

IoT & Fog Computing

Bringing the Value of the Cloud Closer to the Ground

Chuck Byers System Architect – Cisco Co-Chair, Architectural Framework Working Group – OpenFog Consortium April 2018

Agenda

- IoT Overview
- The Need for Fog Computing
- Fog Architecture
- The OpenFog Reference Architecture

Overview of IoE

Transforming Data into Wisdom in IoT Networks

......

CISCO

Centralized vs. Distributed Compute for IoT?

More Distributed

- Slide Rules & Adding Machines
- PCs and Workstations
- Smartphones & Tablets
- Fog and Edge Computing

More Centralized

- Timeshare Computers
- Internet, WWW, Search
- Cloud Computing

Need for Fog

Can't run everything in the Cloud. There are latency, mobility, geographic focus, network bandwidth, reliability, security and privacy challenges By adding layers of Fog Nodes, applications can be partitioned to /14 111 run at the optimal network level. FOG 111 DC Can't run everything in intelligent endpoints. There are energy, space, capacity, environmental, reliability, modularity, and security challenges.

What is Fog Computing?

1. Architecture

with its enabling **tools** for distributing, orchestrating, managing, securing resources and services (not just <u>placing</u> servers, apps, or small clouds at the edge)

2. Cloud-to-Thing Continuum

Distributes resources and services to anywhere along the continuum (not just at the edge) Converged Cloud/Fog services (not just isolated edge computing devices / apps)

7

Continuum)

Verticals and selected IoT Use Cases

- Transportation: (Smart highways, Connected / autonomous vehicles, PCT/Rail, UAV ground support, Parking)
- Utilities: (Smart grid, Smart meters, Water distribution, Sewer monitoring, Energy management, Renewables)
- Manufacturing: (Plant automation, Robotics, Analytics, Smart supply chain, QC, Distribution, Logistics)
- Smart Cities / Smart Buildings : (City-level Fog, Smart buildings, Lighting, Emergency services, Sanitation)
- Retail / Enterprise: (Smart store, Branch-in-a-box, Visual security, Asset tracking, Signage, Analytics, Thin clients)
- Service Providers: (Smart networks, Fog-as-a-Service, Media caching, Microcells, Resiliency, MEC)
- Oil / Gas / Mining: (Exploration, Rig-in-a-box, Heavy equipment, Production monitoring, Pipeline control, Refinery control)
- Health Care: (Continuous patient monitoring, Aging in place, Cognitive assistance, Exercise)
- Agriculture: (Irrigation, Crop monitoring, Yield assessment, Pest control, Autonomous equipment)
- Government / Military: (Homeland Security, C4ISR, Autonomous vehicles, Electronic warfare, Connected fighter)
- Residential / Consumer: (Home automation, Residential networking, Security, Social media, Haptics, AR, Games, Wearables)
- Hospitality: (Front desk, Bell robots, Entertainment, Security, Cruise ships, Campgrounds, Dormitories)
- Data Centers: (Installation, Management, SW upgrade, Environment monitoring, Energy management, Security, Telecom COs)
- Logistics: (Provenance, Cold chain monitoring, Shipment tracking, Route optimization, Ports)

Pillars of Fog Computing

......

CISCO

Visual Security in Airports

OpenFog Consortium Mission

"Drive industry and academic leadership in fog computing architecture, testbed development, and a variety of interoperability and composability deliverables that seamlessly leverage cloud and edge architectures to enable end-to-end IoT scenarios."

OpenFog Consortium A Growing, Global Ecosystem of Fog Experts

62 members strong, headquartered in 18 countries as of April 2018

OpenFog Consortium Reference Architecture

		Application Services						covery,)	ġ		
		Application Support						rations, Disc	Cognition, et	olications	
t Scale tc.)	Node Management (IB) & Software Backplane							on, Oper	i trol igines, C	og App	
Performance 8 (RT, QoS, el	Hardware Virtualization 237714						on, i	trati	Con es Er	SS	
	OpenFog Node Management (OOB)						stati	ches	Rule Rule	CLO	
			OpenFog Node Se		Atte	, or	/tics ing,	<u>ح</u>			
	Network TSN, TCC, Comms,		Accelerators FPGA, GPGPU,	Compute	Storage		c urity , HW-RoT, horization,	nageabi S, Alerting	ta, Anal) chine Learr	Business	
			Hardware Platfor Classis, Mechanical,		Sec (ID,	Ma (RA	Da	E			
		Protocol Abstraction Layer (Legacy Protocol Bridge)						×,		×	
	Sensors, Actuators, & Control										

OpenFog

13

۱|۱۰۱|۱۰ داsco

451 Research report – Key findings

Technical Working Groups and their Charters

CISCO

T		The Technical Committee oversees and coordinates all the technical work in the Consortium				
	Architecture	The Architecture Work Group assesses use cases, collects requirements, and defines architectures				
I C A	Security	The Security Work Group manages technology of security, privacy, protection and authentication				
L	Manageability	The Manageability Work Group is responsible for management, orchestration, and configuration				
0 M	Communications	The Communications Work Group defines communications inside of, and between fog nodes				
Ť T	Software Infrastructure	The Software Infrastructure Work Group manages programming models, middleware, APIs, SDKs				
E	Testbeds	The Testbed Work Group defines how OpenFog will be tested to insure interoperability and compliance				

Conclusions

- Fog Computing can greatly improve the performance and efficiency of IoT, and bring value to customer networks
- In critical IoT applications, performing compute, networking and storage exclusively in the cloud or smart devices often won't work
- Fog pillar attributes, like security, scalability, openness, autonomy, manageability, agility, hierarchical approach and programmability are keys to successful IoT network deployment
- The OpenFog Consortium has charted a path for interoperable, open fog deployments. Your participation is welcome!

16

 More information: <u>www.openfogconsortium.org</u> <u>https://www.cisco.com/go/iot</u>

