The ICE visualization code is divided into four packages, one each for the visualization perspective, generic visualization service code, and one each for the ParaView and VisIt visualization service implementations. The first two center around a single UI piece, with smaller classes geared towards providing specific portions of functionality to it. The other two provide interface implementations and abstract class extensions to the generic visualization API used by the Plot Editor, allowing it to use those modeling programs to plot files.
The current visualization code is well written. Classes are well defined, the code is readable and efficient, and there are generally no problems with design or implementation, other than a few instances noted in the text below. The largest problem is a lack of documentation, with several classes lacking comments or the comments present being insufficient. However, even this is only in a minority of classes. Another concern is that the Visualization Perspective is obsolete, now that the Plot Editor performs the same job with greater extensibility and in a more user friendly way. The perspective should probably be removed from the project. As a minor point of organization, the CSV visualization service may or may not deserve its own bundle instead of a package in org.eclipse.ice.service. The other services are, though on the other hand, the other services are more complex and the service factory implementation uses the CSV service as the default service. Other than this, the code as written is excellent.
Org.eclipse.ice.viz
Org.eclipse.ice.viz
AddFileAction- Contributes the Add File button to the perspective, providing several different options. (The Add____Action classes listed below.) Pressing the button calls the default action, AddLocalFileAction, and the button includes a drop down menu listing the others.
AddFileSetAction- An Action which opens a file dialog, and all selected files are placed in the parent view under a node, which can be clicked to hide or display all files in that set of files. Currently broken, see Bug 471345
AddLocalFileAction- An Action which opens a file dialog, and all selected files are placed in the Visualization File Viewer.
AddRemoteLocalFileAction- An Action which opens a file dialog. The dialog shows files on the machine hosting the connected VisIt session established through the Launch VisIt button (but not connections set up through the preference page.) If the VisIt session is running on the local machine, it calls AddLocalFileAction instead. Selected files are placed in the parent view. (Suggestion: Change UI text to reflect that it is specific to VisIt, not simply adding an arbitrary remote file.)
AddTimeDependentSILOSetAction- An Action which opens a file dialog. The dialog will allow for the selection of a series of .silo files with time steps represented in their names (ie Test001.silo, Test002.silo, etc.) Then a .visit file listing these .silo files in order will be created, and the .visit file will be added to the parent view. (Line 139 has commented out code which should be deleted. It also appears that child and children are created, set, and then never used except within the commented out code, so these local variables should also be removed.)
DeleteFileAction- Contributes the Delete File button to the perspective, allowing the user to delete the selected file from the parent view. (Suggestion: The code is identical to that of DeletePlotAction, except its method takes a ViewPart instead of an IDeletePlotActionViewPart. Since it castes the ViewPart to a VizFileViewer to use the VizFileViewer’s removeSelection method, it would be better to make VizFileViewer an IDeletePlotActionViewPart, as DeletePlotAction already calls an IDeletePlotActionViewPart’s removeSelection method, and remove the specialized DeleteFileAction.)
DeletePlotAction- Contributes the Delete File button to the perspective, allowing the user to delete the selected plot from the parent view.
IDeletePlotActionViewPart- An interface for classes which remove selected items from a list. (Suggestion: Its name implies that it is an extension of the IViewPart interface, which it is not. It should either be renamed or made to extend IViewPart.) Implemented by CSVPlotViewer and VisitPlotViewer.
PlotEntryContentProvider- A class which allows for other classes to get the names of plot categories from an Entry.
VisualizationPerspective- The Visualization perspective. It registers itself in the Perspectives button on ICE’s startup.
VizFileViewer- A view containing a list of files imported into the perspective (using a fileTreeViewer with a ResourceComponent containing the files.) It also contains an add button (using AddFileAction) and delete button (using DeleteFileAction).
Org.eclipse.ice.viz.visit
AddVisitPlotAction- Contributes the add plot button for the VisIt Plot Viewer. When pressed, it checks that VisIt is connected and displays an error dialog if it is not. Then it opens a dialog to prompt the user for which plot(s) in the file to create. The selected plots are then added to the list.
LaunchPythonScriptDialogAction- Contributes the execute Python script button for the VisIt PlotViewer. When pressed, it checks that VisIt is connected and displays an error dialog if it is not. Then, it opens a VisItPythonDialog to allow the user to input Python scripts for VisIt.
LaunchVisItHandler- This class sets up and launches the LaunchVisItWizard, then, if the user did not cancel the operation, opens a VisitEditor, passing the configuration from the LaunchVisItWizard to it.
LaunchVisItWizard- A wizard for opening a VisIt connection. It is essentially a wrapper around LaunchVisItWizardPage.
LaunchVisItWizardPage- A wizard page for connecting to VisIt. It allows for three options. In the first, a local VisIt connection is established. The user is asked for the path to VisIt’s folder and, optionally, a port and/or a password for the connection. In the second, VisIt is launched on a remote machine. In addition to the information from the first option, the user must specify the remote hostname and may optionally specify a proxy by url and port number. In the third, ICE connects to an already running VisIt session. This requires a hostname, a port number, and a password, as well as, optionally, a proxy by url and port number. The user can also cancel the operation. The file also contains the following classes and interfaces:
ICheckComposite, an interface for composites which may be associated with a check box and provides an API to check if that box is selected.
PortComposite, an ICheckComposite that contains a text box for specifying a connection port number and a check box for enabling/disabling it.
PasswordCompositte, an ICheckComposite that contains a text box for specifying a password and a check box for enabling/disabling it.
HostComposite, an ICheckComposite that contains a text box for specifying a hostname and a check box for enabling/disabling it.
GatewayComposite, an ICheckComposite that contains texts boxes for the proxy url and proxy port number and a check box for enabling/disabling them. (Suggestion: Possibly move these classes to their own files.)
VisItEditor- An editor for displaying models rendered in a VisIt session. It takes as input the VisItEditorInput provided by a LaunchVisItHandler and sets up a connection based on its connection settings, if that connection does not already exist. It displays the graphics sent to it through its VisIt connection, and uses a VisItMouseManager to provide mouse input for modifying the model to the VisIt session. It registers several listeners with its VisItSwtWidget to handle this mouse input. The mouse wheel zooms, clicking and dragging rotates the model, and clicking and dragging while shift and/or control is pressed moves the model.
VisItEditorInput- An IEditorInput implementation for use with the VisItEditor. It contains information on the VisIt connection to use in the editor, provided by the LaunchVisItHandle.
