	Task: Design the Solution

	

	[image: image1.png]




	[image: image2.png]



	Identify the elements and devise the interactions, behavior, relations, and data necessary to support some functionality.

Discipline:  Analysis & Design


	Purpose

The purpose of this task is to describe the elements of the system so that they support the required behavior, are of high quality, and fit within the architecture. 

Relationships

Roles

Primary Performer: 

· Developer 

Additional Performers: 

· Architect 

Inputs

Mandatory: 

· Supporting Requirements 

· Architecture 

· Use Case 

Optional: 

· Design 

Outputs

· Design 

Main Description

This task is about designing part of the system, not the whole system.  It can also design from just one context. 

This task should be applied to design based upon some small subset of requirements.  The requirements driving the design could be scenario-based functional requirements, some non-functional requirement, or a combination.  When applying the task to ensure that a design is being created that supports the requirements, some scenario walkthrough will be necessary. 

This task can be applied in some specific context such as the database access elements required for some scenario.  In this case the task might be applied another time to deal with a different context on the same requirements.  Keep in mind that to actually build some functionality of value to the users in one iteration, all contexts will typically need to be designed and implemented. 

If this task is being performed on an architecturally significant element, the results can represent additions to the architecture.  Such designs should be harvested and put in the architecture. 

Steps

Understand requirement details

Capture additional information needed in order to understand the required internal behavior of the system or subsystem that might be missing from source specification (for example, the use-case description, user story, or other description of how the solution should behave). In this step, one doesn't define the elements within the system that are responsible for performing that behavior, just a clear definition of what needs to be done. 

Take into consideration the context of the design activity being performed on the scenario.  For example, the scenario might be examined from a particular perspective such as how it supports some non-functional requirement or from a design context such as client-to-server transactions occurring across the scenario. 

Identify design elements

Identify the elements that collaborate together to provide the required behavior.  This can start with the key abstractions identified in the architecture, domain analysis, and classical analysis of the requirements to derive the elements that would be required to fullfill them. 

Existing elements of the design should be examined to see if they should participate in the collaboration.  It is a mistake to be creating all new elements in each execution of this task. 

This list of candidates must be expanded to include special-purpose participants that handle particular roles in providing the required behavior.  The Entity-Control-Boundary Pattern provides a good start for identifying elements.  

Determine how elements collaborate to realize the scenario

Walk through the scenario distributing responsibilities to the participating elements.  These responsibilities will be simple statements of behavior assigned to elements; they need not be detailed operation specifications with parameters, etc.  This step is about ensuring that a quality model is being created that is robust enough to support the requirements. 

Identify the required relationships between the elements based on the walkthrough of the scenario examining how the elements initiate each other's behavior.  As with the responsibilities, these relationships can just be defined at this step. 

Look to the architecture and previous design work to create a consistent collaboration.  Look to reuse existing behavior and relations or to apply similar structure to simplify the design of the overall system. 

Additional elements might be identified as behavior is found that cannot appropriately be assigned to any of the existing elements. 

Refine design decisions

Refine the design to an appropriate level of detail to drive implementation and to ensure that it fits into the architecture.  In this step the design can take into consideration the actual implementation language. 

In particular make decisions in regard to 

· specific details of relationships between the elements 

· operation detail 

· existence and detail of data attributes necessary 

· usage of inheritance and interfaces to improve the design 

Incorporate design and implementation mechanisms from the architecture. Apply consistent structure of the elements and organization of the behavior as in other areas of the design and use patterns identified in the architecture. 

Evaluate the design for coupling, cohesion, and other quality design measurements. 

Collaborate with the architect to ensure applicability in the architecture and apply Concept: Refactoring to improve the design of existing elements. 

Design internals (for large or complex elements)

Design large or complex elements or complex internal behavior in more detail. 

Based on all the expectations of an element, additional attributes, operations, and relationships can be added to support the requirements.  The state of the element managed over the course of its lifetime could be designed to ensure proper behavior in various usages. 

Having distributed the responsibilities to the elements, the internal behavior of the element can be designed.  This might just involve devising an algorithm that could be performed to produce the desired behavior.  This could involve another whole pass through this task where the scenario under consideration is one behavior element of an element that requires significant design consideration. 

Communicate the design

Identify who needs to understand the design and ensure that the design is communicated to them. 

