

SPEM 2.0 RFP ad/2004-11-04: Revised Submission

Software Process Engineering Meta-Model 2.0
OMG Draft Adopted Specification

ad/2006-06-01

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 2 of 85

Copyright © 2005-2006 Borland Software Corporation

Copyright © 2005-2006 Microsoft Corporation

Copyright © 2005-2006 Osellus Inc.

Copyright © 2005-2006 Sun Microsystems

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change

without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed

to have infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this specification. This limited permission automatically terminates without notice if

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO

THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 3 of 85

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph

(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as

specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.

12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners

are as indicated above and may be contacted through the Object Management Group, 250 First Avenue, Needham,

MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®,

XMI® and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management

Group™, CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a

Changing World™, CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™,

Middleware That's Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™,

CWM™, The CWM Logo™, Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG

Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are trademarks of the Object Management

Group. All other products or company names mentioned are used for identification purposes only, and may be

trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these

materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software

satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 4 of 85

Table of Contents

Software Process Engineering Meta-Model 2.0 1

OMG Draft Adopted Specification 1

ad/2006-06-01 1

1 Scope 8

2 Conformance 8

3 Normative References 8

4 Terms and Definitions 8

5 Symbols 9

6 Additional Information 10

6.1 Changes to Adopted OMG Specifications 10
6.2 Key New Capabilities of SPEM 2.0 10

6.2.1 Reusable process elements definition and usage in software development processes 10
6.2.2 Easy creation and maintenance of enactable development process workflows 11
6.2.3 Extensible process components for rapid process assembly 13
6.2.4 Support for different lifecycle models 13
6.2.5 Support for Enactment 14

6.3 Architecture Alignment and MDA Support 14
6.4 How to Read this Specification 18
6.5 Acknowledgements 19

7 Package Structure 20

8 Process Modeling 22

8.1 Process Element 23
8.2 Category 24
8.3 Category Kind 25
8.4 Guidance 26
8.5 Guidance Kind 26
8.6 Metric 27
8.7 Breakdown Element 27
8.8 Work Product 30
8.9 WorkProduct Kind 31
8.10 Responsible Role Map 32
8.11 Responsible Role Kind 32
8.12 State Machine 33
8.13 Tool 33
8.14 Role 34
8.15 Role Kind 35
8.16 Team 36

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 5 of 85

8.17 Qualification 36
8.18 Qualification Kind 37
8.19 Work Breakdown Element 37
8.20 Work Breakdown Element Kind 38
8.21 Performer Role Map 39
8.22 Performer Role Kind 40
8.23 Work Breakdown Parameter 40
8.24 Parameter Direction Type 41
8.25 Optionality Type 42
8.26 Phase 42
8.27 Iteration 43
8.28 Activity 44
8.29 Step 45
8.30 Execution Type 46
8.31 Process Package 46
8.32 Process Component 48
8.33 Work Product Port 53
8.34 WorkProduct Port Connector 53
8.35 Process 54
8.36 Breakdown Element Use 54
8.37 Work Product Use 58
8.38 Responsible Role Map Use 59
8.39 Role Use 60
8.40 Work Breakdown Element Use 61
8.41 Work Sequence 62
8.42 Work Sequence Type 63
8.43 Performer Role Map Use 64
8.44 Work Breakdown Parameter Use 64
8.45 Phase Use 64
8.46 Iteration Use 65
8.47 Activity Use 66
8.48 Process Component Use 67

9 Process Enactment 69

9.1 Work Breakdown Element Use 72
9.2 Task 73
9.3 Breakdown Element Use 73
9.4 Work Item 74
9.5 Work Item Kind 75
9.6 Work Product Use 75
9.7 State 75
9.8 Participant 76
9.9 Work Breakdown Element Use Assignment 76

