Agile Strategies for Enterprise Architects
By Scott W. Ambler

Contrary to popular belief, agile software developers, at least the smarter ones, invest time in identifying a potential architecture for their system. This isn’t well understood by traditionalists, in part because modeling is one of the topics which agilists don’t like to talk about and in part because our architectural strategies differ from traditional strategies. Agilists will do some architectural modeling up front, just enough to identify a viable strategy, during the initial iteration of a project. The details, and arguably the architecture itself, emerges over time as the project progresses. Because our project-level architecture efforts are different, the way that enterprise architects interact with agile teams must also vary.
In this article I describe why the agile architectural approach typically differs within agile teams, what agile teams need from enterprise architects, and more importantly what they don’t need. My hope is that this advice will provide insights in to how you can tailor your enterprise architecture (EA) processes for effectively supporting agile software development teams.
Agile is Different

Agile software development teams choose to work to a different set of philosophies than traditional teams, and as a result enterprise architects must interact with them in new ways. We recognize that:

1. Requirements will change throughout the lifecycle. We embrace change and have adopted techniques which reflect this. Although we may model a bit up front [1, 2], we know that any investment in detailed documentation risks being wasted and therefore minimize this sort of work. We have adopted techniques such as test-first design [3] and refactoring [4, 5] which reduce our need for detailed, up-front modeling.
2. Collaboration is critical to our success. We find ways to reduce barriers to communication and collaboration wherever we can, preferring face-to-face interaction over artifact hand-offs [6]. The higher levels of communication and collaboration within agile teams results in less reliance on detailed documentation and models – everyone on the team understands the architecture because they were actively involved in its development throughout the project. Furthermore, if someone is to truly have an effect on an agile team, including enterprise architects, then they need to be part of the collaborative effort.
3. We focus mercilessly on quality. Agilists are “test infected”, taking a test-first approach whenever possible and refactoring our code to keep it the highest quality possible at all times. This high quality code will be loosely coupled and highly cohesive, enabling us to easily evolve it as the requirements evolve.
What Agile Teams Need

Agile teams can benefit from an enterprise architecture program just like traditional teams, but we need enterprise architects to work with us in a manner which reflects agile approaches to software development [7, 8]. Here is what agilists expect of effective enterprise architects:
1. Hands-on involvement. Agile teams expect enterprise architects to be active members of the project team, to not only help us architect the system but to also develop high-quality working software which meets the changing needs of our stakeholders. Enterprise architects must be willing to roll up their sleeves and get their hands dirty building software, and to do so regularly.
2. Straightforward guidance. Agile teams believe in following common standards and guidelines, particularly coding standards, because consistency is a contributor to quality. Enterprise architects can and should be a good source of such guidance, and must be prepared to maintain and collaboratively support it [9]. This guidance doesn’t need to be perfect, but it should be concise, understandable, and easily available.
3. Overview diagrams. We need “maps” which overview the vision that we should be working to for the technical and business aspects of the organization. We don’t need much detail, we’ll work closely with the enterprise architects who know that information, but we do need a few key diagrams to occasionally reference. I personally find that a high-level enterprise domain model, a UML deployment diagram providing a high-level overview of the technical infrastructure, a free-form “architectural stack” diagram, and a high-level enterprise business process model are very useful for business applications.
4. Reference architectures. A reference architecture is a working example of a critical aspect of your enterprise architecture, such as an end-to-end technical prototype of a J2EE application, an example of how to work with your organization’s message bus, or an example of how to work with your business rules engine. Enterprise architects should provide these concrete examples to guide development teams in correctly building applications within your organization.
5. Mentoring. When enterprise architects are working on agile development teams they will actively share their skills and experiences with team members. This includes mentoring in architectural concepts, modeling, design, and in other systems within your organization.
What Agile Teams Don’t Need

It’s also important for enterprise architects to understand what agile teams don’t need from them. In particular, this includes:

1. Detailed documentation. We need high-level overviews and direct access to the enterprise architects, not access to detailed documentation which is likely out of date and even if it isn’t we’re not likely to fully understand it even if we read it anyway. Documentation is one of the poorest ways to communicate information [6], and relying on it to communicate critical architectural information is foolish at best.
2. Authoritative governance. Agile teams work best with a collaborative approach to governance, not a command-and-control one. If your goal is to get development teams under control, to get them to conform to your will, or to simple do what they’re told then chances are pretty good that you’re going to be ignored by the teams (be they agile or not). I highly suggest Jim Highsmith’s Adaptive Software Development [11] for a very coherent discussion about the challenges with traditional command-and-control approaches.
3. Reviews. In the highly collaborative environments typical of agile teams we find that reviews often prove to be “too little, too late” – if anyone could possibly add value in a review, then they should have been actively involved with the development of the artifact in the first place. In fact, I have argued that reviews are “process smells”; if holding a review makes sense then it’s an indication that you’ve very likely made a serious mistake earlier in the development process that once addressed will alleviate the need for the review [10].
Enterprise architects have it really tough these days because they have to support traditional, agile, and even hybrid development teams. The implication is that enterprise architects need to be flexible and to be prepared to adapt to the situation at hand. Development teams should not be required to adapt, at least not significantly, to meet the needs of enterprise architects. In my experience the surest way to failure is to have the enterprise architecture tail wag the development dog.

References
1. Ambler, S.W. Agile Model Driven Development (AMDD). www.agilemodeling.com/essays/amdd.htm
2. Ambler, S.W. Agile Architectural Modeling. www.agilemodeling.com/essays/agileArchitecture.htm
3. Astels, D. (2004). Test-Driven Development: A Practical Guide. Upper Saddle River, NJ: Prentice Hall.

4. Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Menlo Park, CA: Addison-Wesley Longman.

5. Ambler, S.W. and Sadalage, P.J. (2006). Refactoring Databases: Evolutionary Database Design. Boston: Addison Wesley.
6. Cockburn, A. (2006). Agile Software Development 2nd Edition. Reading, MA: Addison-Wesley Longman, Inc.

7. Ambler, S.W. Agile Enterprise Architecture. www.agiledata.org/essays/enterpriseArchitecture.html
8. McGovern, J., Ambler, S.W., Stevens, M., Linn, J., Sharan, V., and Jo, E. (2003) The Practical Guide to Enterprise Architecture. Boston: Addison Wesley.
9. Ambler, S.W., Nalbone, J., and Vizdos, M. (2004). The Enterprise Unified Process: Enhancing the Rational Unified Process. Boston: Addison Wesley.

10. Ambler, S.W. Model Reviews: Best Practice or Process Smell? www.agilemodeling.com/essays/modelReviews.htm
11. Highsmith, J.A. III (2000). Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. New York: Dorset House Publishing.

12. The Open Unified Process (OpenUP). www.eclipse.org/epf/

Byline

Scott W. Ambler is the Practice Leader Agile Development in IBM’s Methods Group. He is the founder of the Agile Modeling (AM), Agile Data (AD), Agile Unified Process (AUP), and Enterprise Unified Process (EUP) methodologies. Scott is the (co-)author of 19 books, including The Practical Guide to Enterprise Architecture, Refactoring Databases, Agile Modeling, and The Enterprise Unified Process. Scott is a senior contributing editor with Dr. Dobb’s Journal. His personal home page is www-306.ibm.com/software/rational/bios/ambler.html

