December 7, 2006 OpenUP RM Content Telecon (Part V)
1. Attendees:

Chris Sibbald
Jim Ruehlin

Ricardo Balduino

2. Agenda
· Review comments and feedback on RM Guidelines

· Review comments and feedback on RM Checklists

· Review comments and feedback on RM Templates

· Issues/Decisions
3. Review comments on RM Guidelines

We completed the review of the comments and feedback on RM Guidelines and captured decisions. See attached spreadsheet.

[image: image1.emf]RM Guidelines

One item that was defered is the Guideline: Effective Requirement Reviews. Chris proposes we remove the Guideline as it has been reviewed and updated in accordance with reviewer comments at least three times and we still don’t have consensus. It’s not worth it.
A few new comments were added during the review (in bold) and addressed.
Chris updated the relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162637)
4. Review comments on RM Checklists

We did not have time to address these. They will be addressed at the next RM content review.
The relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162638)
5. Review comments on RM Templates

We did not have time to address these. They will be addressed at the next RM content review.

The relevant Bugzilla entry (https://bugs.eclipse.org/bugs/show_bug.cgi?id=162641)
6. Issues/Decisions
See attached spreadsheet. Next call will be Monday December 11 at 9:00 am PST. Chris will send out notice to epf-dev and update yahoo calendar.
_1227011868.xls
RM Guidelines

		Jim's comments on Guidelines		Chris S comments		Ana P comments		Discussion and Decisions from Dec 1 telecon

		Find and Outline Actors and Use Cases

		Provide examples of good UC names and descriptions		OK				Implement as proposed.

		Use an example of a software system rather than ATM hardware		The ATM (and recycling machine) are used consistently throughout OpenUP/Basic. These are well known examples. It would be a major effort to craft another example and insert it consistently throughout. Not sure if the benefit outweighs the cost. Recommend defer.				Defer.

		Outlining Use Cases: Remove the requirement of writing a brief description for each alternate flow		As you are identifying Alternative flows, I think it is a good idea to capture a brief description to remind you what the alternate flow addresses. This will help when you get back to describing the alternate flow.		I agree with Jim		Implement as proposed.

		References to the UC model should be in a separate guideline that contributes to this guideline, and that is in the UC modeling package so it is disabled if modeling is not required		As we have decided to make the use case model a core OpenUP/Basic artifact I think this comment has been overtaken by events.				No action.

		Detail Use Cases and Scenarios

		Provide examples of well-written steps in a use case						Reference example.

		The guidance on writing sets of use cases versus individual use cases doesn't make it clear when to use one over the other. For small projects we should only focus on writing individual use cases and remove the guidance for use case sets		I think both are important to minimize re-work. Taking a breadth before depth approach accross the set of use cases permits one to identify and prioritize use cases before committing effort to detailing individual use cases. Similarly, before detailing every possible step of an alternate flow you should identify the most significant flows first so you can focus effort in the right place.				Add the motivation described in Chris S comment to guideline.

		Detail the Flow of Events in the Main Scenario

		Call this the Basic Flow for consistency		It was called the Basic Flow at one point but earlier reviews indicated that it should be renamed Main Scenario to be consistent with the task name and iteration planning guidance.				No change required.

		Provides specifics for how to start the use case, i.e. "The use case begins when..."						Reference example/concept.

		Provide specific examples of how to write the step of a use case - round-trip event of actor doing something, system performing some behavior, and system responding to the actor. Start with “the <<actor>> does this and that. Don’t have two actors act at the same time, separate steps. Prevent if statements, they indicate scenarios.		The example in the Guideline: Find and Actors and Use Cases addresses this (outline form). Not sure we want to be to prescriptive in style. Concept: Use Case gives some examples of style, perhaps that could be references. Similarly, Guideline: Use Case Formats discusses the level of detail in use cases.				Reference example/concept.

		Remark that the basic flow is how the UC is normally expected to operate, and that all actions are assumed to be correct and return normal values		Concept: Use Case discusses the basic flow and alternative flows in the section Flow of Events - Structure.				No action.

		Identify Alternate Flows - the contents of this section should be moved to the Guideline: Find and Outline Actors and Use CAses		I'm not sure. My thinking was that Find and Outline would capture the main scenario, only when detailing the use case would one identify and detail the alternate flows. It could go either way. Perhaps this belongs in both, identify some alternate flows when identifying the use case and identify the rest when detailing the use case.				Ok move to Find and Outline. During detailing one may discover new alternate flows.

		This section [Identify Alternative Flows] should describe how to write an alternative flow		It is the same as any other flow, no? What is special about it that should be described.				Add text describing entry and exit point and that the rest of the flow would detailed in the same manner as the Main Scenario.

