November 29, 2006 OpenUP RM Content Telecon (Part IV)
1. Attendees:

Chris Sibbald
Ricardo Balduino

Per Kroll

Jim Ruehlin
2. Agenda
· Review comments and feedback on RM Concepts.

· Review comments and feedback on RM Guidelines

· Review comments and feedback on RM Checklists

· Review comments and feedback on RM Templates

· Issues/Decisions
3. Review comments on RM Concepts

We completed the review of the comments and feedback on Concepts and captured decisions.  See attached spreadsheet. 

[image: image1.emf]RM Concepts


Chris updated the relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162636)
Per noted that there is a lot of material on Use Cases and Use-Case Model (Guidelines, checklist, concepts).  Need to reduce the amount of content in this area.  He proposed that we:
1) Combine Concept:Use Case and Concept: Use-Case Model, including only basic elements.

2) Outline an advanced use-case plug-in that captures additional guidance for advanced practitioners.
3) Implement all proposed changes related to Use Case and Use Case Modeling before addressing other issues raised against RM content.

4. Review comments on RM Guidelines

We started the review of the comments and feedback on RM Guidelines and captured decisions.  See attached spreadsheet.

[image: image2.emf]RM Guidelines


Chris updated the relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162637)
5. Review comments on RM Checklists

We did not have time to address these.  They will be addressed at the next RM content review.
The relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162638)
6. Review comments on RM Templates

We did not have time to address these.  They will be addressed at the next RM content review.

The relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162641)
7. Issues/Decisions
See attached spreadsheets.  Next call will be Monday December 4 at 9:00 am PST.  Chris will send out notice to epf-dev and update yahoo calendar.
_1226487535.xls
RM Concepts

		Jim's Comments on Concepts		Chris S comments		Ben W Comments		Keith Collyer Comments		Ana P. Comments		Discussion and Decisions from Nov.27 and Dec 1 telecons

		Requirements

		Remove formal definition of requirements. Leave or refine the information definition.  Specifically, requirements are the to-do items that also describe what the system has to do to solve the customer's problem.		I think the formal definition provides credibility and includes test requirements nicely.

Given Keith's comment I propose we change the informal definition to: 
"Requirements define: 
      What the stakeholders need 
      What the system must include to satisfy the stakeholder needs 
      How one will demonstrate that the requirements have been satisfied 
"		Agree with Chris.		What I don't like about either the formal or the informal definition is that both assume that the requirements are about the system. Neither touches on the stakeholders. It is key to understand what the stakeholders want to achieve as opposed to what the system will do. The first few paragraphs all effectively say the same thing in different ways, but none of it really gets to the heart of the issue.		I like the option raised by Per on bug 162634: use generic Requirement artifact that could be specialized in extensions to be the different types (Use Case, User Stories, non-functional requirements, etc.)		Remove formal definition.  Remove the last bullet concerning verification from the infromal definition.  Update Term Definition: requriement to include updated informal definition.

		Remove reference to the definition of a Feature. Indicate simply that requirements can be found in use cases or the Supporting Requirements		A feature is a high level requirement for some capabililty in the system/product.  Features captured in the Vision are the top level requirements that will drive validation and acceptance.  I think they are important.		I agree with the fact that Features are important, but my gut reaction is that Features satisfy requirements. Stakeholders might describe features that they want but in my view this is not the correct thing to do. As Chris has stated what you must do in this instance is to derive requirements from the stated feature and then achieve concurrence on those derived requirements with the Stakeholder,		I agree with Chris				No action required.

		Reduce the description of non-functional requirements - it's security, performance, legal, etc, requirements that can't be easily represented in use cases				Jim, what do you mean by 'cant easily be represented'?		It is important to give examples. I think the existing list should be retained, but clarify that these are examples, and in no way exhaustive				No action required.

		Need to make the relationship between the WIL and requirements clearer.  Describe that use cases are referenced from the WIL. Use Cases can be referenced as a single unit, as a scenario, or a single step		I think this detail belongs in the description of the WIL.		Agree with Chris.						Remove reference to the WIL guideline.

		Encourage use of WIL as the supporting requirements artifact		We discussed this a lot previously and agreed that the WIL does not replace the Supporting Requirements artifact.  Has something changed?		Agree with Chris, Supporting Requirements should be a separate entity, referenced by items in the WIL.		I agree with Chris				No action.