VisItMouseManager- This class creates and manages a new thread for use in handling mouse input for a VisItEditor. It passes mouse input to the VisItEditor’s VisItSwtWidget for processing.
VisItPlotViewer- A view containing a list of VisIt plots created by AddVisItPlotAction (using a TreeViewer with a RescourceComponent containing the plots. It also has an add button (using AddVisItPlotAction), a delete button (using DeletePlotAction), and an execute python script button (using LaunchPythonScriptDialogAction). It also has buttons to manually step through the time steps of the plot, forwards or backwards, to automatically play the time steps of the plot as an animation, or to stop the animation. There is also a combo box displaying the plot categories available for the currently drawn plot. Changing this combo box or double clicking on a new plot causes the VisIt session to draw a new model accordingly.
VisItPythonDialog- A dialog which provides a console to send the connected VisIt session Python commands to parse. Output from VisIt is also displayed in the console. A “load from file” button to import scripts from a file is also available.
Icons
The following icons are available in this bundle:
Add.png, a green plus sign.
Delete_X.png, a red X.
Launch.png, a sheet of paper
Plugin.xml
The plugin provides the VisItEditor, an editor for VisIt plots
The plugin specifies the Visualization Perspective. This perspective has a VizFileViewer in the upper left, and a CSVPlotViewer and VisItPlotViewer stacked on top of each other in the center left.
The plugin adds the “Launch VisIt” button to Eclipse’s toolbar. This button runs LaunchVisItHandler.
Org.ecplise.ice.viz.service
Org.eclipse.ice.viz.service
AbstractPlot- An abstract implementation of IPlot. It includes an ISeries representing the independent series, a service and associated thread lock for notifying plot listeners, a list of registered plot listeners, a title, and a URI datasource. It adds implemented methods to register a plot listener and notify all registered listeners of a change in a separate thread.
AbstractSeries- An abstract implementation of ISeries. It includes a flag showing whether the series is enabled, a label, and an ISeriesStyle.
AbstractVizService- An abstract implementation of IVizService. It adds an IPreferenceStore to contain the service’s preferences and a Set of Strings detailing the supported file extensions. It also includes getter methods for these variables and an implementation of createPlot that checks the URI argument’s extension and throws an error if the service does not support it.
BasicVizServiceFactory- An IVizServiceFactory. It contains a preferenceStore for the factory’s preferences. Upon registering an IVizService, it registers the PlotEditor as the default editor for files with that service’s supported extensions.
IPlot- An interface for plots that extends IVizCanvas. It contains methods to get and set the plot categories, the independent ISeries, and the title. It also has a method to get all the dependent ISeries of a given category. It is implemented by AbstractPlot.
IPlotListener- An interface for listeners to IPlots. It has a method to alert it to which plot has been updated, along with two strings for state information.
ISeries- An interface for a series of data in an IVizCanvas. It has methods to get the data’s bounds, category, parent ISeries, all of the series’s data points, and get and set the data’s label, timestamp, ISeriesStyle and whether it is enabled. It is implemented by AbstractSeries.
ISeriesStyle- An interface for objects which describe the style in which an ISeries is to be plotted. It has methods to get a list of all properties, and to get and set individual properties.
IVizCanvas- An interface for visualization canvases. It includes methods to draw the canvas; get the data source, number of axes, and source host; check if the source is remote; redraw the canvas; and get and set properties.
IVizService- An interface for visualization services. It has functions to get the service’s name and version, and use the service to create an IPlot. It is implemented by AbstractVizService.
IVizServiceFactory- An interface for a factory for IVizServices. It has functions to register and unregister a service, get the names of services, get a service, and get the default service. It is implemented by BasicVizServiceFactory.
PlotEditor- An editor which displays a visualization model using an arbitrary IVizService. It takes as input a fileEditorInput, retrieves the appropriate IVizService from a VizServiceFactory based on the input’s file extension, and uses it to draw a plot. It includes a toolbar which opens a dialog asking which of the available series should be plotted. (Suggestion: The code to check if a plot has finished loading determines this based on whether the IPlot’s independent series is null. This requires that all IPlots must have an independent series, which might not always be the case. IPlot should have functionality for tracking whether or not it has finished loading on its own.)
PlotEditorInput- An IEditorInput for PlotEditors. It contains an IPlot.
ProxyPlot- A abstract extension of AbstractPlot. It allows for the creation and manipulation of multiple plots without requiring data to be loaded multiple times, as the ProxyPlot delegates to its associated source IPlot. It contains a list of ProxySeries based on the source’s child ISeries. It has functions to populate the list of ProxySeries, create a ProxySeries given an ISeries, and set the source IPlot.
ProxySeries- An extension of AbstractSeries that wraps an ISeries. It delegates all actions to the wrapped ISeries. A ProxySeries is used in place of an ISeries so that multiple ProxyPlots can reference the same ISeries without the data having to be loaded from the file multiple times.
Org.eclipse.ice.viz.service.connections
ConnectionAdapter- An abstract implementation of IConnectionAdapter. It has methods for getting and setting the connection’s properties and ConnectionState. The file also contains the ConnectionJob class, which can be used to manage connections using Eclipse’s Jobs API.
ConnectionPlot- An IConnectionClient that extends AbstractPlot and implements IVizConnectionListener. It has an IVizConnection to connect it to a remote visualization service and a composite in which the plot is rendered. It has methods to draw itself in a composite or in a new ConnectionPlotComposite and get the host’s IP address. It also has a getter and setter for the IVizConnection, and its setDataSource implementation checks the file’s validity before setting it as the data source.
ConnectionPlotComposite- A composite for containing ConnectionPlots which extends PlotComposite and Implements IVizConnectionListener. It displays an error message and link to the preferences page instead of the plot if the connection attempt failed . It has methods for setting the connection and plot, as well as showing or hiding individual series from the plot.
ConnectionState- An enum of states for a connection. It includes Connecting, Connected, Failed, and Disconnected.
ConnectionVizService- An extension of AbstractVizService for services which use IVizConnections. It has an IVizConnectionManager to manage its connections and automatically gets an IVizConnection when creating a ConnectionPlot.
IConnectionAdapter- An interface which wraps a connection. It has methods to connect or disconnect, allowing the programmer to specify whether or not to block while waiting for the connection, and to get the connection, its properties, key, state, host, and port. It can also set the connection properties and return whether or not the connection is remote.