		Remove the text on adding sub-flows to the use case as it's not something that small teams will put much effort into		Iteration planning makes (or at least it did at one point) use of sub-flows as a unit of work in some cases. The template also has a section for identifying main sub-flows.				Keep the text.

		This section [Structure the Use Case] also needs to describe how to structure the use cases - it currenly only provides motivation		As noted below, the concept: Use Case is referenced and provides examples. Perhaps the example in that concept should be factored out and referenced from both places.				Refence example and describe how to structure the use case.

		It looks like information from Concept: Use Case, the Flow of Evens - Structure section, should go here [Structure the Use Case] as that includes specific examples		See previous comment.				Move text from the concept to the guideline.

		Describe Special Requirements - we should provide a good format for writing a non-functional requirement here. E.g. a sentence of the form ProductName + "shall" + VisibleBehavior + "for" + Actor		The syntax of good requirements is described in the guideline: Writing Good Requirements. Perhaps that should be referenced.				Reference guideline: Writing Good Requirements.

		The definitions of these [Preconditions and Post-Conditions] contradict the definitions in Concept: Use Case. Keep the ones in Concept: Use Case and use this space to describe how to write good pre and post conditions.		I don't see any contradiction. The Concept Use Case defines pre- and post-conditions as follows:
"A precondition is the state of the system and its surroundings that is required before the use case can be started. Post-Conditions are the states the system can be in after the use case has ended."

The Guideline: Detail Use Cases and Scenarios defines pre- and post-conditions as follows:
"A precondition on a use case explains the state that the system must be in for the use case to be able to start. Be careful in describing the system state. Avoid describing the detail of other, incidental activities that may already have taken place.
A postcondition on a use case lists possible states that the system can be in at the end of the use case execution. The system must be in one of those states. A postcondition also states actions that the system performs at the end of the use case, regardless of what occurred in the use case. "				Make them consistent.

		Remove the last paragraph about not using pre/post conditions for ordering use cases - this information is incorrect		This is taken from RUP for small projects and I tend to agree. In order to obtain a particular result of value, the actor shouldn't have to execute two use cases.				Remove the last paragraph.

		This guideline needs to better illustrate the flow of the evolution of use cases. An activity diagram would be helpful.		I have been trying to avoid flowcharts, and activity diagrams. Process consumers usually "tune-out" when they see one.				Provide an overview of evolution of the use case.

		Describe a technique for rapidly identifying and describing use cases. E.g. a 2-hour timeboxed UC workshop. E.g. provide a set of questions where the answers can be assembled into use cases: What does user X want to do? What does the system need to prevent actors from doing? Name 10 things the system can do (functions that can help identify use cases), etc		I think the guideline: Requirements Gathering Techniques covers this. There are also sample questions in the Guideline: Detail Use Cases and Scenarios and Guideline: Find and Outline Actors and Use Cases. I think this is sufficient. BTW I just noted that if we remove the artifact Actor, we may want to change the name of the guideline Find and Outliine Actors and Use Cases?				Comment applies to Requirements Gathering techniques.

		Effective Requirement Reviews						Not much consensus on this guideline. Options include: make it a general guideline on conducting reviews, eliminate formal reviews, provide detailed guidance on conducting informal reviews, etc. Defer for now. This guideline has been reviewed and updated at least three times. I propose we remove it completely, it's not worth the effort.

		The purpose of requirement reviews is not just for finding errors, it's also for eliciting requirements and coming to agreement on the meaning of requirements		I agree that coming to agreement is part of the review, however the guideline: Effective Requirements Reviews was not meant to be a guideline on eliciting requirements. Obviously, they are iterative.				Add line that requriements gathering techniques could also be applied to discover new/changed requirements and reference guidleine on requirements gathering tech.

		Need to explain how to conduct informal reviews and what information should be obtained by the reviews		Previous reviews noted that the guideline had to much description of conducting formal reviews. Which way do we want to go here?				Put more guidance on how to conduct an informal review.

		Point out that informal reviews are for information gathering, but small teams may make a significant number of decisions from informal reviews		I agree that small teams may make a significant number of decisions in informal review, but I disagree that informal reviews are for information gathering.				See line 27.

		Describe characteristics of an informal review where decisions are made E.g. everyone at the meeting verbally agrees. Decisions are noted by updating the WIL or a change request		I don't think the guideline should describe task steps (like updating the WIL).

		In small teams, formal reviews should only be performed when the organization requires them, as decisions can be made in informal reviews		I guess the interpretation of "formal" can vary. To me a formal review is one that is scheduled, executed, and closed-out by demonstrating all actions are completed. As suggested in the guideline, major decision points such as LCO and optionally at LCA would likely be of this nature even on a small team as contractual (go/no-go) decisions will be made.