		Need to do a better job describing how Test Case fits into requirements. There seems to be an important story about testing that's missing here. We need a robust description of how test cases fit into RM.		The formal definition is explicit that test requirements (test cases) are a form of requirement.  The text also states: 
"Requirements define: 
      What the users want 
      What the system must include to satisfy the user and business needs 
      How one will demonstrate that the requirements have been satisfied 
"
and 

"Finally, Artifact: Test Case may be considered a form of requirement stating how the system will be verified."
I think this is sufficient.		Agree with Chris		I personally think that this is a source of confusion. Test Requirements are requirements that are induced by the need to test the system (for example, the provision of a test point or inspection hatch). Test Cases, on the other hand, should be designed to show that requirements are met. If a Test Case is a requirement, how do we test that the test case is met - what is the test case for the test case, what about the test case for the test case for a test case? That way lies madness.		The requirements  can be described at several levels: identified, outlined, detailed and acceptante tests level.  This last level adds specific acceptance test cases for each story/snenario contained in a use case specified at detail level. It enables the recipient to unambiguously determine whether the requirement has been met.		No action pending further review of OpenUP/Basic architecture and Test discipline. Jim will raise a bug on including or not the Test Case in intent.

		Provide examples of a couple of good and bad requirements and why they're good or bad		There are separate Guidelines(Writing Good Requirements, Requirement Pitfalls) and Checklists (Qualities of Good Requirements) that address this.  I think this is sufficient.		Agree with Chris		I agree with Chris				No action.

		Reference the Collaboration principle		Where?		I cannot decide if the implicit relationship between collaboration and everything else, including Requirements is sufficient. Sometimes it is hard to put yourselves in the shoes of someone who doesn’t have detailed knowledge of these things.				I have an "old" book from Ellen Gottesdiener named "Requirements by Collaboration: Workshops for Defining Needs " that has somme guidance on collaborative workshops for  eliciting requirements. Maybe we can add a guideline on this subject???		Need more discussion.  Ricardo, feels that the practices should reference the method elements that support the practice, rather than having each method element reference relevant practices.  Chris S. agrees.  Look at comments on Overarching to ensure this one related to integrating principles and practices with other method content is addressed.

		Use Case		This concept was recently re-written (November 3, 2006) to address the comments of the copy editor.  Many of the following comments have been addressed.  We still need to decide how to split the concept into several pages, as it is too long as it stands.

		"Use case instance" has the same definition as "use case" (glossary) and "use case" is the generally accepted term - remove the word "instance"		This was taken from RUP for small projects.  I think it is correct (a use case instance is not a use case).		Agree with Chris regarding the distinction.
My only other comment is that when browsing the OpenUP/Basic published website, a process consumer will see reference to 'instance' elements of the process, labelled as descriptors, but then be told about 'Use case Instances'.		the definitions are now distinct				Review all content and remove mention of "Use Case instance" and replace with Scenario.

		The term Scenario should be used to describe a single flow the there UC		Scenario is describe in the updated version of this concept.								Ok as is in Nov. 3 version.

		Change examples to reflect software applications rather than physical systems		The ATM example and Recycling Machine is used throughout (taken from RUP for small projects).  It is a software intensive system.  Changing the examples and ensuring consistency is a large effort.  Propose we stick with the ATM example.		Agree with Chris in the short term.		I agree with Chris				This should be addressed in future release (post 1.0) Defer.

		The test of the guideline doesn't wrap at the screen boundary, probably because of a table that's sized too large. Make the text wrap properly		Corrected Nov. 3, 2006.								Problem still exists in published site.  Review and correct.

		"use case (instance)" should be described as a goal with scenarios, not just as a collection of related scenarios		OK.  Will clarify.				Scenarios are not currently referred to, except by reference to the "Detail Use Cases and Scenarios" guideline				See comment on line 14.

		Parts of the explanation of the definition seem needlessly complex. This text should be simplified				Which parts are you referring to Jim?		yes				Simplify definition.

		This concept also describes a UC model (diagram). This should be moved or maintained in the Concept: UC Model and referenced from here, but only via the Guidelines attribute and not in the text (to maintain the integrity of the process)		OK		Agreed.		yes				Implement as proposed.