Examples of individuals that will need to understand the design are: 

· an architect who can review the design to ensure that it conforms to the architecture or who might examine the design for opportunities to improve the architecture 

· other designers who can examine the design for applicability to other parts of the system 

· developers or other designers who will be working on other parts of the system that will depend on the elements designed in this task 

· developers who will implement a solution based on the design 

· other reviewers who will review the design for quality and adherence to standards 

More Information

Concepts

· Design and Implementation Mechanisms 

· Entity-Control-Boundary Pattern 

Guidelines

· Refactoring 




	Artifact: Design
	

	[image: image3.png]




	[image: image4.png]



	This artifact describes the realization of required system functionality in terms of components and serves as an abstraction of the source code.

Domain:  Development 
Work Product Kinds:  Solution



Purpose

	The purpose of this work product is to describe aspects of the components of the system in such a way that it can be examined and understood in ways not possible by reading the source code. 

These aspects include details of the specific components such as data attributes and responsibilities, states the components could be in, relationships amongst the components, and depictions of collaborations of the components to support system functionality. 


Relationships

	Roles
	Responsible: 

· Developer 
	Modified By: 

· Developer 

· Architect 

	Tasks
	Input To: 

· Refine the Architecture 

· Implement the Solution 

· Design the Solution 

· Define the Architecture 

· Implement Developer Tests 
	Output From: 

· Design the Solution 

· Define the Architecture 

· Refine the Architecture 


Tailoring

	Representation Options
	It is important that the author of the this work product be able to reason about and communicate key decisions of the structure of the system and the behavior of the system to other collaborators.  It is also important that these decisions can be communicated at various levels of granularity.  Whether these decisions be captured on a white board or using a formal tool is not enforced by this process. 

Accepting that the architecture is a long-lived work product that will explain essential aspects of the design, this work product can be considered more of an informal result of the task of designing rather than a formal artifact. 


More Information

	Checklists
	· Design 

	Guidelines
	· Design 


	Guideline: Design
	

	[image: image5.png]




	[image: image6.png]



	This guideline describes how to represent design.




Relationships

	Related Elements
	· Design 


Main Description

	The design represents the behavior and structure of the system at various levels of abstraction – most notably not solely at the code level of abstraction.  This will help the designer reason as to the quality of the design and its support for the required behavior. 

Identification of Elements 

Identify the elements based on needs of the design. 

The identification of elements can stem from a static perspective of walking through the requirements and identifying elements clearly called out, a form of domain modeling.  It can pull in other elements identified as being in the application domain or deemed necessary from examining the requirements for the portion of the system being designed.  This can also pull from key abstractions identified while defining the architecture. 

The identification of elements should apply a dynamic perspective by walking through scenarios of usage of the system (or subsystem) identifying elements needed to support the behavior.  That behavior might be a scenario of usage from an external user perspective or, while designing a subsystem, a responsibility assigned to the subsystem that has complex algorithmic behavior. Consider applying the Entity-Control-Boundary Pattern or other patterns identified in the architecture. 

Include elements representing events and signals that allow us to describe the asynchronous triggers of behavior to which the system must respond.  Events are specifications of interesting occurrences in time and space that usually (if they are noteworthy) require some response from the system.  Signals represent asynchronous mechanisms used to communicate certain types of events within the system. 

If there are existing elements from previous passes over the design or from selected frameworks or other reusable elements, those should be taken into consideration in this identification process. 

Having identified the elements, each should have a meaningful name and a description should be understood so that those that work together to refine the design and implement from it understand the role the element will play. 

Based on the above, this identification of elements could be applied a number of times in designing just one part of the system.  While there is no one correct strategy for multiple passes, they could be done at a coarse-grained level and then a fine-grained level or at an analysis level and then a design level. 

Behavior of Elements 

To identify the behavior of the elements, walk through scenarios assigning behavior to the appropriate collaborating participant.  If a particular usage of the system or subsystem can have multiple possible outcomes or variant sequences, cover enough scenarios to ensure that the design is robust enough to support the necessary possibilities. 

When assigning behavior to elements, consider applying the Entity-Control-Boundary Pattern or other patterns identified in the architecture. 

Behavior can be represented as a simple statement of responsibility or it can be a detailed operation specification.  Use the appropriate level of detail to communicate important design decisions while giving the freedom to make appropriate implementation decisions as those tasks ensue. 

Behavior must be understood as a responsibility on an element, and as an interaction between two elements in the context of some broader behavior of the system or subsystem.  The latter part of this will lead the developer to identify relationships needed between the elements. 

Avoid too much identification of behavior from the perspective of domain modeling.  In the real world there is a great deal going on that need not be implemented in a system to provide value to the stakeholders.  Only include behavior that is really needed, behavior identified by walking through required scenarios of system usage. 