		Need more information on how to set up and complete formal reviews.		Previous reviews requested that this information be removed. I'm happy to go either way, but let's pick one.

		It would be nice to give guidance to a small team on how to avoid formal reviews. E.g. Pre-agreements with management, E.g. formal reviews are only conducted on validated code		This guideline address requirements reviews (not code reviews). Perhaps another guideline is required. Not sure one can "pre-arrange" that you understand the requirements?

		Remove the recommendation for 2-tier reviews as the focus of OpenUP/Basic is informal reviews		I feel one formal requirement review, at LCO, is reasonable as the decision to continue or abondon the project relies upon consensus that should be clearly established. I could be wrong.

		Remove golden rule #2, as all team members will probably be involved in most or all reviews		OK

		Reference the Collaboration principle

		Add rule or item stating that the action items identified in the review are acted upon. A follow-up strategy to assure the action items are completed should be in place before the review occurs.		This was the intent of Golden Rule #3.

		Requirements Gathering Techniques				I volunteer to write a guideline including some of the collabortative techniques for eliciting requirements

		[Sources of Requirements:] Point out that it's essential the stakeholders are involved with the requirements throughout the development cycle - if not, they're not doing OpenUP		The list of sources of requirements are the stakeholders. Perhaps we should add a sentence to make this explicit.				Make it explicit that these represent the stakeholders.

		[Sources of Requirements:] Reference the Collaboration principle						Defer, need to look at big picture of integrating principle and practices.

		Remove techniques that will probably not be used by small teams: Send questionnaires, Conduct workshops		OK with removing questionaires, but I think workshops are consistent with small collaborative teams and should be kept.				Remove questionaires and workshop.

		2nd paragraph of Requirements Gathering Techniques, replace "To get the requirements down on paper..." with "To capture requirements….".						Implement as proposed.

		Last paragraph or Requriements Gathering techniques, replace fix "…to get the requirements down…" with "…to capture requirements quickly…"						Implement as proposed.

		Shorten section on "Study Analagous systems".						Implement as proposed.

		The Success Tip of "do it now..." is redundant		OK				Implement as proposed.

		Interview Users should talk more about conversation and collaboration, as small teams will not be skilled in question/response scenarios: The interview is a place to ask them about the job they do, Ask to look over their shoulder when they're doing their work, Do it in an informal environment at first, such as lunch, Think of it as a chat rather than a formal interview, etc		OK				Implement as proposed.

		Examine Suggestions and Problem Reports - reference items in the WIL that were not implemented from previous projects		OK				Implement as proposed.

		Which Technique to Apply Provide a simple list of techniques, from most to least useful, for a small team doing mostly greenfield development. Small teams should have direct guidance on which techniques to use. The existing section assumes an analyst level of knowledge of requirements management.		Unfortunately I don't think there is a "most" or "least" useful technique. At least I am not comfortable ranking them in this manner.				Remove Which technique to apply section.

		Requirements Pitfalls

		There should be some motivation on why it's important to write good requirements and the benefits a small team will receive from writing requirements well						Add reference to Boehm's paper on the cost of errors across the lifecycle.

		It's not necessary to precede sentences with "Don't..." because the guideline is already a list of pitfalls						Reword bullets and section headings to be the name of the pitfall only.

		A small team should have a shorter list of items to worry about or we risk them doing none of the items. Recommended items are: Ambiguity, Multiple requirements (work items). This items should have specific guidance on how to manage this in the WIL, Designing the System, Untestable Requirements						Keep all items for now. Indent examples to separate from text. Shorten text of Ambuguity.

		Each item should have a simple motivation and a couple of examples of the poorly written requirement. Reducing explanations keeps the reader (probably a developer) interested and able to absorb the content						OK as is.

		Examples from the software domain rather than hardware domain should be used						Defer.

		Supporting Requirements				If we accept the option raised by Per on bug 162634: use generic Requirement artifact that could be specialized in extensions to be the different types (Use Case, User Stories, non-functional requirements, etc.)... We will no longer have "supporting" requirements but: Usability, Reliability, Performance, Supportability, Interface Requirements, Business Rules,....

		Provide examples of well-written discrete requirements		The Guideline: Writing Good Requirements addresses this. Perhaps it should be referenced.				Reference Writing Good Requirements.

		Brief Description - the guideline should be described as describing supporting requirements, rather than how to use the supporting requirements artifact		OK will re-write.		Let me know if I can help		Implement as proposed.

		Mention that not all supporting requirement types will be used, but they should be considered so nothing is missed		The sentence "Make sure that stakeholders understand the costs of their selections and do not end up wanting everything that is on the list." was intended to capture this caveat. Will clarify.				Add a sentence to clarify that not all types will apply to all systems.