		The following sections explain usage, not concept, and should be moved to a guideline: How to Find Use cases, How Use Cases Evolve, Are all use cases described in detail?		Agreed.  They currently only reference existing guidelines anyway.		Agreed.		yes				Remove sections.

		The following sections provide information that is probably not useful to small agile times and should be removed:

		The scope of a use case						I think this is useful, even for small projects				Keep section but reduce the amount of text.

		How use cases are realized						this is useful , but far too detailed				Remove section

		A use case has many possible instances						Useful, but could possibly be simplified				Remove section

		Concurrency of use cases		Removed Nov. 3.

		Flow of events - style						Consistency of style is even more important on an agile project - developers don't have time to work out the implications of different approaches				Remove examples 1 -3.  Move example 4 to a separate element and reference it. Reference many available on use case style.

		Extension points										Remove.

		Use case diagrams (should be part of the UC model material)		Should be factored out into a contributing element.  I placed this last in the text of Nov. 3 to simplify this refactoring.								Remove from this concept.

		The remaining section should be ordered by relevance to the reader in the following order		Done Nov. 3.								Ok as is in Nov 3 version.

		Explanation

		UC Characteristics

		Name

		Brief description

		Flow of events - contents

		Flow of events - structure

		Remove references and descriptions to subflows		Sub-flows are useful for structuring the use case and for iteration planning (so the implementation can fit within an iteration).  The template also currently includes a section for subflows.  Not sure we want to eliminate the concept?				I agree with Chris				Simplify text and make link to work items clear (planning/tracking units).

		Remove the 2 items of sample text (provide full examples elsewhere)						ok				See line 26 comment.

		Concurrency of UC instances: remove the reference to UC modeling		Concurrency of UC instances has been removed already.								OK in Nov 3 versoin

		Provide 2 examples of well written use cases using different styles						ok				See line 26 comment.

		Move Flow of Events - example to a separate page and link to it		Agree.								See line 26 comment.

		Describe different styles of use cases		Guideline: Use Case Formats is referenced and covers this.				this would justify the removal of the "flow of events - style" section, provided that content was also incorporated. Similar arguments could be made for some of the other sections				Ok as is. No action.

		Basic outline

		Informally detailed

		Outline with plenty of bullet points

		Formally detailed

		others?

		Move this concept to the Intent subprocess for greater reusability		Not sure why this will provide greater re-useability.								Ok as is. No action.

		Reference the Collaboration principle		Where?								On going discussion on integrating principles and practices with the rest of the content.  See line 11.

		Supporting Requirements

		The concept should start with a description or definition of what a supporting requirement is		Agreed, it discusses categories of Supporting Requirements but does not define Supporting Requirements very well.  We could state that "Supporting requirements are requirements that address system quality attributes such as performance, scaleability, usability but do not add any capabilities to the product or system."  The Term Definition: Supporting Requirements should be updated to be consistent with this as well.		Agreed.		yes		agree		Define supporting requirements.

		Change "functionality requirements" to "functional requirements" to be consistent across OpenUP and conform to common verbage		OK		Agreed.		yes		agree		Implement as proposed.

		We need more information motivating why we should take the time to identify supporting requirements		The "Impact of Not Having" section of the Supporting Requirements Work Product is pretty clear on the motivation for having the artifact.		Agree with Chris		I agree with Chris, and would add that this might be better covered in the concept		agree		Impact of not having is sufficient.

		Move this concept to the Intent subprocess for greater reusability				Can you clarify why moving this would achieve greater re-usability?						Leave as is.

		Use Case Model

		Remove reference to packages as small teams will probably need need them		Not sure I agree.   Even a small team will likely work on applications with sufficient complexity to warrant packages.		Agree with Chris. Removing is a risk.		I agree with Chris				Reduce the amount of text on Use Case packages but keep section.

		Remove reference to the UC model being a navigation map as this can be confused with a hyperlinked image on an HTML page		OK.		Agreed.		yes				Remove text.

		We need to do a better job of making the distinction between a UC, UC model, and UC diagram. The model is the collection of use cases and UML diagrams (UC diagram, activitiy diagrams, etc)) that illustrate the relationships		Agree.		Agreed.		yes - this has caused problems on a recent customer project. In fact, it applies to pretty much all constructs, not just use cases.				Clarify distintion between UC, UC Model, UC diagram.