IConnectionClient- An interface extension of IVizUpdateableListener which includes a method to set an IConnectionAdapter to listen to.
IVizConnection- An interface for classes which manage a connection to a remote visualization service. It maintains a list of listeners and has methods for getting the connection’s description, host, name, path, port number, properties, state, status method, and the wrapped widget.
IVizConnectionListener- An interface for listeners of IVizConnection objects.
IVizConnectionManager- An interface for classes that hold a collection of IVizConnections. When queried by a viz service, it will return a list of possible IVizConnections, either all connections or all connections to a specified host name. It can also load the connections described in a CustomScopedPreferenceStore.
VizConnection- And implementation of IVizConnection. It features methods to connect and disconnect using different threads and a map of properties which include the properties from the IVizConnection.
VizConnectionManager- An implementation of IVizConnectionManager. Add a preexisting VizConnection or make a new one for its list of managed connections. It listens to the appropriate preference page and creates, changes, or removes connections based on updates to the preferences.
Org.eclipse.ice.viz.service.connections.preferences
CellColumnLabelProvider- An extension of ColumnLabelProvider which delegates the implementations of its methods to a ICellContentProvider.
ConnectionTable- An IKeyManager that extends TableComponent. The table lists connections along with a key (the connection name). The information stored for each connection is the connection name, the host, the port number, the host OS, the file path to the service, the username, and the password. (Suggestion: The class’s documentation of the table row template does not match the actual implementation. The documentation needs to be updated.)
DynamicComboFieldEditor- An editable combo box. Its allowed and currently set values can be programmatically changed.
EntryCellContentProvider- An ISecretContentProvider. It is a content provider that sets a cell’s contents based on the value of an Entry and the tooltip to the Entry’s description. It can provide a combo box to the cell if the Entry has a discrete list of allowable values, and obscure the cell’s text for secret Entries.
EntryCellEditingSupport- A wrapper for an EntryCellContentProvider, providing methods to change the underlying Entry’s value.
IKeyChangeListener- An interface for a listener for a IKeyManager. It has a function to update when a key has been changed, specifying its old and new values.
IKeyManager- An interface which manages a set of key Strings. It has functions to check if a key is available, get all keys, iterate to the next key in the order, and to register and unregister IKeyChangeListeners.
ISecretCellContentProvider- An interface that provides functions to check if a cell’s contents are secret and provide a secret character(default “*”) to display in place of the cell’s actual value.
IVizCellContentProvider- A class which provides the content for a table cell. It includes a getter and setter for the cell’s value, as well as functions to get the text to be displayed in the cell, the cell’s tool tip, an image to display in the cell, and functions to check if the cell is enabled or if a given object is valid input to the cell.
IVizComboCellContentProvider- An extension of IVizCellContentProvider which provides a function to check whether the cell will require a combo box and another to return the values to be used to populate the combo box.
KeyEntry- An extension of Entry. It is an entry that is managed by an IKeyManager. When the KeyEntry’s value is set, it claims that value as a key in the IKeyManager or gives an error message if the value is invalid as a key or that key already exists in the IKeyManager.
KeyEntryContentProvider- This class standardizes the interaction between a IKeyManager and KeyEntry. It can get the allowed value types, the next key for use as a default value, and a list of all still available keys from the IKeyManager for the KeyEntry.
PortEntry- An Entry that only accepts integers within a given range, as specified by the PortEntry’s PortEntryContentProvider.
PortEntryContentProvider- A content provider for a PortEntry. It forces the PortEntry to only accept ranges of integers between 1024 and 65535 as valid value ranges.
SecretEntry- An extension of Entry that, by default, sets the Entry’s secretFlag to true.
TableComponentCellContentProvider- A implementation of ICellContentProvider that takes an ICellContentProvider and an index. It overrides the ICellContentProvider methods to take a list as input, then call the underlying ICellContentProvider’s method on the object in the list specified by TableComponentCellContentProvider’s index.
TableComponentCellEditingSupport- An extension of EntryCellEditingSupport that thakes an EntryCellEditingSupport and an index. It overrides the EntryCellEditingSupport methods to take a list as input, then call the underlying EntryCellEditingSupport’s method on the object in the list specified by TableComponentCellEditingSupport’s index.
TableComponentComposite- A composite for displaying a table of content from a TableComponentContentProvider. It also provides buttons to add or delete rows.
TableComponentContentProvider- A class that links a TableComponent with a view, updating the view when the TableComponent changes. It uses EntryCellContentProviders to populate the table’s content, and EntryCellEditingSupport to add editing functionality.
VizConnectionPreferencePage- An extension of AbstractVizPreferencePage. This class adds a ConnectionTable and provides a method to populate it by loading default connection preferences from a CustomScopedPreferenceStore and save the table back to the preference store. It provides a UI including a DynamicComboFieldEditor populated with default connections and a TableComponentComposite to allow editing of preferences.
Org.eclipse.ice.viz.service.csv
CSVPlot- An extension of AbstractPlot for use with the CSVVizService. It can load the data from a csv file to populate itself with ISeries, ignoring comments in the file.
CSVPlotComposite- An extension of PlotComposite for containing CSVPlots. It contains a CSVPlotEditor and a PlotProvider.
CSVPlotEditor- This class is an editor for CSV files. It displays a plot based on the data from a map of ISeries. It has methods for adding and removing ISeries from the plot and models graphed ISeries as Traces. It also includes a slider to allow the user to change which time step out of a series of plots to display. It has methods to change the ISeriesStyle of its axes. The documentation for this class is incomplete and there is some commented out code.
CSVProxyPlot- An extension of ProxyPlot specific to CSVPlots.
CSVSeries- An ISeries for CSVPlots. It includes an ISeriesStyle, the series’ label, units, timestamp, whether or not it is enabled, and the parent series.
CSVVizService- An extension of AbstractVizService. It handles .csv files by creating a CSVPlot from the input file, if one does not already exist for the given file, and returning a CSVProxyPlot.
PlotProvider- A content provider for a CSVPlot. It holds a list of SeriesProviders, each of which provides the content for a single series. These SeriesProviders can be accessed by the time step they are assigned to and the list of time steps with an associated SeriesProvider can also be retrieved. It also contains information on the plot title, axes titles, time units, and whether or not the plot is a contour.
PlotTimeIdentifierMapping- This class holds a title for a plot along with the time for a series. It lacks full documentation.