10 Using SPEM 2.0 as a UML 2.0 Superstructure Profile 77

Appendices 78

Appendix A Migrating SPEM 1.1 Models to SPEM 2.0 79

Appendix B SPEM 2.0 UML 2.0 Profile Summary 81

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 6 of 85

Appendix C Process Diagrams for SPEM 2.0 82

Appendix D Standard Guidance Kinds and Category Kinds 83

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 7 of 85

Table of Figures
Figure 1 Process Elements from Macroscope..10
Figure 2 Specialization of base process elements..11
Figure 3 Usage instances application in enactable development processes...12
Figure 4 Easy maintenance of development processes..13
Figure 5 Three processes with different lifecycle models ...14
Figure 6 Model Layers for UML and SPEM 2.0 ...15
Figure 7 Exemplary instantiations of the modeling layers ..17
Figure 8 SPEM 2.0 reuses the UML 2.0 Infrastructure and Diagram Interchange standards......................................20
Figure 9 Structure of the SPEM 2.0 Meta-Model..20
Figure 10 Taxonomy of classes defined in Process Modeling...22
Figure 11 Base Process Elements ..23
Figure 12 RUP example for categories and categorized process elements..25
Figure 13 Breakdown Element Definition View ...29
Figure 14 Consolidated View ..29
Figure 15 WorkProduct taxonomy ..30
Figure 16 WorkProduct composition example ...31
Figure 17 Role taxonomy ..34
Figure 18 General Element Taxonomy..41
Figure 19 Activity taxonomy and key relationships ..44
Figure 20 Activity with related content elements represented using the UML 2.0 SPEM 2.0 Profile.45
Figure 21 Process Package structure ...47
Figure 22 Process Component categories and guidance association ...49
Figure 23 Process Component extension..50
Figure 24 Definition View...51
Figure 25 Consolidated Workflow View for Specific Process Component...51
Figure 26 Definition View...52
Figure 27 Consolidated View ..52
Figure 28 Use Elements...55
Figure 29 Key relationships of Breakdown ...56
Figure 30 Breakdown Element Use structure ..57
Figure 31 Optional work breakdown elements..58
Figure 32 Macroscope example showing work product impact dependencies ..59
Figure 33 Process Component Use..68
Figure 34 Task Activity Use..70
Figure 35 Work Item Breakdown Element Use...71
Figure 36 Participant Assignments ..71

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 8 of 85

1 Scope

The purpose of this document is to provide a comprehensive definition of the Software Process Engineering Meta-

Model 2.0 (hereafter “SPEM 2.0”, “Standard” or “Specification”). It serves as a guide for understanding the

semantics of this meta-model as well its direct application in all software process modeling and enactment activities.

SPEM 2.0 is a metamodel for defining and enacting processes and their components. A tool based on SPEM would

be a tool for process authoring, customizing and enacting. This Specification aims to define the minimal set of

process modeling elements necessary to describe any software development process. The Standard aims to

accommodate a broad range of existing and described software development processes by avoiding complex and

unnecessary features or constraints.

SPEM 2.0 incorporates significant feedback from early adopters of SPEM 1.1 and responds to different

methodologies and process modeling approaches. It separates the definition of definable process elements from their

usage and extension in process workflows. This concept was ambiguous in SPEM 1.1 and was being interpreted

differently by early SPEM 1.1 adopters. This SPEM 2.0 reuse pattern is also applied to process components

fostering easier management and reuse of families of processes. The process refinement and tailoring mechanisms

provided in this Specification enable process engineers to utilize best practices across a variety of lifecycle models

and methodologies. Process enactment is now within the scope of SPEM 2.0. The meta-model supports a

progressive definition of enactable process models offering the choices of content heavy processes, enactable

processes or a combination of both. These, in effect, constitute logical compliance levels towards process enactment,

offering SPEM 2.0 adopters an unambiguous and staged adoption path.

2 Conformance

This Specification defines the following two conformance levels. A SPEM 2.0 implementation must support at least

one of these conformance levels. The levels are defined by the implementation and compliance of the two main

packages defined for the SPEM 2.0 Meta-Model.

• Level 1 Conformance: Must implement the ‘Process Modeling’ package only.

• Level 2 Conformance: Must implement Level 1 Conformance and implement the ‘Process Enactment’

package.

3 References

The following normative documents contain provisions which, through reference in this text, constitute provisions

of this Specification. For dated references, subsequent amendments to or revisions of any of these publications do

not apply.

[MOF 2.0] OMG, Meta-Object Facility Version 2.0, www.omg.org/mof.

[SPEM 1.1] OMG, Software Process Engineering Metamodel Specification, Version 1.1, January 2005,

www.omg.org.

[UML 2.0] OMG, Unified Modeling Language Version 2.0, www.omg.org/uml, 2005.