		Usability - remove bullet points that define usability		I think they add value. These are often the most poorly specified requirements.				In general, reduce text for each type of requirements to 3 -4 sentences and remove bullets.

		Reliability - remove reference to using errors per SLOC or FP as these measures can be unreliable and unlikely to be used by a small team				ok		Implement as proposed.

		Remove the "(+)" next to the last 3 section headers as there's no indication what this means		These are the + in FURPS+. Happy to remove them, or re-iterate the FURPS+ classification.		agree		Remove +.

		Remove the section on Interface Requirements. UI is already discussed earlier in the guideline. Interface constraints can be listed in the Constraints topic.		I don't think the UI was covered earlier (Usability was, but no the UI). Interface Requirements are pretty important requirements, particularly in distributed applications. I think they warrant a section.		Me too, sometimes stakeholders collaborate more easilly on this section than on use cases... I also have "small projects" for web services where interface requirements have an importante role		Capture Interface (UI and external interface) under constraints section and simplify.

		Provide a few examples of business rules		OK		I can do it		Add examples of business rules.

		The guideline needs minor formatting corrections: Consistency with bullets and indenting, Consistency with white space between sections and paragraphs		OK		ok		Will be addresses.

		Use Case Formats

		This guideline should be removed. For small teams, we should provide one or two equally acceptable UC formats as templates. More detail is probably more than small teams want or need.		I think it adds value by demonstrating that not all use cases need be detailed to the same level. Some are well understood (standard) and brief description is sufficient. Others are risky and should be detailed more. Even on a small team, a range of levels of detail is likely.				Simplify the description of the four levels of detail and when each would be used.

		Use Case Model						Add guideline to Requriements Discipline references.

		The brief description doesn't seem right - what does it mean to "ensure consistency"? What we really want to do is describe how to use a UC model to help communicate and manage requirements		Agree.				re-write brief description.

		How The Use Case Model Evolves should include a description of how it evolves over phases		OK				Implement as proposed.

		Inception - initial UC diagram, UC names and descriptions

		Elaboration - refined UC diagram, architecturally significant flows detailed (approx 20%)

		Construction - most of the remaining flows detailed in the appropriate iterations (95 - 100% detailed)

		Transition - trivial or rarely encountered flows detailed

		Avoiding Funcional Decomposition. Use "It's common for new users..." instead of "It's not uncommon..."		OK				Implement as proposed.

		The Nonfunctional Requirements section should be removed as the material is described in other places in RM		I personally feel this ties the Supporting Requirements and Use Case model together well, but I am ok with removing it as well.				Remove section.

		The Structuring the Use Case Model section should be removed as it's not useful for small projects		Hmm...not sure about that. I think even small teams will benefit from structuring the use case model.				Remove section.

		The section Relationship Between Actors and Use Cases should be removed as it's either covered in the concept or it references other material that should be removed		OK				Remove section.

		Add the following section: Using Time as an Actor. It often happens that a system function is initiated by the passage of time, such as 30-day billing or payroll cycles. In this case, create an actor called Time. This represents that time itself is initiating the use case. Don't think of the actor as the system clock. The system clock is just the implementation of how the system tracks the passage of time.		This is contentious and dangerous in my opinion. I wasn't comfortable with the last bullet concerning time in the current guideline (which came from RUP for Small Projects) but forgot to remove it. I would argue that there is always an initiating Actor, i.e. the person who set the timer. For the case that the timer is hard-coded, this would represent system behavior is not really a use case. If you have a lot of "Time" actors in your model, you may have missed some real actors (Administrator, Scheduler, or some other Actor). A timer does not derive an observable result of value from the system (so it's not an actor). The person who set the timer, and the beneficiaries of the timed behavior are real actors.				Introduce the notion of time as an actor with the appropriate caveats.

		The section The Survey Description should be moved to the UC artifact element, or removed altogether		The survey description is a property of the UC Model, not any of the individual UCs. I'm ok with removing it.				Move to Main description of UC-Model artifact.

		Add the UC Model guidance to the Guidance section in the RM discipline in the tree browser		OK				OK

		Writing Good Requirements

		Use an example from the software domain						defer

		Provide a way of describing individual use case steps Recommend that they write UC steps as round- trip events (actor action, system action, system response).		There are specific guidelines for writing UCs. This guideline is targeted at non-functional requirements.				Leave as is. No action.

		Other

		Assure all UC model elements in the tree browser are de-selectable for teams that don't want to use a model		Decision to include UC Model as a "core" artifact at the Nov 20 review makes this un-necessary.				Overtaken by events.