Org.eclipse.ice.viz.service.datastructures
BasicVizEntryContentProvider- A basic implementation of IVizEntryContentProvider. It contains a default value for the VizEntry, the set of allowed values, the parent VizEntry the VizEntry’s tag, and a VizAllowedValueType.
DataComponent- A class which contains and listens to a set of VizEntries.
IVizEntryContentProvider- An interface for interacting with a VizEntry’s content. It has getters and setters for the VizEntry’s allowed values, default value, allowed value type, parent VizEntry, and tag.
IVizUpdateable- An interface for classes which can be listened to which extends VizIdentifiable. It has functions for updating, registering, and unregistering listeners.
IVizUpdateableListener- An interface for classes which listen to IVizUpdateables. It has a method to receive updates from an IVizUpdateable.
VizActionTree- A class which models a tree of JFace actions for a menu. Each node either contains a list of child nodes or an action to perform. Nodes can be added and removed. This file also includes the MenuCreator class, an IMenuCreator that creates a menu based on a VizActionTree.
VizAllowedValueType- An enumeration of the possible types which could be stored in a VizEntry. It includes discrete values from a list, continuous values in a range, files, executables, and undefined, in which case the values is stored as a string.
VizEntry- A class which wraps a data value, performing such functions as validity testing. It stores a value, a list of allowed values, whether the data is ready to be used, if the data has been changed, whether the data is secret, a parent VizEntry, and an IVIzEntryContentProvider which is responsible for managing the VizEntry’s content. Notably, in order to retrieve the VizEntry’s contents, the IVizEntryContentProvider must be used, as this class has no function to get the data.
VizIdentidiable- An interface which provides information allowing an object to be uniquely identified. It has getter and setter methods for an ID, description, and name.
VizObject- A class with many generic capabilities which would be useful in a wide variety of contexts. It includes a name, description, and id, with getters and setters, and is an IVIzUpdateable. (Suggestion: VizObjects already have a name, description, and id thanks to being an implementation of VizIdentifiable. VizObjects should make use of their VizIdentificable capabilities, instead of reimplementing the same functionality.)
VizTableComponent- A table of VizEntries, with each column containing the same sort of data and each row containing all the data for a particular item. A list of VizEntries serves as a template for the columns. When a new row is added to the table, each column has its default and possible values set according to the VizEntry in the same column from the template.
Org.eclipse.ice.viz.service.internal
VizServiceFactoryHolder- A holder class for an IVizServiceFactory. It can register, unregister, and get an IVizServiceFactory.
Org.eclipse.ice.viz.service.preferences
AbstractVizPreferenceInitializer- An extension of AbstractPreferenceInitializer which adds an IPreferenceStore (holding a CustomScopedPreferenceStore) and its associated getter.
AbstractVizPreferencePage- An IWorbenchPreferencePage that extends FieldEditorPreferencePage. It stores the preferences in a CustomScopedPreferenceStore.
CustomScopedPreferenceStore- A class for managing IEclipsePreferences. It can check if a node exists, retrieve a node, remove a node or value, and save changes to the preferences. It can also get, set, and remove encrypted preferences as ISecurePreferences.
TableComponentPreferenceAdapter- A class which converts between CustomScopedPreferenceStores and VizTableComponents. It requires that the specific structure (the types of VizEntries that make up its row template) of the VizTableComponent be known. It also has a function to clear the preferences from both objects.
VizPreferenceInitializer- An extension of AbstractVizPreferenceIntializer, that initializes the held IPreferenceStore with a default true value for automatically connecting to default connections.
VizPreferencePage- An extension of AbstractVizPreferencePage which manages the main Visualization Preferences page. It contains a field to toggle whether or not to automatically connect to visualization services’ default connections on startup.

Org.eclipse.ice.viz.service.styles
AbstractSeriesStyle- An abstract implementation of ISeriesStyle that provides implementations for handling series properties.
BasicErrorStyle- An extension of AbstractSeriesStyle that provides a default implementation for an error bar ISeriesStyle. It sets the series color, the width of the bar caps, and the error bar type. It has constructors which allow for the setting of the color and a parent series that will have its error enabled and set to the error type to bar. (Suggestion: This class is designed to work with the CSVVizService. It should be under the .csv package or a new .csv.styles package, not directly under the generic viz.service.)
XYZAxisStyle- An extension of AbstractSeriesStyle that populates the properties map with values relevant for an axis. It includes the title, font, scale, color, whether it is logarithmic, whether to autoscale, minimum and maximum values, time format, whether to autoformat, whether to show gridlines, and if they should be dashed and what color to make them. (Suggestion: See BasicErrorStyle for comments about the location of CSVVizService centric styles.)
XYZPlotStyle- An extension of AbstractSeriesStyle that populates the properties map with values relevant for an entire plot. It includes title color and font, background color and transparency, and whether to show the legend, title, and border. (Suggestion: See BasicErrorStyle for comments about the location of CSVVizService centric styles.)
XYZSeriesStyle- An extension of AbstractSeriesStyle that populates the properties map with values relevant for non-error series. It includes color, type, width, point style, point size, baseline, transparency, anti-aliasing, whether it has an associated error series, and the error type. (Suggestion: See BasicErrorStyle for comments about the location of CSVVizService centric styles. Also, whether or not an error series is drawn is stored in two places, the series’s enabled class variable, and the “hasError” property in the parent series’s property map. This is too complex and the two values can become desynchronized. One of these should be removed.)
Org.eclipse.ice.viz.service.widgets
BinarySearchTree- A node in a binary search tree. It contains an index for the node, the node’s contents (a double), and left and right children. The root node also has a list of all values stored in the tree. The tree can be searched for a given value, returning either the value nearest to it or the index of the node containing the value nearest to it.
ComboDialog- This class is a dialog containing a combo box. It has a list of allowed values, and can be set to either editable or read only. If editable, the user can write in their own input, and there are functions to validate the user’s text against a set of allowed values. The operation can be canceled, in which case the value of the dialog is set to null.
LabelContribution- A wrapper that allows an SWT Label to be contributed to a tool bar manager.
PlotComposite- An extension of Composite, this class manages the composite in which an IPlot is drawn. It includes methods to add a custom context menu and toolbar (with the same content), draw and error message in case drawing the IPlot fails, and enable or disable specific series, (Suggestion: Instead of having an implementation that returns true and expected subclasses to override it to return false, canShowMultippleSeries() should be abstract.)