The authors of this document would also like to acknowledge the Software Process Engineering Meta-Model 2.0

Revised Submission ad/06-04-05 (http://www.omg.org/cgi-bin/doc?ad/06-04-05). Some of the concepts in this

document (ad/2006-06-01) are based on the concepts introduced in that earlier joint submission.

4 Terms and Definitions

This Specification defines a terminology for software development processes. Please refer to the individual sections

of this document for definitions for each concept defined in SPEM 2.0. For the purposes of this specification, the

terms and definitions given in the normative reference apply.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 9 of 85

5 Symbols

There are no symbols defined in this Specification.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 10 of 85

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This is the third Specification defined for the Software Process Engineering Meta-Model. The Specification of

SPEM 1.0 was released in 2002 (final FTF report in May 2002). SPEM 1.1 incorporated minor updates that were

formally released in 2005 (final RTF report in March 2004).

This Specification addresses the following requirements from SPEM 2.0 RFO ad/2004-11-04:

• Update SPEM to be compliant with UML 2.0, taking advantage of the new functionality to improve process

modeling techniques and capabilities.

• Define a new SPEM XML Schema, based on MOF 2.0. XML Schemas provide greater richness and control

beyond what is available in the SPEM 1.1 XMI DTD.

• Provide guidance on migrating existing process models from SPEM 1.1 to SPEM 2.0.

• Address feedback from first implementers to address identified inconsistencies and concerns regarding the

practicality and functional coverage of SPEM 1.1.

• Define extensions to SPEM that will be of use to process automation tools.

• Align SPEM with evolving and emerging standards other than UML; specifically, it may be possible to use the

Business Process Definition Meta-model and the Business Process Runtime Interfaces submissions in

conjunction with SPEM to provide greater value to the user community.

• Introduce process meta-model extensions that may be used equally in software development processes and

systems engineering processes.

6.2 Key New Capabilities of SPEM 2.0

In addressing the SPEM 2.0 RFP requirements, this specification provides the following new capabilities:

6.2.1 Reusable process elements definition and usage in software development processes

SPEM 2.0 separates reusable process elements such as workproducts, roles and activities from their application in

process workflows. Process elements are the building blocks that describe how specific development goals are

achieved independent of the placement of these elements within a workflow. Process workflows take these process

elements and relate them, in effect, creating work execution sequences that are customized to specific types of

projects.

Figure 1 Process Elements from Macroscope

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 11 of 85

Figure 1 is an example from Macroscope showing common WorkProducts (called Deliverables in Macroscope) that

are used by a variety of standard processes. A process determines the scope and level of details of the deliverables.

It also orchestrates their production by key roles. Processes must be adapted with regard to the project circumstances

and to the system characteristics. Such adaptation may consist of: replacing some streamlined deliverables by

detailed ones, adding activities from the more detailed paths, specializing some roles, adding specific guidelines or

referring to path-specific fundamentals, and so on.

SPEM 2.0 supports the extension of process elements as well as their usage in process workflows, ensuring a kind of

live binding of the base element to the usage element. This ensures the creation of simple and flexible process

models that dynamically respond to changes in base elements. This low-overhead reusability mechanism can be

utilized by agile self organizing teams as well as structured software process engineering groups.

Figure 2 Specialization of base process elements

SPEM 2.0 allows the specialization of these base process elements in accordance to the project characteristics and

environment. For a J2EE project, the “Code Development” activity could be specialized as “EJB Code

Development” and “JSP Code Development”. Similarly, “Code Review” and “Execute Unit Tests” could be further

specialized. This specialization may add, remove or modify input and output work products, performers and

guidances to suit the environment context. Any changes in the general process element will automatically be

reflected in all specialized elements.

6.2.2 Easy creation and maintenance of enactable development process workflows

The Specification enables the creation of enactable processes through flexible references to process elements. The

mechanisms being introduced here support the creation of process workflows while enabling downstream

association to process elements consumed in the workflow. It is now easy for a process engineering team to plan

enactment of a process while modeling the process. With the separation of process elements definition (Base Process

Elements) and their usage in process workflows, process engineers create and validate enactable process workflows

with the flexibility of switching process elements used in the workflow without compromising the validity of the

process workflow.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 12 of 85

The example in Figure 3 illustrates the usage of process elements in a software development process workflow. A

usage element acts as a proxy or instance representation of base process element within a process. It maintains all

matching associations and content definitions defined in the Base Process Element. Because of these references,

changes in the process elements will automatically be reflected in all process elements usage instances within all

process workflows. Moreover these changes will not cause an adverse impact on the workflow since the usage is

decoupled from the process element definition.