		Actors and use cases are already defined. Just reference them in the Basic Model Elements section		They are referenced.  I think the sections referencing the artifacts should be kept for completeness.		Agree with Chris		I guess they should be referenced here, but not defined here, otherwise we run the risk of inconsistency when (not if!!) one or the other is changed				Ok as is. No action.

		Communicates-associations should be described as part of the UC diagram they're not referenced elsewhere		The communicates association is a basic model element.  In accordance with the third comment above, I think we need to be clear on the distinction between a model element, a model, and a diagram.		Agree with Chris						OK as is. No action.

		Use a sotware application as the example rather than a physical machine		ATM and recycling machine are used consistently throughout.  It will be significant effort to create a new example and ensure it is used consistently.  Not sure there is enough value to justify this work.		Agree with Chris		I agree with Chris				Stick with ATM for now.

		We need more motivation as to why using a UC model will make a better system				I agree, though some of the benefits are more clearly described in the Purpose for the UC, as opposed to at the level of UC Model.		yes				Add motivation. (Since we decided to make the UC model a "core" artifact, we should justify this. Also add to impact of not having on artifact.).

		UC Diagram section - the purpose of actors is already defined elsewhere. Reference the artifact or concept about actors rather than re-explaining their purpose		This is an attempt to address the previous comment "motivation".								Remove redundant defintions.

		Remove the Advanced Modeling section as small teams will not use this. Describe only the <<include>> relationship						I don't agree. Small teams will frequently use "extends" at least				Keep Advanced section but simplify.

		Describe abstract use cases only in the context of <<include>> use cases (they can be abstract or concrete)						ok				Remove Concrete and Abstract section.

		Include Relationship between Use Cases.  Describe the <<include>> relationship from a concreate rather than abstract perspective so it's easier to understand. E.g. "Sometimes you want to re-use the same text or flow in two different use cases. The way to do this is with the <<include>> relationship..."						ok

		The explanation of <<include>> should be able to be significantly reduced in length						ok				Reduce the explanation of <<include>>

		Motivate the use of actor generalization as a way to simplify the diagram, not as a way to simplify user interactions.  It doesn't make the model clearer to generalize actors that are semantically distinct even though a single user may fill the role of both actors.  For example, a single person may fill 2 roles, Warehouse Clerk and Shipping Manager. He may update inventory as part of either role. But a Clerk is not a Manager, and vice- versa. Actor generalization should only be used when there's an "is-a" relationship. Otherwise it's less clear how the system is being used.		Need clarification.				I agree				Remove Actor Generalization section.

		Remove the "Extend relationship between use cases" section as it's unlikely to be used in small projects		Not sure that this will never be used on a small project.  Even a small project may have optional behavior that could be modeled using the extends relationship.				see above - it is very common to have common sub-tasks, for example				Remove <<extend>> relationship.

		Reference the Collaboration principle		Where?

		Requirements Attributes

		Remove examples from the brief description and focus on describing that attributes help manage the project		OK		Agreed.		agree				Implement at proposed.

		First paragraph of the main description should be written to define attributes as extra information or meta information about the requirement.  The existing paragraph is too vague and references an example that doesn't exist in OpenUP				Agreed.		agree				Re-work first paragraph.

		Indicate that attributes help team members answer questions (queries) about the state of the development project				Agreed.		agree				Re-work text.

		Drive the utility of attributes by providing examples of questions (queries) about the project, and showing the attributes necessary for those queries. How many requirements need to be completed in the current iteration? Attributes: Iteration,  Complete.  How many requirements is Charlie working on right now? Attributes: Assigned To, Iteration.				Agreed.		agree				Provide better examples.

		List recommended set of attributes for an OpenUP/Basic project. Note that these are correlated to the WIL. Remove other attributes listed in the concept as small projects will probably not use them: Iteration, Assigned To, Priority, Complete yes/no, 0 hours remaining = completed				Jim, are you suggestiong we removed the attributes that you listed there? I don’t agree. I think that even the smallest of projects will use, and gain value from those (in my view) necessary attributes.		agree, but who will define this list?				Update example attributes in line with WIL.

		Recommend that the attributes be tracked in the WIL				Requirements are only referenced in the WIL, and do not themselves exist in the WIL. As such storing requirements attributes in the WIL is not the correct thing to do.		What does it actually mean to say attributes are tracked in the WIL?				Better to leave this open at this point and let teams decide which attributes to use and how to capture them.