PlotDialogProvider- A class that attempts to create a plot for the given URI with all available visualization services. If none succeed, it gives an error, and if one succeeded, the created plot is saved. If multiple plots were successfully created, it opens a dialog containing a combo box listing the possible options. The user can cancel, or select one of the created plots.
PlotGridComposite- An extension of Composite that contains multiple PlotComposites which each contain a different drawn IPlot. It takes a URI, uses a PlotDialogProvider to identify the correct IVizService, and then draws the new IPlot in an empty PlotComposite if one exists. When moused over, a button is displayed that will close an open PlotComposite. It has a toolbar allowing the user to select how many rows and columns of PlotComposites there should be.
SpinnerContribution- A wrapper that allows an SWT Spinner to be contributed to a tool bar manager.
TimeSliderComposite- This class is a composite with controls for displaying a plot’s timesteps. It consists of a bar, buttons, and a text field. The bar is a timeline of the available timesteps. The user can drag the cursor to set when in the timeline to display, using a BinarySearchTree to snap to the nearest timestep. The text field allows the user to explicitly enter a time step to display. There are forward and back buttons to display the next or previous time step, respectively. There is also a play button, which causes the display to automatically advance to the next time step and, if pressed again, stops the playback. An option button provides a list of framerates to allow the user to control how fast it moves between time steps and also can open a ComboDialog which allows the user to input a custom framerate.
TreeSelectionDialogProvider- A class that can open a dialog box containing a tree data structure. It also contains a simple Node class to represent each item. Each Node has an associated checkbox, and any combination of Nodes in the tree can be selected, with parent Nodes selecting/deselecting their children when clicked.
OSGI-INF
vizFactory- This package provides the BasivcVizServiceFactory as a IVizServiceFactory service. It consumes IVizService services with the BasicVizServiceFactory.
vizServiceFactoryHolder- This package consumes IVizServiceFactory services with the VizServiceFactoryHolder.
(Suggestion: CSVVizService does not advertise itself as an IVizService, which breaks the pattern established by the other IVizServices. It is instead added into BasicVizServiceFactory by hardcoding. BasicVizServiceFactory should consume CSVVizService as normal, and set the default service by checking for CSVVizService’s name when registering a new service.)
Plugin.xml
This package provides a Visualization preference page, implemented by VizPreferencePage and initialized by VizPreferenceInitializer.
Org.eclipse.ice.viz.service.geometry
Org.eclipse.ice.viz.service.geometry.shapes
AbstractShape- An abstract implementation of IShape. It contains a properties map, a Transformation, and a parent IShape. It can accept IShapeVisitors as a part of the visitor pattern.
ComplexShape- An extension of AbstractShape for constructive solid geometry shapes made out of the combination of other IShapes. It contains a list of child shapes and an OperatorType describing how to combine them. Shapes can be added or removed to the list of children.
Geometry- A top level container for a geometry editor, containing all modeled IShapes as children and registered as a listener to them.
IShape- An interface for shapes in the constructive solid geometry tree. It has getters and setters for a Transformation and properties and a function to accept an IShapeVisitor.
IShapeVisitor- An interface for a visitor class in a visitor pattern. It can visit both ComplexShapes and PrimitiveShapes.
OperatorType- An enumerator describing the operator used by a ComplexShape to combine its child shapes. The types are union, intersection, complement, and none, which means that the shape is not to be rendered.
PrimitiveShape- An extension of AbstractShape for simple shapes. It contains a ShapeType describing what kind of shape the object is.
ShapeType- An enumerator describing a type of shape. The types are sphere, cube, cylinder, cone, tube, and none, which means that the shape is not to be rendered.
Transformation- A class containing the transformations applied to an IShape. It includes a single size variable and one each of skew, scale, rotation, and translation for the X, Y, and Z axes.
Tube- A mesh of a tube for use with JME3. It has getter methods for various geometric parameters, and methods to read and write it to a JmeExporter.
Org.eclipse.ice.viz.service.geometry.widgets
ActionAddShape- An extension of Action for adding shapes to a Geometry object. Each ActionAddShape is constructed with either an OperatorType or ShapeType as an argument. When run, the ActionAddShape will add a ComplexShape or PrimitiveShape of its OperatorType or ShapeType respectively. It also stores the path to an image showing what kind of shape it will add, which is displayed next to the action’s name in the menu.
ActionDeleteShape- An extension of Action which deletes a shape.
ActionDuplicateShape- An extension of Action which creates a copy of a shape. This class’s documentation is incomplete.
AcitonReplicateShape- An extension of Action which opens a ReplicateDialog. Based on the user input from the dialog, it creates a new ComplexShape containing as many copies of the given shape as specified, each translated by the specified amount in relation to the last copy.
DropdownAction- An extension of Action which creates a drop down menu populated by other Actions.
RealSpinner- A widget containing a text box. Input to the box is limited to real numbers, and the current value is displayed at all times in the box.
RealSpinnerListener- An interface for classes which listen to a RealSpinner. It has a function to notify the class when the RealSpinner updates.
RenderShape- An IShape for use in rendering a shape in jMonkeyEngine3. It tracks whether the shape is selected in the geometry editor. It also has functions to create a JME3 Spatial mesh, get and set the shape’s alpha transparency, and convert the ICE Transformation into a JME3 Transformation
ReplicateDialog- An extension of Dialog that does has a Spinner for the number of copies to make, and three ReadSpinners for the translation to apply between one copy and the next in the X, Y, and Z directions.
ShapeMaterial- A class which determines what Material JME3 will use to render the associated shape. It returns one material if the shape is not selected and a different one if it is. It also sets all parents of the given shape to selected if it is selected during construction.
ShapeTransient- A wrapper class around an IShape that implements Saveable.
ShapeTreeContentProvider- An IShapeVisitor which visits the children of a Geometry object and creates a tree data structure out of them. The file also includes BlankShape, a dummy class which displays a message to add a shape under a ComplexShape when it has no children.
ShapeTreeDragListener- A class with nothing but uncommented function stubs. (Suggestion: Remove this class.)
ShapeTreeDropListener- A class with nothing but uncommented function stubs. (Suggestion: Remove this class.)
ShapeTreeLabelProvider- A class which creates the text to be displayed for a shape in the ShapeTreeView. It has a function which returns the concatenated name and ID of a VizObject or the message from a BlankShape.
ShapeTreeSelectionListener- A listener for a ShapeTreeView, that saves and updates a list of selected IShapes whenever there is an event in the view.
