OpenUP Basic Test Vision (2-4 people project)
The goals (philosophy) for the test discipline in OpenUP Basic are:

1. Provide an agile/minimal/scalable/complete test approach that embodies minimal documentation/single sourcing information/etc. (harvest agile techniques that are proven to work, rather than supporting an agile test environment);
2. Ensure integration of testing with other disciplines
3. Support test first development approach
4. Support for incremental adoption of test disc (“I’m only interested in developer testing” or “I just want to do use-case driven testing.”, etc)
5. Adaptive or context driven testing
In addition, we want to preserve the current dominant philosophy around testing, namely, “test early, test often”, testing in an iterative context, and “just enough testing” (sometimes referred to as the good enough principle).
Based on a reading of the principles and associated practices of OpenUP Basic, here’s a list relating these to testing (we may want to create a “roadmap” around this for clarity of the test discipline):

· Principle: Balance competing priorities to maximize stakeholder value of which relevant generic practices include:

· Use scenarios and use cases to capture requirements -- use-case driven testing; scenario based testing;
· Establish and maintain agreement on priorities -- rapid confirmatory acceptance testing (I’m working on this); WIL driven testing (see below)
· Know when to stop – follow “good enough” testing principle; use WIL and architecture to establish test targets;
· Principle: Collaborate to align interests and share understanding of which relevant generic practices include:

· Maintain a common understanding -- through WIL driven testing (see below); Agile Testability (investigative testing);
· Principle: Evolve to continuously obtain feedback and improve of which relevant generic practices include:

· Measure progress objectively -- Testing as the “objective” reviewer of iterations needs greater visibility in OpenUP Basic; test should be a major player here; agile test metrics
· Continuously re-evaluate what you do – Rapid Confirmatory Acceptance Testing; Automated Acceptance Testing;
· Principle: Focus on articulating the architecture of which relevant generic practices include:

· Reuse existing assets -- Agile Test Automation test assets reuse through test automation,

· Leverage architecture as collaborative tool – use the architecture to strengthen development / testing collaboration (resulting in greater testability); Agile Testability (investigative testing) (see below)
Not saying we have to use this, but it would allow us to related the testing disc vision to OpenUP Basic’s current principles and associated practices.

From which we define the following test practices and associated techniques:

· Use-case driven testing (with the following techniques):
· Scenario Path maps
· Flow Step Labeling tables

· Activity Diagramming

· Rapid Confirmatory Acceptance Testing (with the following techniques):
· Sidelining

· Live documents

· WIL based collaboration techniques

· WIL Driven Testing (with the following techniques):
· Confirmatory testing techniques
· Agile Estimation techniques

· WIL to support adaptive testing

· Project Measurement thru Agile Test Metrics
· Agile Test Automation (acceptance test automation, test suite automation, automated test case creation, automated regression testing, etc.)
· Investigative Testing (agile testability)
Bottom line, what we need with OpenUP Basic Test:

· Clear interfaces to other disciplines (namely, requirements, change management, implementation, and project management)
· The issue of levels of testing needs to be addressed.
A problem with OpenUP Basic test discipline is that it doesn’t relate black-box with white-box testing. To solve this problem, I recommend at a minimum that we create a coherent story around test intent, test solution, and test management…
· Clarity across the test lifecycle (no need for extreme formalism here, but we need some process patterns that support these types of testing through the lifecycle (The “Validate Build” just doesn’t cut it. We need process patterns that support test intent, test solution, developer testing, etc):
Behavioral testing-------------------Structural Testing------------------------Acceptance Testing

Also, I played with Scott’s idea of investigative/confirmatory with this test spectrum.

	Behavioral testing (intent)
	Structural Testing (solution)
	Acceptance Testing (solution/management)

	Investigative (scenario testing)
	Confirmatory (unit level)
	Confirmatory testing (intent verification)

	Investigative (documentation (spec based)

	
	Investigative (user)

	Investigative (exploratory)
	Investigative (exploratory)
	

	
	
	

	
	
	

.