		This should be changed to a Guideline since there are prescriptions on how to use attributes				Ok.		ok				Keep as concept.

		Add definition to the glossary for "attribute"		OK		Ok, but attributes should not be exclusive to requirements.		ok				Add term definition.

		Traceability

		Description: Change "... is a term used to describe..." to "...describes..."		OK		Agreed.		ok				Implement as  proposed.

		Rewrite bullet points for clarity and simplicity:						agree				Simplify language.

		* Increases confidence that objectives will be met by permitting coverage analysis to ensure that everything agreed to has been done.

		* Allows the impact (cost, schedule, technical) of changes to be assessed before work begins.

		* Provides clarity on how the work contributes to the project as a whole.

		* Supports project tracking by assuring that requirements are implemented. For example, verifying that a design artifact and test exists for each requirement.

		It's unlikely a team will perform cost/benefit analysis based on traceability so that item was removed						the cost-bnenefit is not based on traceability, but it uses the results of traceability analysis				Remove bullet.

		Traceability guideline is needed A guideline is required to provide specific information on what should be traced in a small team. E.g., only high-priority or difficult requirements need to be traced.				Id be very careful about being too prescriptive here in terms of what 'needs' to be traced. There is an inherent overhead in establishing and maintaining traceability, but the benefits of doing so will vary from project to project. In general yes, larger projects will benefit more from greater levels of traceability, but small projects can also fail due to lack of sufficient traceability. I do not know what the answer is here.....just thoughts..		Dangerous! If you are going to limit what is traced, it is better to do it by tracing related groups, rather than sem-arbitrary subsets		I confess that in small projects  I never have done much more that implicit traceability (using the UC ID)		Leave as a concept.






_1226487585.xls
RM Guidelines

		Jim's comments on Guidelines		Chris S comments		Ana P comments		Discussion and Decisions from Dec 1 telecon

		Find and Outline Actors and Use Cases

		Provide examples of good UC names and descriptions		OK				Implement as proposed.

		Use an example of a software system rather than ATM hardware		The ATM (and recycling machine) are used consistently throughout OpenUP/Basic.  These are well known examples.  It would be a major effort to craft another example and insert it consistently throughout.  Not sure if the benefit outweighs the cost.  Recommend defer.				Defer.

		Outlining Use Cases: Remove the requirement of writing a brief description for each alternate flow		As you are identifying Alternative flows, I think it is a good idea to capture a brief description to remind you what the alternate flow addresses.  This will help when you get back to describing the alternate flow.		I agree with Jim		Implement as proposed.

		References to the UC model should be in a separate guideline that contributes to this guideline, and that is in the UC modeling package so it is disabled if modeling is not required		As we have decided to make the use case model a core OpenUP/Basic artifact I think this comment has been overtaken by events.				No action.

		Detail Use Cases and Scenarios

		Provide examples of well-written steps in a use case						Reference example.

		The guidance on writing sets of use cases versus individual use cases doesn't make it clear when to use one over the other.  For small projects we should only focus on writing individual use cases and remove the guidance for use case sets		I think both are important to minimize re-work.  Taking a breadth before depth approach accross the set of use cases permits one to identify and  prioritize use cases before committing effort to detailing individual use cases.  Similarly, before detailing every possible step of an alternate flow you should identify the most significant flows first so you can focus effort in the right place.				Add the motivation described in Chris S comment to guideline.

		Detail the Flow of Events in the Main Scenario

		Call this the Basic Flow for consistency		It was called the Basic Flow at one point but earlier reviews indicated that it should be renamed Main Scenario to be consistent with the task name and iteration planning guidance.				No change required.

		Provides specifics for how to start the use case, i.e. "The use case begins when..."						Reference example/concept.

		Provide specific examples of how to write the step of a use case - round-trip event of actor doing something, system performing some behavior, and system responding to the actor. Start with “the <<actor>> does this and that. Don’t have two actors act at the same time, separate steps. Prevent if statements, they indicate scenarios.		The example in the Guideline: Find and Actors and Use Cases addresses this (outline form).  Not sure we want to be to prescriptive in style.  Concept: Use Case gives some examples of style, perhaps that could be references.  Similarly, Guideline: Use Case Formats discusses the level of detail in use cases.				Reference example/concept.

