (made smaller
than in typical use) are elements of the Eclipse Java IDE.
Figure 3 is reporting that the variable locales, within
the RequestBase class of Jakarta Tomcat 4.0.4, could
be changed from an ArrayList to a List or an Ab-
stractList (Tomcat contains no annotations to further
direct type choice). All supporting information, including
the variable’s method use and use as an actual parameter is
clearly displayed (including total count and source code lo-
cations for each and every use) to assist programmer analy-
sis of this quality recommendation. Source code references,
such as the two locations where the clear()method is in-
voked, are able to focus the editor to the referenced location
on demand.

Our initial approach was to output our quality advice in
a form similar to compiler error messages. This approach
was abandoned after some experience with the prototype.
Any tool that immediately dumps “advice” in the triple dig-
its, with no rationale or categorization quickly becomes an-
noying. Furthermore, expecting a busy programmer to slog
through an en masse dump of hundreds of possible issues
does not facilitate adoption. We came to the realization that
our user interface is really listing advice, not errors, and
must include detailed rationale. In addition, different pro-
grammers have different roles and interests within a project.
One programmer may only be interested in a focused por-
tion of the code, a second may have global interests about
use of a specific API, while a third with QA responsibili-
ties may have interest in aggregate standards enforcement
across the entire source code. This issue brought out the
need for flexible categorization of our quality advice under
user control. Our prototype addresses these needs in the
following ways:

1. A separate Eclipse window is used to report our poten-
tial code quality issues. This can be seen in Figure 3 as
the Code Quality Advice tab along the bottom located
alongside the standard Tasks tab used within Eclipse to
report compiler error messages and other problems.

2. Code quality advice is organized into multiple hierar-
chies to allow programmers to reorder and recategorize
the results according to their interest. Our prototype al-
lows categorizing by Java package and class, by type

of quality issue, and by Java type the quality issue re-
lates to.

Our prototype tool’s user interface requires further tun-
ing. Further categorization flexibility is required, including
programmer selected filtering within categories (e.g., show
only issues within a specified group of packages by Java
type). In addition, while the tree view has proved useful
and flexible, other approaches need to be investigated. For
example, views capable of displaying many short code snip-
pets may be more effective in communicating rationale.

5 A footnote on unnecessary imports

In addition to the two models of thumb described in pre-
vious sections, we also investigated the frequency of un-
necessary Java import statements—i.e., imports of packages
or classes into that are not required by a particular compi-
lation unit. (Sadly, such imports create dependencies be-
tween the unnecessary packages or classes and the compila-
tion unit.) While the analysis is utterly straightforward, the
empirical results are nonetheless interesting. The counts of
unnecessary imports are listed below, which demonstrates
the potential value of tool support in detecting such routine
anomalies.

import Unused Imports
Name Uses (u) # %u /kSLOC

Ant 3,526 172 4.9 2.7
Tomcat 4,275 966 22.6 14.6
J2SDK 15,101 3,216 21.3 6.3
NetBeans 30,102 6,626 22.0 11.6
Eclipse 49,097 2,859 5.8 3.6

6 Related work

The source code improvement models developed in this
paper are based on well documented and understood best
practices for Java software development, which are rooted
in well-established software engineering principles [19, 16].
Bloch promotes them in [3] as “Refer to objects by their in-
terfaces” and “Don’t ignore exceptions.” Vermeulen et al.
promote them in [21] as “Maximize abstraction to maxi-
mize stability” and “Do not silently absorb a run-time or
error exception.”

Our interest in, and investigation of, open source Java
projects stems from earlier work which investigated qual-
ity practices of many successful open source projects and
attributes for adoptable quality-related interventions [13].
We have also considered issues related to the use of anno-
tations to capture design intent, particularly related to con-
currency [4, 11, 20].

Like Extended Static Checking for Java (ESC/Java)
[10, 6, 15], our approach uses annotations to capture de-
sign intent. Our annotations and analysis focus on flagging

code quality issues and, unlike ESC/Java, make no attempt
to find bugs within a program or give any assurance of func-
tional correctness. The SLAM project [2] focuses on verify-
ing that C device driver code obeys API usage rules. SLAM
employs model checking, static analysis, and theorem prov-
ing. SLAM works to a greater semantic depth, but is fo-
cused on a more narrow domain.