ShapeTreeView- A view containing a tree view with a Geometry object’s contained IShapes and the a toolbar populated with an ActionDeleteShape, ActionDuplicateShape, ActionReplicateShape, and ActionAddShapes for cubes, cylinders, spheres, and tubes under a Primitive Shape menu and intersections under a Complex Shape menu. This class has incomplete documentation. (Suggestion: Both ShapeTreeView and ShapeTreeSelectionListener are ISelectionChangedListeners which keep ArrayLists of the selected IShapes from a ShapeTreeView. Thus functionality only needs to exist in one place, instead up duplicated across both classes.)
TransformationView- A ViewPart that has 10 RealSpinners for setting the values of the Transformation of the selected IShape. One RealSpinner is for size and the other nine are for scale, rotation, and translation for the X, Y, and Z axes. The Transformation is automatically set to the new value when the user finishes editing one of the RealSpinners
Org.eclipse.ice.viz.service.jme3
Org.eclipse.ice.viz.service.jme3.application
CompositeAppState- An extension of SimpleAppState that can combine multiple SimpleAppStates. It is used to group together related SimpleAppStates under a single parent app state, such as the edit and add mode SimpleAppStates for a single mesh editor. Enabling/disabling the parent app state also enables/disables all the children.
CustomChaseCamera- An extension of the JME3 ChaseCamera. It adds the capability to reset the camera’s zoom to a default distance and notifies listeners when the camera’s zoom changes.
EmbeddedView- A class which displays the MasterApplication in an AWT Frame. Each EmbeddedView is associated with an IEmbeddedViewClient which provides the content the MasterApplication will render. It can register or unregister the IEmbeddedViewClient and add or removed itself to the Frame. It also can also create a thread to process resizing events.
FlightCamera- A class for a camera for a JME3 application. It can move in six directions, swivel left/right and up/down, and zoom. The documentation for controls appears to be incorrect.
ICameraListener- An interface for classes which listen to a camera. It has one function, which fires an update when the camera zooms.
IEmbeddedViewClient- An interface for clients to an EmbeddedView. It has functions to get the scene’s root node, create, update, and disable a HUD, create or update a camera, and receive notifications from the EmbeddedView that the view has been resized, activated, or deactivated.
IRenderQueue- An interface for objects which send rendering tasks to the jME3 application. It has a function to place a callable operation in the queue to be run.
MasterApplication- An extension of SimpleApplication. The MasterApplication should be the only jME3 application used by ICE, with multiple uses of jME3 instead represented as SimpleAppStates for the MasterApplication. It has functions to find the next unused ID number to assign to an EmbeddedView, create an EmbeddedView, and block until it is finished initializing.
SimpleAppState- An IRenderQueue and AppState which has basic implementation for app state functionality. It manages the materials, controls, and scene used in the jME3 application. It also handles getting a ray from the mouse cursor and calculating what in the scene the ray collided with. This class’s documentation is incomplete.
ViewAppState- An IEmbeddedViewClient which extends CompositeAppState. This class is the basic AppState implementation which real AppStates that use the MasterApplication will extend. Notably, it contains a function to draw itself in a Composite.
VizViewFactory- A class that creates MeshAppStates and, if necessary, a MasterApplication. It is included for possible use for the MasterApplication and associated classes outside of ICE, as ICE relies on OSGI services to provide these objects.
Org.eclipse.ice.viz.service.jme3.geometry
JME3GeometryCanvas- An IVizCanvas that extends SimpleApplication. It is responsible for rendering the Geometry object and its child shapes in JME3. It contains all necessary information for the JME3 scene, including the shapes, materials, camera, and lighting. The file also includes the SyncShapes class, an implementation of IShapeVisitor which visits all the IShapes in the tree and updates the JME3 scene accordingly.
JME3GeometryVizService- An extension of AbstractVizService. It takes as input a Geometry object and creates a JME3GeometryCanvas containing that object.
Org.eclipse.ice.viz.service.jme3.internal
IMasterApplicationFactory- An interface for classes which create and dispose of a MasterApplication. It exists only to allow MasterApplicationFactory to interact with OSGI.
MasterApplicationFactory- A concrete implementation of IMasterApplicationFactory.
MasterApplicationHolder- A class which holds an IMasterApplicationFactory, which is used to create a MasterApplication if one does not already exist.
Org.eclipse.ice.viz.service.jme3.mesh
AbstractMeshController- An abstract class which can get and set the state, parent, size, and scale for a mesh, as well as listen for other changes. When an update occurs, it notifies the AbstractMeshView to respond to the changed state.
AbstractMeshView- An abstract class which can change the size, color, and parent of and object for use in the model view control pattern with AbstractMeshController. The default implementations reference Geometry instead of mesh objects, and thus should not actually be used.
AddMode- An extension of MeshAppStateMode which allows the user to add polygons to the editor. It changes the controls so that, when the user clicks, a Vertex is added to the editor. If previous vertices have been added, it also draws an Edge between the last one and the new Vertex. If this is the fourth added Vertex, it draws an additional Edge back to the first, and the user can click once more to accept the polygon.
EdgeController- An extension of AbstractMeshController for Edges.
EdgeView- An extension of AbstractMeshView for Edges. It draws lines on the grid to represent the edge, and can control the line’s width.
EditMode- An extension of MeshAppState which allows the user to click on Vertices to select them. They can then either be dragged, moving the Vertex and its associated Edges, or deleted with the delete, backspace, or escape keys.
IMeshSelectionListener- An interface for classes that listen to a mesh application’s selection. It has one function, which notifies the object that the selection has changed.
JME3MeshCanvas- An IVizCanvas containing a MeshAppState and the VizMeshComponent drawn in it. It can create the MeshAppState and draw it in a given composite. It can also register listeners to the MeshAppState and change its MeshAppStateMode.
JME3MeshVizService- An IVizService which creates JME3MeshCanvases. It takes as input a VizObject, validates that it is a VizMeshComponent, then creates uses it to create the canvas.
MeshAppState- An IMeshSelectionListener that extends ViewAppState to render a mesh editor in the MasterApplication. It creates the JME3 scene, registers the controls, creates the HUD and camera, and keeps track of which MessAppStateMode the editor is in.
MessAppStateMode- An abstract extension of SimpleAppState that provides implementations for functions to help change the controls of the MeshAppState to those from the new mode.
MeshAppStateModeFactory- A factory containing the MeshAppStateModes. It has functions to get the list of available modes or get a specific mode by its type.