		Remark that the basic flow is how the UC is normally expected to operate, and that all actions are assumed to be correct and return normal values		Concept: Use Case discusses the basic flow and alternative flows in the section Flow of Events - Structure.				No action.

		Identify Alternate Flows - the contents of this section should be moved to the Guideline: Find and Outline Actors and Use CAses		I'm not sure.  My thinking was that Find and Outline would capture the main scenario, only when detailing the use case would one identify and detail the alternate flows.  It could go either way.  Perhaps  this belongs in both, identify some alternate flows when identifying the use case and identify the rest when detailing the use case.				Ok move to Find and Outline. During detailing one may discover new alternate flows.

		This section [Identify Alternative Flows] should describe how to write an alternative flow		It is the same as any other flow, no?  What is special about it that should be described.				Add text describing entry and exit point and that the rest of the flow would detailed in the same manner as the Main Scenario.

		Remove the text on adding sub-flows to the use case as it's not something that small teams will put much effort into		Iteration planning makes (or at least it did at one point) use of sub-flows as a unit of work in some cases.  The template also has a section for identifying main sub-flows.				Keep the text.

		This section [Structure the Use Case] also needs to describe how to structure the use cases - it currenly only provides motivation		As noted below, the concept: Use Case is referenced and provides examples.  Perhaps the example in that concept should be factored out and referenced from both places.				Refence example and describe how to structure the use case.

		It looks like information from Concept: Use Case, the Flow of Evens - Structure section, should go here [Structure the Use Case] as that includes specific examples		See previous comment.				Move text from the concept to the guideline.

		Describe Special Requirements - we should provide a good format for writing a non-functional requirement here. E.g. a sentence of the form ProductName + "shall" + VisibleBehavior + "for" + Actor		The syntax of good requirements is described in the  guideline: Writing Good Requirements.  Perhaps that should be referenced.				Reference guideline: Writing Good Requirements.

		The definitions of these [Preconditions and Post-Conditions] contradict the definitions in Concept: Use Case. Keep the ones in Concept: Use Case and use this space to describe how to write good pre and post conditions.		I don't see any contradiction.  The Concept Use Case defines pre- and post-conditions as follows:
"A precondition is the state of the system and its surroundings that is required before the use case can be started. Post-Conditions are the states the system can be in after the use case has ended."

The Guideline: Detail Use Cases and Scenarios defines pre- and post-conditions as follows:
"A precondition on a use case explains the state that the system must be in for the use case to be able to start. Be careful in describing the system state. Avoid describing the detail of other, incidental activities that may already have taken place. 
A postcondition on a use case lists possible states that the system can be in at the end of the use case execution. The system must be in one of those states. A postcondition also states actions that the system performs at the end of the use case, regardless of what occurred in the use case. "				Make them consistent.

		Remove the last paragraph about not using pre/post conditions for ordering use cases - this information is incorrect		This is taken from RUP for small projects and I tend to agree.  In order to obtain a particular result of value, the actor shouldn't have to execute two use   cases.				Remove the last paragraph.

		This guideline needs to better illustrate the flow of the evolution of use cases. An activity diagram would be helpful.		I have been trying to avoid flowcharts, and activity diagrams.  Process consumers usually "tune-out" when they see one.				Provide an overview of evolution of the use case.

		Describe a technique for rapidly identifying and describing use cases.  E.g. a 2-hour timeboxed UC workshop. E.g. provide a set of questions where the answers can be assembled into use cases: What does user X want to do? What does the system need to prevent actors from doing? Name 10 things the system can do (functions that can help identify use cases), etc		I think the guideline: Requirements Gathering Techniques covers this.  There are also sample questions in the Guideline: Detail Use Cases and Scenarios and Guideline: Find and Outline Actors and Use Cases.  I think this is sufficient.  BTW I just noted that if we remove the artifact Actor, we may want to change the name of the guideline Find and Outliine Actors and Use Cases?				Comment applies to Requirements Gathering techniques.

		Effective Requirement Reviews

		The purpose of requirement reviews is not just for finding errors, it's also for eliciting requirements and coming to agreement on the meaning of requirements		I agree that coming to agreement is part of the review, however the guideline: Effective Requirements Reviews was not meant to be a guideline on eliciting requirements.  Obviously, they are iterative.

		Need to explain how to conduct informal reviews and what information should be obtained by the reviews		Previous reviews noted that the guideline had to much description of conducting formal reviews.  Which way do we want to go here?