The commercial JTest product by Parasoft can use static
analysis to enforce 300 “coding standards” rules [1], mostly
accomplished through direct analysis of abstract syntax
trees. It includes a rule to detect ignored exceptions, but
does not detect overspecified variable declarations except
in the particular case of List and Set variables.

The Meta-level Compilation (MC) project [7, 12] has
been very successful finding bugs within large C programs
[8, 5]. This project has focused on finding bugs within C
software, we believe the metal language developed as part
of this project to formally encode erroneous program behav-
ior could be used to improve code quality. Our approach to
annotations in this paper is similar to that of the MC project,
in that in both cases annotations are used primarily for false
positive control.

7 Conclusion and future work

This paper presents a programmer-in-the-loop approach
to assure Java source code with respect to precise models
of accepted programming rules of thumb. We have used
the code quality models implemented in our prototype to
collect empirical data from a 2MLOC corpus in order to in-
form our assessment of the significance and value of quality
checking.

Our approach is motivated by the desire to improve and
assure source code quality. We are working to extend our
current work by developing additional quality models and
analyses. We are addressing issues related to the design of
the user experience. We are also linking this work with our
more invasive analyses [4, 11, 20] related to concurrency
and API compliance.

References

[1] Parasoft JTest. http://www.parasoft.com/jsp/
products/home.jsp?product=Jtest. Current
Aug. 2002.

[2] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In Proceedings of the
29th Symposium on Principles of Programming Languages,
pages 1–3, New York, Jan. 2002. ACM Press.

[3] J. Bloch. Effective Java Programming Language Guide.
Addison-Wesley, 2001.

[4] E. C. Chan, J. T. Boyland, and W. L. Scherlis. Promises:
Limited specifications for analysis and manipulation. In
ICSE ’98. IEEECS, 1998.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In 18th Sym-
posium on Operating System Principles (SOSP’01), pages
73–88. ACM Press, 2001.

[6] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Research Report 159, Compaq
SRC, Dec. 1998.

[7] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In 4th Symposium on Operating System
Design & Implementation (OSDI’00). USENIX, 2000.

[8] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In 18th Symposium on Operat-
ing System Principles (SOSP’01), pages 57–72. ACM Press,
2001.

[9] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint:
A tool for using specifications to check code. In FSE ’94.
ACM Press, Dec. 1994.

[10] C. Flanagan, K. R. M. Lenio, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for java. In
Proceedings of the 2002 Conference on Programming Lan-
guage Design and Implementation, pages 234–245, New
York, June 2002. ACM Press.

[11] A. Greenhouse and W. L. Scherlis. Assuring and evolving
concurrent programs: Annotations and policy. In Proceed-
ings of the 24th International Conference on Software Engi-
neering, pages 453–463, New York, May 2002. ACM Press.

[12] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific static analysis. In
2002 Conference on Programming Language Design and
Implementation (PLDI’02). ACM Press, 2002.

[13] T. J. Halloran and W. L. Scherlis. High quality and open
source software practices.

[14] S. A. Hissam, C. B. Weinstock, D. Plakosh, and J. Asundi.
Perspectives on open source software. Technical Report
CMU/SEI-2001-TR-019, Carnegie Mellon Software Engi-
neering Institute, Nov. 2001.

[15] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java
user’s manual. Technical Note 2000-002, Compaq SRC,
Oct. 2000.

[16] B. Liskov and J. V. Guttag. Abstraction and Specification in
Program Development. McGraw-Hill, 1986.

[17] S. McConnell. Code Complete. Microsoft Press, 1993.
[18] S. Meyers. Effective C++: 50 Specific Ways to Improve Your

Programs and Designs, Second Edition. Addison-Wesley,
1997.

[19] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[20] D. F. Sutherland, A. Greenhouse, and W. L. Scherlis. The
code of many colors: Relating threads to code and shared
state. In PASTE’02, New York, Nov. 2002. ACM Press.

[21] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz,
T. Misfeldt, J. Shur, and P. Thompson. The Elements of Java
Style. Cambridge University Press, 2000.