Design Element Relationships 

The relationships between the elements necessary for the behavior must be designed.  This can simply be the identification of the ability to traverse from one element to another or a need to manage an association between the elements. 

More detailed design can be performed on the relationships as appropriate.  This can include optionality, multiplicity, whether the relationship is a simple dependency or managed association, etc. 

As with the behavior discussion above, avoid defining too many relationships based on relationships in the application domain.  Only include the relationships that are really needed based on the requirements.  On the other hand, a combination of requirements knowledge and domain knowledge can lead to some detailed decisions on the relationships such as optionality and multiplicity. 

Refine Design 

Having identified a design including a set of collaborating elements with the behavior and relationships robust enough to handle the requirements under consideration, the design can be improved through refinement. 

Operations can be detailed at a lower level that drives the actual implementation or that detail might be left to be handled when actually implementing the solution. Decide the visibility of the operation. 

Data attributes can be identified based on information needed to support behavior or based on additional requirements such as information to be presented to the user or transmitted to another system.  Avoid indiscriminate domain analysis; there might be a great deal of data in the domain that is not needed to support the requirements.  Data attributes can simply be identified or they can be designed in detail with attribute types, initial values, and constraints. Decide the visibility of the data attribute; operations to access and update the data can be added or those can be deferred to implementation. 

Generalization and interfaces can be applied to simplify or otherwise improve the design.  Ensure that the usage of these techniques actually improves the design rather than muddling it with complexity.  For example, common behavior can be factored into a parent class via generalization or out to a helper class via delegation; the latter solution can be more understandable and maintainable. 

The refinement of any portion of the design could include another pass through the design process.  One might find that what was initially identified as a single behavior on an element warrants a detailed walkthrough of the collaborating elements to realize that behavior.  Any relationship might lead to the design of "how did element A get access to an instance of element B?" 

Ensure the design supports the non-functional requirements. 

When updating an existing design – especially one that has had portions already implemented – apply Refactoring to ensure that the improved design continues to perform as expected. 

Organization of Elements (package-level) 

In a design of any notable size, the elements must be organized into packages.  Assign the elements to existing or new packages and ensure that the visibility relationships between the packages support the navigability required between the elements.  Decide whether each element should be visible to elements outside its package. 

When structuring the design into packages, consider Layering and other patterns.  Though all design work must conform to existing architectural decisions, the allocation of elements to packages and possible updates to package visibility is an area of significant architectural concern.  The developer should collaborate with the architect to ensure that package-level decisions are in accordance with the rest of the architecture. 

Reviewing the Design 

As an problem-solving activity with a range parts and perspectives, design is best done collaboratively.  There should be a constant level of review to ensure that the decisions make sense within the area being designed and in the design of the system overall.  There also might be occasions where the review of some area of design is reviewed by a set of interested or knowledgeable parties such as the architect who will verify that the design conforms to some architectural decision or a developer who will be expected to implement from the design.  

The design should be examined to ensure that it follows heuristics of quality design such as loose coupling and high cohesion.  Responsibilities should be appropriately distributed to elements such that there are no elements with too much responsibility and no elements are left without any responsibilities.  The design should be able to clearly communicate the design decisions while not delving into concerns best dealt with during implementation of code. 

Ensure the design follows any project-specific guidelines and conforms to the architecture. 

Modifications to the design to improve it based on issues identified in reviewing it, should apply Refactoring to ensure that the design and any existing implementation of the design continues to fulfill its responsibilities in the improved form. 

Additional Notes 

Elements can be designed at various levels of granularity and at various levels of abstraction from the implementation.  It can be advantageous to design a set of coarse-grained elements that can support the system at a high level before designing finer-grained elements within.  It can be advantageous to design at a high-level of abstraction (i.e. an analysis level) with minimal regard for the implementation issues before dropping down to ensure applicability in the implementation environment. 

This guideline first talks about the identification and design of the elements and then about organizing the elements into packages.  This is not a strict order of events.  There is nothing wrong with identifying a package structure for the system and then populating that structure with identified elements as long as the actual elements identified are allowed to influence the resulting package structure. 

This guideline remarks on conforming to the architecture in various ways; it is written as though one is designing within a pre-existing architecture.  Though projects will often have pre-existing architectures available, a particular architecture is the result of design activities.  Therefore, in addition to discussing conformance to some existing architecture, one must also consider the creation of the architecture and updates and improvements to the architecture based on the work of design.  The discussion of architecture's impact on design is here; design's impact on the architecture is discussed elsewhere with other architecture concerns. 