		Point out that informal reviews are for information gathering, but small teams may make a significant number of decisions from informal reviews		I agree that small teams may make a significant number of decisions in informal review, but I disagree that informal reviews are for information gathering.

		Describe characteristics of an informal review where decisions are made E.g. everyone at the meeting verbally agrees.  Decisions are noted by updating the WIL or a change request		I don't think the guideline should describe task steps (like updating the WIL).

		In small teams, formal reviews should only be performed when the organization requires them, as decisions can be made in informal reviews		I guess the interpretation of "formal" can vary.  To me a formal review is one that is scheduled, executed, and closed-out by demonstrating all actions are completed.  As suggested in the guideline, major decision points such as LCO and optionally at LCA would likely be of this nature even on a small team as contractual (go/no-go) decisions will be made.

		Need more information on how to set up and complete formal reviews.		Previous reviews requested that this information be removed.  I'm happy to go either way, but let's pick one.

		It would be nice to give guidance to a small team on how to avoid formal reviews. E.g. Pre-agreements with management, E.g. formal reviews are only conducted on validated code		This guideline address requirements reviews (not code reviews).  Perhaps another guideline is required.  Not sure one can "pre-arrange" that you understand the requirements?

		Remove the recommendation for 2-tier reviews as the focus of OpenUP/Basic is informal reviews		I feel one formal requirement review, at LCO, is reasonable as the decision to continue or abondon the project relies upon consensus that should be clearly established.  I could be wrong.

		Remove golden rule #2, as all team members will probably be involved in most or all reviews		OK

		Reference the Collaboration principle

		Add rule or item stating that the action items identified in the review are acted upon. A follow-up strategy to assure the action items are completed should be in place before the review occurs.		This was the intent of Golden Rule #3.

		Requirements Gathering Techniques				I volunteer to write a guideline including some of the collabortative techniques for eliciting requirements

		[Sources of Requirements:] Point out that it's essential the stakeholders are involved with the requirements throughout the development cycle - if not, they're not doing OpenUP		The list of sources of requirements are the stakeholders.  Perhaps we should add a sentence to make this explicit.

		[Sources of Requirements:] Reference the Collaboration principle

		Remove techniques that will probably not be used by small teams: Send questionnaires, Conduct workshops		OK with removing questionaires, but I think workshops are consistent with small collaborative teams and should be kept.

		The Success Tip of "do it now..." is redundant		OK

		Interview Users should talk more about conversation and collaboration, as small teams will not be skilled in question/response scenarios: The interview is a place to ask them about the job they do, Ask to look over their shoulder when they're doing their work, Do it in an informal environment at first, such as lunch, Think of it as a chat rather than a formal interview, etc		OK

		Examine Suggestions and Problem Reports - reference items in the WIL that were not implemented from previous projects		OK

		Which Technique to Apply Provide a simple list of techniques, from most to least useful, for a small team doing mostly greenfield development. Small teams should have direct guidance on which techniques to use. The existing section assumes an analyst level of knowledge of requirements management.		Unfortunately I don't think there is a "most" or "least" useful technique.  At least I am not comfortable ranking them in this manner.

		Requirements Pitfalls

		There should be some motivation on why it's important to write good requirements and the benefits a small team will receive from writing requirements well

		It's not necessary to precede sentences with "Don't..." because the guideline is already a list of pitfalls

		A small team should have a shorter list of items to worry about or we risk them doing none of the items. Recommended items are: Ambiguity, Multiple requirements (work items). This items should have specific guidance on how to manage this in the WIL, Designing the System, Untestable Requirements

		Each item should have a simple motivation and a couple of examples of the poorly written requirement. Reducing explanations keeps the reader (probably a developer) interested and able to absorb the content

		Examples from the software domain rather than hardware domain should be used

		Supporting Requirements				If we accept the option raised by Per on bug 162634: use generic Requirement artifact that could be specialized in extensions to be the different types (Use Case, User Stories, non-functional requirements, etc.)... We will no longer have "supporting" requirements but: Usability, Reliability, Performance, Supportability, Interface Requirements, Business Rules,....

		Provide examples of well-written discrete requirements		The Guideline: Writing Good Requirements addresses this.  Perhaps it should be referenced.

