Eclipse APT Behavior and Configurability Requirements
This document enumerates functional requirements for the behavior of annotation processing inside the Eclipse JDT, and draws conclusions about the requirements for a UI that configures the APT feature Eclipse JDT.

Use Cases

Here is a list of use cases that we want to satisfy. They do not all specifically pertain to configuration of APT but they all inform the requirements in one way or another. They have been specified as Required or Desirable for the sake of the argument, but a final decision needs to be made about that.
1. Expose a plugin. Some commercial product installs itself as a plugin. It wants to expose a set of annotation processors. These may be contained in > 1 jar file. If we provide the user with a way to order the containers for annotation processors, we need to treat the whole plugin as a single container, that itself specifies the order that its jar files appear on the factorypath. If we expose the jar files individually we give the user an opportunity to inadvertently re-order the sequence of jars in the factorypath. Required
2. Expose a jar file. The user has some annotation processor that he wants to use in his application. It’s not packaged to be installed as an Eclipse plugin; it just wants to be available to a single project, or to the projects contained in a workspace. Required

[How does the jar file get on the path? Is there a requirement to expose it at the workspace level? Or can it just be included on the classpath in any one of the projects in a workspace, to be made visible in any dependent project(s)?]
3. Expose an exploded directory. A directory structure that contains factory classes and a manifest services definition should be treated the same way as a jar file. This makes it easier to develop an annotation processor in one project, and use it to compile code in dependent projects. Required
4. Control the search order of factory containers. Within a given project the order in which annotation processors are searched on the classpath or factorypath needs to be controllable. Required
5. Provide no more control than is available from APT command line.  We take it as a goal that annotation processing done inside Eclipse should produce a result that is as undistinguishable as possible from the result of doing the same processing via the Sun APT command. Therefore, the configuration UI should allow the user as much control as is feasible (given schedule constraints) over APT processing inside Eclipse, that is consistent with that given by command-line APT. No control should be given that goes beyond the capabilities of command-line APT. Required
6. Minimize work required from the user to configure APT. Could we make it so that the user simply installs a plugin, or drops a jar file onto the build path of a project or its anti-dependent, and the factories contained therein become available to the compiler? Going in the opposite direction, we could take the view that every project in which APT is used will have to have a factory path configured to specify which annotations may be processed inside it. The argument against the minimal configuration design is that it opens the possibility that adding processors to the Eclipse instance or workspace will change the build behavior in some of the projects. Can we arrange things so that the minimal configuration design is workable? Desirable
7. Allow annotations to be qualified against project type. If an annotation is not allowed in a given project, the most desirable response is to display an error on the offending annotation. A less informative response would be for the annotation to find itself unclaimed by any processor. Required

It would be attractive to solve this problem in a way that did not affect the individual project’s search path configuration, because this would leave the user free to add factories to a workspace without having to reconfigure every project that implemented annotation qualification checking. 
8. Allow code to configure search path for a project. When a wizard creates a project of a certain type (e.g. EJB, Webservice), there should be an API that allows it to control APT configuration to the same degree that the UI does. Desirable
Functional Description
1. We will give the user workspace and project level controls over APT processing. This is not as fine-grained as command-line APT, which can target individual files with different sets of configuration. But it’s consistent with the Eclipse project-based build model.

2. Processors should be available to the compiler from 

a. installed plugins (use case: packaged product installed in Eclipse instance).

b. projects inside the current Eclipse workspace, in source code or jar files (use case: developing and testing, or using, a locally developed annotation processor in Eclipse should not require the user to create a plugin).

3. It is a non-goal to support processing of an annotation instance in source code contained in the same project that contains the source code for the annotation processor itself. A factory’s source code must be located in a project built before any project that contains code that uses its target annotation.

4. The user should have control of annotation processors available to the compiler, at both the workspace and project levels, with regard to visibility and order.
a. Visibility: an annotation processor container (i.e. manifest container: jar file or exploded directory structure) may appear on the search path at either level. If one is absent or disabled, the compiler will behave as if it were not installed.

b. Order: the user should be able to control the search order of the path on which containers are discovered. Within a given manifest, the dispatch order of processor factories in command-line APT follows the manifest order, and is not controllable via the command, so Eclipse dispatch order will follow the manifest too.

5. The user should have to use the APT UI as the exception rather than the rule. Factories installed in plugins should be available to projects and workspaces by default. Those contained in a project, or found on a project’s build classpath, should also be available by default.
a. Workspace and project level discovery configurations will both contain a “manual” switch. Turning on manual configuration at the workspace level makes it manual until the switch is turned off. Automatic config will absorb new plugins as they are installed in the Eclipse instance. (Search order will be unpredictable for newly arrived plugins, except that they will appear at the end of the currently configured path.) Manual config requires user intervention to enable new plugins.)

b. Turning on manual configuration at the workspace level affects projects for which configuration is set to conform the workspace (i.e. automatic). Turning on manual configuration at the project level cuts off the project’s APT configuration from further effects by the workspace-level configuration. Manually configured projects have to be reconciled with workspace level changes manually.

6. There will be an API that allows other plugins to affect the configuration of a given project in the same way that the UI can. 
7. Properties that want to be passed into APT (-A switch) can be specified at the project level. There will be an input listbox where the user can edit them.
8. Generated file output directories (-s and -d switches) can be configured at the project level.

9. APT processing can be completely turned off, at the workspace, and project, level. [Is this just a performance-related option? (provisional answer: yes) What should the default be? (off) If you install plugins that require APT, should they be able to turn it on without further manual intervention? (yes)]
10. The following APT options will not be supported inside Eclipse: -factory (in this release, unless there is a compelling use case), -print, -nocompile, -J, -X, -version, -help.

11. -classpath behavior is analogous to default configuration: processor factories will be located on the project classpath, prepended to the list of installed plugins.

12. -factorypath behavior is analogous to manual configuration: discovery path order for factories in this case is different from order of appearance on the classpath.
BEA Systems
Page 3
V0.4