Figure 3 Usage instances application in enactable development processes

Figure 3 illustrates how the same process element “Code Review” has been applied in different places within the

same process workflow.

If a new project change necessitates development on a J2EE platform, the “Code Review” activity in Figure 4 can be

specialized to “EJB Code Review” and “JSP Code Review”. In this way, a process engineer may update the Process

Element content by updating the general base element or by changing the specialized base element. The workflow

usage elements for “Code Review” would now simply switch and refer to “EJB Code Review” or “JSP Code

Review” or remain pointed to “Code Review” without the need to reconstruct the workflow. This adjustment can be

made in the existing workflow, retaining any complex work sequence structure that may have been created. This is

possible since when a usage element is created, it maintains reference to the base element and its root base element.

Usage element may change its reference binding to any child base element extending the root base element. This

change in reference may only apply to extending base elements that have the same root base element as previous

base reference.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 13 of 85

Code Review

JSP Code Review EJB Code Review

Common EJB Services

Code Review

Develop Access

Control Business

Logic_Use

Develop Admin

Business Logic_Use

Develop Admin

UI_Use

Code Review_Use

Code Review_Use

Code Review_Use

<<baseElement>>

<<baseElement>>

<<baseElement>>

Figure 4 Easy maintenance of development processes

6.2.3 Extensible process components for rapid process assembly

SPEM 2.0’s Process Components are reusable building blocks for creating new development processes or larger

Process Components. SPEM 2.0 supports reusing process knowledge by factoring out commonly reoccurring work

into Process Components which can then be applied over and over again in a process. A SPEM tool could

implement a mechanism such that whenever the Process Component is revised or updated; all changes are

automatically reflected in all processes that applied that Process Component.

Input and output work products can be defined for each process component, allowing the user to treat the actual

definition of the work that produces the outputs as a “black box”. However, the process engineer has visibility into

the component and can modify it if required. The component approach also allows different styles or techniques of

doing work to be replaced with others. For example, a software code output of a component could be produced with

model-driven development or a code-centric technique. The component concept encapsulates the actual work and

lets the project team choose the appropriate technique.

6.2.4 Support for different lifecycle models

The concepts presented in SPEM 2.0 support different kinds of lifecycle models. The process element and

component usage and extensibility patterns introduced here accommodate multiple lifecycle modeling approaches.

Figure 5 shows an example of three processes with different lifecycle models from Macroscope.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 14 of 85

Figure 5 Three processes with different lifecycle models

6.2.5 Support for Enactment

The addition of a Work Breakdown Element state machine in the meta-model provides process engineers increased

flexibility and control over their process workflows and their enactment. Work Breakdown element states can now

be used alongside Work Product states to create machine readable Work Breakdown Element pre- and post-

conditions as well as fork and join node constraints in workflow decisions. If process engineers choose to have

machine readable conditions, an enactment system would be able to evaluate these conditions and automate the

activity state changes without the need for direct human involvement.

Although process engineers can extend or tailor a process for a particular project type or project instance, Activities

are not necessarily the units of work that get assigned to project practitioners during enactment. Tasks and Work

Items (new in SPEM 2.0) enable process engineers and project managers to create enactment specific entities that

are assignable to practitioners. Associating Tasks with Work Breakdown Elements makes the process more

transparent to the practitioner in an enactment system. The enactment system would help practitioners focus on

their current assignments and avoid process information overload by filtering the process for practitioners, ensuring

that they are provided only the information that they need when they need it. For example, if a practitioner is

assigned to a Task that is only responsible for a subset of an Activity’s steps, the enactment system could filter the

Activity’s associated WorkProducts and Guidances for that user based on their associations with those steps.

Linking these enactment Tasks and Work Items with the process also facilitates data rollup and process feedback

and improvement by allowing enactment data and metrics to be fed back to the process engineers and project

managers. To continue the previous example, when the Task is complete, the enactment system could mark the

steps as complete or possibly change the Activity’s state depending on the status of the remainder of its steps.

6.3 Architecture Alignment and MDA Support

This Specification documents the Software Process Engineering Meta-Model 2.0 Meta-Model (SPEM 2.0 Meta-

Model) and the Software Process Engineering Meta-Model 2.0 UML 2.0 Profile (SPEM 2.0 Profile).