		Brief Description - the guideline should be described as describing supporting requirements, rather than how to use the supporting requirements artifact		OK  will re-write.		Let me know if I can help

		Mention that not all supporting requirement types will be used, but they should be considered so nothing is missed		The sentence "Make sure that stakeholders understand the costs of their selections and do not end up wanting everything that is on the list." was intended to capture this caveat.  Will clarify.

		Usability - remove bullet points that define usability		I think they add value.  These are often the most poorly specified requirements.

		Reliability - remove reference to using errors per SLOC or FP as these measures can be unreliable and unlikely to be used by a small team				ok

		Remove the "(+)" next to the last 3 section headers as there's no indication what this means		These are the + in FURPS+.  Happy to remove them, or re-iterate the FURPS+ classification.		agree

		Remove the section on Interface Requirements. UI is already discussed earlier in the guideline. Interface constraints can be listed in the Constraints topic.		I don't think the UI was covered earlier (Usability was, but no the UI).  Interface Requirements are pretty important requirements, particularly in distributed applications.  I think they warrant a section.		Me too, sometimes stakeholders collaborate more easilly on this section than on use cases... I also have "small projects" for web services where interface requirements have an importante role

		Provide a few examples of business rules		OK		I can do it

		The guideline needs minor formatting corrections: Consistency with bullets and indenting, Consistency with white space between sections and paragraphs		OK		ok

		Use Case Formats

		This guideline should be removed. For small teams, we should provide one or two equally acceptable UC formats as templates. More detail is probably more than small teams want or need.		I think it adds value by demonstrating that not all use cases need be detailed to the same level.  Some are well understood (standard) and brief description is sufficient.  Others are risky and should be detailed more.  Even on a small team, a range of levels of detail is likely.

		Use Case Model

		The brief description doesn't seem right - what does it mean to "ensure consistency"? What we really want to do is describe how to use a UC model to help communicate and manage requirements		Agree.

		How The Use Case Model Evolves should include a description of how it evolves over phases		OK

		Inception - initial UC diagram, UC names and descriptions

		Elaboration - refined UC diagram, architecturally significant flows detailed (approx 20%)

		Construction - most of the remaining flows detailed in the appropriate iterations (95 - 100% detailed)

		Transition - trivial or rarely encountered flows detailed

		Avoiding Funcional Decomposition. Use "It's common for new users..." instead of "It's not uncommon..."		OK

		The Nonfunctional Requirements section should be removed as the material is described in other places in RM		I personally feel this ties the Supporting Requirements and Use Case model together well, but I am ok with removing it as well.

		The Structuring the Use Case Model section should be removed as it's not useful for small projects		Hmm...not sure about that.  I think even small teams will benefit from structuring the use case model.

		The section Relationship Between Actors and Use Cases should be removed as it's either covered in the concept or it references other material that should be removed		OK

		Add the following section: Using Time as an Actor. It often happens that a system function is initiated by the passage of time, such as 30-day billing or payroll cycles. In this case, create an actor called Time. This represents that time itself is initiating the use case. Don't think of the actor as the system clock. The system clock is just the implementation of how the system tracks the passage of time.		This is contentious and dangerous in my opinion.  I wasn't comfortable with the last bullet concerning time in the current guideline (which came from RUP for Small Projects) but forgot to remove it.  I would argue that there is always an initiating Actor, i.e.  the person who set the timer.  For the case that the timer is hard-coded, this would represent system behavior is not really a use case.  If you have a lot of "Time" actors in your model, you may have missed some real actors (Administrator, Scheduler, or some other Actor).  A timer does not derive an observable result of value from the system (so it's not an actor).  The person who set the timer, and the beneficiaries of the timed behavior are real actors.

		The section The Survey Description should be moved to the UC artifact element, or removed altogether		The survey description is a property of the UC Model, not any of the individual UCs.  I'm ok with removing it.

		Add the UC Model guidance to the Guidance section in the RM discipline in the tree browser		OK

		Writing Good Requirements

		Use an example from the software domain

		Provide a way of describing individual use case steps Recommend that they write UC steps as round- trip events (actor action, system action, system response).		There are specific guidelines for writing UCs.  This guideline is targeted at non-functional requirements.

		Other

		Assure all UC model elements in the tree browser are de-selectable for teams that don't want to use a model		Decision to include UC Model as a "core" artifact at the Nov 20 review makes this un-necessary.