MeshSelectionManager- A class which manages the selection of items inside a mesh editor. It can register an IMeshSelectionListener and notify it when the selection is chaged. It can select/deselect Vertices, Edges, and Polygons, add or remove objects from the selection, clear the selection, delete the selected objects, and return all selected objects of a given type or their IDs.
MeshUpdateHandler- An IVizUpdateableListener that allows the application to be updated when it is notified of a change in the mesh.
StateType- An enumeration that lists the possible states for an item in a jME3 scene along with an associated color. The possible types are none (red), selected (green), temporary (yellow), and disabled (organge).
ToggeAxesAction- An Action which turns a ViewAppState’s axes on/off.
ToggleHUDAction- An action which turns a ViewAppState’s HUD on/off.
VertexController- An extension of AbstractMeshController for Vertices. It can get and set a Vertex’s location in the model.
VertexView- An extension of AbstractMeshView for vertices. It draws a sphere to represent the Vertex, and can control the sphere’s size.
Org.eclipse.ice.viz.service.jme3.widgets
AbstractController- An abstract class for a controller for a JME3 application for use in a model view control pattern.
AbstractView- An abstract class for a view on a JME3 application for use in a model view control pattern. It manages a root node in the JME3 scene graph, allowing it to be added to a parent node and its location and rotation to be changed.
InputControl- A class that contains the InputListener, mapping names, and Triggers required to specify input reactions for a JME3 application. It can be registered/unregistered to the SimpleApplication’s InputManager.
OSGI-INF
[bookmark: _GoBack]This package provides JME3GeometryVizService and JME3MeshService as IVizServices and MasterApplicationFactory as an IMasterApplicationFactory. MasterApplicationHolder consumes IMasterApplicationFactory services.
Org.eclipse.ice.viz.service.mesh
Org.eclipse.ice.viz.service.mesh.datastructures
BezierEdge- An Edge that is a Bezier curve between two vertices. All of its functions are empty stubs.
BoundaryCondition- A class which represents a Nek5000 boundary condition. They are associated with Polygons, and contain a BoundaryConditionType and five Floats which contain their Nek5000 data.
BoundaryConditionType- An enumeration listing Nek5000 boundary condition types with the number of parameters associated with that type.
Custom2DShape- A class which groups together several Polygons. It has methods to add, remove, and set the Polygons it contains.
Edge- An IMeshPart that is a line between two vertices. It has functions for getting its start and end point and calculating its length. Edges listen for updates from their Vertices, in case the Vertex is moved.
EdgeProperties- A class containing three BoundaryConditions with getters and setters.
Hex- A six sided extension of Polygon. Its functions are all unimplemented stubs.
IMeshPart- An interface for mesh parts which will participate in the visitor pattern with an IMeshPartVisitor.
IMeshPartVisitor- An interface for classes which will invoke the visitor pattern on mesh classes, Polygons, Edges, and Vertices.
Polygon- An IMeshPart that represents a polygon. It contains the lists of edges and vertices which make up the polygon, as well as an EdgeProperties and a PolygonProperties. It has methods to get its edges and vertices and the different BoundaryConditions from its EdgeProperties.
PolygonProperties- A class for containing the material ID and group number for a Polygon, as taken from a Nek5000 rea file.
PolynomialEdge- An Edge that is a polynomial curve between two vertices. All of its functions are empty stubs.
Quad- An extension of Polygon with exactly four Edges and Vertices.
Vertex- An IMeshPart representing a vertex. It has the vertex’s three dimensional coordinates and functions to change its location.
VizMeshComponent- An IMeshPart which contains all other IMeshParts in the editor as children. It contains maps of all Edges, Polygons, and Vertices, as maps from Vertices to the IDs of their containing Edges and Polygons and from Edges to the IDs of their containing Polygons.
Org.eclipse.ice.viz.service.mesh.properties
BoundaryConditionSection- A property section for editing BoundaryConditions’ information. It displays the BoundaryCondition’s type, passive scalar index, ID of the containing Polygon/Edge, and the parameter values.
EdgeInfoSection- A property section for displaying Edges’ information. It shows the Edge’s index.
GeneralInfoSection- A property section for editing generic information shared among all IMeshParts. It shows the name, description, and ID.
MeshSelection- A class containing a VizMeshComponent and an IMeshPart. This class has no documentation.
TabDescriptionProvider- An IMeshPartVisitor which dynamically adds tabs to the property section based on which kind of IMeshPart is being displayed.
VertexInfoSection- A property section for displaying Vertices’ information. It displays the Vertex’s index.
VertexSection- A property section for editing Vertices’ information. It displays the Vertex’s index and x and y coordinates.
Org.eclipse.ice.viz.service.paraview
Org.eclipse.ice.viz.service.paraview
ParaViewPlot- An extension of ConnectionPlot<IParaViewWebClient>. It creates an IParaViewProxy pointing to the input URI and a ParaViewPlotComposite in which to plot it.
ParaViewComposite- An IPlotListener that extends ConnectionPlotComposite<IParaViewWebClient>, it draws a ParaViewPlot rendering in a composite, getting the data from a remote ParaViewConnection. It also includes a TimeSliderComposite to control which time step to display.
ParaViewVizService- An extension of AbstractVizService for creating ParaViewPlots. It can also create an IVizConnectionManager<IParaViewWebClient>.
Org.eclipse.ice.viz.service. paraview.connections
ParaViewConnection- An implementation of IVizConnection that provides implementations for connecting and disconnecting from ParaView.
ParaViewConnectionPreferencePage- An extension of VizConnectionPreferencePage which contains the root node for all ParaViewConenctions from the ParaViewVizService.
Org.eclipse.ice.viz.service. paraview.preferences
ParaViewPreferenceIntiializer- An extension of AbstractVizPreferenceInitializer. It has no actual code, only a stub function definition containing commented out code.
Org.eclipse.ice.viz.service. paraview.proxy
AbstractParaViewProxy- A basic implementation of IParaViewProxy. It keeps track of the plot’s category and feature, a map of possible categories and features, the connection, a map of properties, the list of times and current timestep, and options for whether or not to show the scalar bar and whether it should be based on all timesteps or just the current one. It has methods to open a connection and open a remote file in ParaView. It can direct the ParaView wenb client to rescale the model, change the visualization colors, and change the category, feature, properties, or timestep.