This document provides a MOF 2.0 compliant meta-model Specification for the SPEM 2.0 Meta-Model as depicted

on the left-hand side in Figure 6.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 15 of 85

M3

M2

M1

MOF2

<<metametamodel>>

UML2

<<metamodel>>

SPEM2

<<metamodel>>

<<instantiate>>
<<instantiate>>

Process Package A

<<instantiate>>

SPEM2 Prof ile

<<prof ile>>

Process Package A

<<spem2ProcessPackage>>

<<instantiate>>

<<apply >>

Figure 6 Model Layers for UML and SPEM 2.0

The SPEM 2.0 Meta-Model is a MOF 2.0 compliant Meta-Model

A model defined on a higher layer defines the language to be used on the immediate layer below it. MOF is the

universal language that can be used on any layer, but in our case, MOF is instantiated from the M3 layer by SPEM

2.0 on the M2 layer. The UML 2.0 meta-model itself, as depicted on the right-hand side of the M2 layer,

instantiates MOF2 defined on M3 layer in the exact same way. “Process Package A” is an example of a concrete

instance of the SPEM 2.0 meta-model using SPEM 2.0 as a schema to represent its content. In that sense, “Process

Package A” represents a method model. For example, SPEM 2.0 defines the concepts of Roles, Work

WorkProducts and Activities, as well as relationships between them. Process Package A on the M1 layer provides

concrete instances of Roles and Artifacts from the M2 layer such as “System Analyst” and “Use Case”. As

illustrated in Figure 7, “Use Case” is a direct instance of the meta-class “Artifact”, which is an instance of the Meta-

Meta Class “Class” from the M3 layer. A use-case instance that one would create during a development project,

such as “Browse Catalog” for a Web-based sales system, would now be an instance of the class “Use Case” on the

M0 layer.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 16 of 85

The SPEM 2.0 Meta-Model reuses parts of UML 2.0

The SPEM 2.0 meta-model describes all structures and attributes needed to represent SPEM 2.0-based methods and

processes. However, SPEM 2.0 does not define all of its elements from scratch, but actually reuses elements from

the UML 2.0 meta-model. Figure 6 shows a dependency on the M2 layer from SPEM 2.0 to UML2. This

dependency expresses that parts of the SPEM 2.0 are based on definitions in the UML 2.0. For example, core

elements of SPEM 2.0 such as “Process Element” and “Process Package” have been derived through specialization

from classes from the UML 2.0 Infrastructure Library inheriting relationships that allow the definition of packages

and packageable elements. SPEM 2.0 also uses UML 2.0 state machines.

The SPEM 2.0 Meta-Model has a reference implementation

The SPEM 2.0 meta-model can be directly instantiated for an implementation, i.e. a CASE tool that now represents

all classes from the M2 layer as Java classes and database tables. Although, the SPEM 2.0 MOF meta-model is

defined in UML, an instance of the model (i.e. a concrete method or process) can be represented independent of the

UML.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 17 of 85

M3

M2

M1

M0

Class

WorkProduct

<<instantiate>>

Class

<<instantiate>>

spem2WorkProduct

<<stereotype>>

<<extends>>

Use Case

<<instantiate>>

Use Case

<<spem2WorkProduct>>

<<instantiate>><<apply>>

Browse Catalog

<<instantiate>>

Browse Catalog

<<instantiate>>

Figure 7 Exemplary instantiations of the modeling layers

The SPEM 2.0 Profile is a UML 2.0 Profile that provides an alternative representation to the SPEM 2.0 Meta-Model

In addition to representing a method library such as ‘Process Package A” with these structures creating your own

implementation of these classes (e.g. using the Java classes mentioned above), one could also decide to represent

classes from the M1 layer with a generic UML 2.0 modeling tool. In this case, one would use UML Superstructure

classes on the M2 layer and extend these with the official UML2 extension mechanisms by providing profiles with

stereotypes and OCL constraints as depicted in Figure 7. For example, in Figure 7, a stereotype declaration for

WorkProduct extends the UML 2.0 class concept. An instance on the M1 layer would be a UML 2.0 class which

has this stereotype assigned. An M0 instance would still look the same. The only difference is the formalized

representation used for the meta-model (M2) and model (M1).