AbstractParaViewProxyBuilder- An abstract implementation of IParaViewProxyBuilder. It tracks the set of associated file extensions, and has methods for creating an IParaViewProxy for a given URI
IParaViewProxy- An interface for classes which handle the interaction between ICE and the ParaView web client. Each proxy is responsible for the interactions relating to a specific file. It provides methods for getting and setting the features, categories, properties, allowed property values, and timesteps, as well as getting the URI and the IDs for the objects comprising the associated ParaView model, the file, representation, and view. It also has a function for opening an IVizConnection to an IParaViewWebClient.
IParaViewProxyBuilder- An interface for classes which create IParaViewProxies. It has functions for creating a proxy from a URI and getting the proxy’s supported file extensions and builder’s name.
IParaViewProxyFactory- An interface for classes which provides IParaViewProxyBuilders, It has functions to create a proxy, get all file extensions which can be handled by any registered IParaViewProxyBuilder, and register and unregister builders.
ParaViewProxyFactory- An implementation of IParaViewProxyFactory, If multiple IParaViewProxyBuilders can handle the same file extension, it returns the one which was most recently registered.
ProxyFeatures- An extension of ProxyProperty. A class that holds the features for a model in a ParaView web client. It contains properties controlling whether colors are assigned by point or cell, coloring mode, and whether the view can be colored by this feature.
ProxyProperty- A class which manages a property for a ParaView proxy. ProxyProperties have three possible types of values, either an arbitrary String, a selection from a list of options, or a set of selections from a list of options. A ProxyProperty has a name for both the UI and Properties JsonArrays, an index in the JsonArray which contains it, a set of allowed and selected values
Org.eclipse.ice.viz.service. paraview.proxy.exodus
ExodusProxy- An extension of AbstractParaViewProxy that has an implementation of findFeatures() which loads features specific to exodus files. (Suggestion: There is some commented out code for adding Face, Edge, and Global variables to the feature list. These should either be implemented for real or removed.)
ExodusProxyBuilder- An extension of AbstractParaViewProxyBuilder that creates ExodusProxies for files with Exodus file extensions.
Org.eclipse.ice.viz.service. paraview.proxy.silo
ExodusProxy- An extension of AbstractParaViewProxy that has an implementation of findFeatures() which loads features specific to silo files. (Suggestion: There is some commented out code for adding mesh and material status variables to the feature list. These should either be implemented for real or removed.)
ExodusProxyBuilder- An extension of AbstractParaViewProxyBuilder that creates SiloProxies for files with the .silo file extension.
Org.eclipse.ice.viz.service. paraview.widgets
ParaViewCanvas- An extension of the SWT Canvas for displaying the rendered image from an IParaViewWebClient. It also tracks whether or not the currently displayed rendering is stale.
ParaViewMouseAdapter- A class which handles mouse input for the ParaViewCanvas. Clicking and dragging sends instructions to rotate the model to the ParaView web client and scrolling the mouse wheel sends instructions to zoom. It includes a MouseInteraction class which contains state information about the mouse and keyboard.
OSGI-INF
This package provides ParaViewVizService as an IVizService and ExodusProxyBuilder and SiloProxyBuilder as IParaViewProxyBuilders. It also provides ParaViewProxyFactory as an IParaViewProxyFactory. ParaViewProxyFactory in turn consumes IParaViewProxyBuilders.
Plugin.xml
This package provides a ParaView preference page. This is implemented by ParaViewPreferencePage and initialized by ParaViewPreferenceInitializer.
Org.eclipse.ice.viz.service.paraview.web
Org.eclipse.ice.viz.service.paraview.web
HttpParaViewWebClient- An IParaViewWebClient. It provides a way for ICE to communicate with a ParaView http web client. It can send a method name and JsonObject to a remote ParaView client, and receive a JsonObject in response, returning a new JsonObject if it receives an improperly formatted response. It can also send rendering instructions, an event, or call a method and receive a Future<JsonObject> in response. This class lacks full documentation.
IParaViewWebClient- An interface for communicating with a ParaView web client. It has functions to connect or disconnect and functions to send a rendering instruction, event, or method call to the ParaView client. It has no documentation.
Org.eclipse.ice.viz.service.visit
Org.eclipse.ice.viz.service.visit
VisItMouseManager- A class which manages the listeners for a VisItPlotRender. Listeners exist for clicking and moving the mouse, for scrolling the mouse wheel, and for keyboard button presses. Clicking and dragging rotates the model, scrolling the wheel zooms, and the clicking and dragging while the control and/or shift key is pressed moves the center of the model.
VisItPlot- An extension of ConnectionPlot<VisItSWTConnection> for handling VisIt renderings. It has functions to get the plot categories and representations, and to add independent series for time, read in from the file based on information in its FileInfo.
VisItPlotComposite- An IPlotListener which extends ConnectionPlotComposite<VisItSwtConnection>. It draws a VisItPlot rendering in a composite, getting the data from a remote VisItSwtConnection. It also includes a TimeSliderComposite to control which time step to display.
VisItPreferenceInitializer- An extension of AbstractVizPreferenceInitializer. It has no actual code, only a stub function definition containing commented out code.
VisItPreferencePage- An extension of VizConnectionPreferencePage with functions overridden to be specific to the VisIt service.
VisItVizService- An extension of ConnectionVizService<VisItSWTConnection> for creating VisItPlots. It can also create a VisItConnectionManager.
Org.eclipse.ice.viz.service. visit.connections
VisItConnection- An extension of VizConnection<VisItSwtConenction> with VisIt specific implementations for VizConnection functions.
VisItConnectionManager- An extension of VizConnectionManager<VisItSwtConenction> with VisIt specific implementations for creating the connection and updating the connection preferences.
VisItConnectionPreferencePage- An extension of VizConenctionPreferencePage. It includes fields for a proxy host and port and a VisIt username.
Icons
Nav_backward- A yellow arrow pointing left. Used for the TimeSliderComposite’s back button.
Nav_forward- A yellow arrow pointing right. Used for the TimeSliderComposite’s forward button.
Nav_go- A green triangle pointing right. Used for the TimeSliderComposite’s play button.
Resume_co- A vertical yellow bar and green triangle pointing right. Unused.
Suspend_co- Two vertical yellow bars. Used for the TimeSliderComposite’s pause button.
Thread_obj- A green triangle pointing right with an orange circle to its upper right. Used for the TimeSliderComposite’s options button.
OSGI-INF
vizService.xml- This package advertises VisItVizService as an IVizService.
Plugin.xml
This package provides the VisIt preference page. It is implemented by VisItPreferencePage and initialized by VisItPreferenceInitializer.