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 18 of 85

SPEM 2.0 defines a Meta-Model as well as a UML Profile

This Specification provides definitions for both representations:

• The SPEM 2.0 Meta-Model: Defines all structures and structuring rules and is in itself complete.

• The SPEM 2.0 UML Profile: Defines a set of UML 2.0 stereotypes which allow presenting SPEM 2.0 process

elements and processes using the UML 2.0. However, the definition of these stereotypes in this Specification

only covers their presentation, but relies on the SPEM 2.0 Meta-Model for all semantic definitions and

constraints. In other words, the profile does not contain any OCL constraints, but relies on the SPEM 2.0 Meta-

Model semantics to define all of its constraints.

6.4 How to Read this Specification

The rest of this document contains the technical content of this Specification.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference

Specification intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided

to facilitate browsing and search.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 19 of 85

6.5 Acknowledgements

The following companies submitted, supported or contributed to parts of the SPEM 2.0 Specification:

• Borland Software Corporation (Submitter)

• Osellus Inc. (Submitter)

• Bell Canada

• Microsoft Corporation

• Sun Microsystems

The following individuals are acknowledged for their contribution to SPEM 2.0:

Omid Afnan, Kamal Ahluwalia, April Alibayan, Reda Bendraou, Ming Chan, Aaron deVries, Karl Frank, David

Gowan, Payman Hodaie, Rajendra Kanakamedala, Jim Lu, Randy Miller, Daryl Spencer, Harvey Stein, Sammy

Wahab.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 20 of 85

7 Package Structure

The SPEM 2.0 Meta-Model reuses the UML 2.0 Infrastructure library. It derives all of its classes from classes

defined in this library

The SPEM 2.0 Meta-Model utilizes the UML 2.0 diagram interchange for the presentation of various diagrams.

To generate the SPEM 2.0 XMI schema, all packages in Software Process Engineering Meta Model 2, UML2

Diagram Interchange, and Infrastructure Library will be collapsed into the spem2 package. As a result all classes

will be defined in a flat list.

SoftwareProcessEngi

neeringMetaModel2

UML2DiagramInterchangeInfrastructureLibrary

<<import>>

<<merge>> <<merge>>

Figure 8 SPEM 2.0 reuses the UML 2.0 Infrastructure and Diagram Interchange standards

The SPEM 2.0 Meta-Model is structured into two main packages as depicted in Figure 9. The structure divides the

model into two logical units. The UML 2.0 package merge mechanism applied to the packages realizes a gradual

extension of the capabilities.

ProcessModeling ProcessEnactment
<<merge>>

Figure 9 Structure of the SPEM 2.0 Meta-Model

The packages depicted in Figure 9 provide the following capabilities:

Process Modeling: This package defines reusable core process elements such as Work Products, Roles and

Activities. It supports the creation of process workflows that take these process elements and relate them to create

work execution sequences that are customized to specific types of projects. It introduces concepts for the extension

of process elements as well as their usage in process workflows ensuring live binding between base elements and

usage elements. This ensures the creation of simple and flexible process models that dynamically respond to changes

in base elements. This low-overhead reusability mechanism can be utilized by agile self organizing teams as well as

structured software process engineering groups.

Process Enactment: The Process Enactment package does not attempt to describe a full enactment system, but

introduces process element extensions to guide process engineers and project managers in tailoring and facilitating

process enactment and improvement. Software development processes that are created using the Process Modeling

package alone are not always sufficient for enactment. Project managers and practitioners typically have difficulty

applying these processes to their daily activities, making process enforcement and improvement difficult. By

allowing process engineers and project managers to decompose the process into discrete units of work that can be

assigned to individuals and tracked based on the workflow and events defined in the Process Modeling package, this

package enables the formal process to be abstracted from project practitioners.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 21 of 85

Project enactment is typically carried out by creating and assigning a series of tasks and work items to project

practitioners. Adding Tasks and Work Items to the meta-model and allowing them to be associated with Work

Breakdown Elements allows the process to become transparent to the practitioner in an enactment system. The

enactment system would help practitioners focus on their current assignments and avoid process information

overload by filtering the process for practitioners, ensuring that they are provided only the information that they

need when they need it. These Tasks and Work Items also facilitate data rollup and increased process feedback and

improvement by allowing enactment data and metrics to be fed back to the process engineers and project managers

during enactment.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 22 of 85

8 Process Modeling

The Process Modeling package contains the basic structural process elements for defining software development

processes. It provisions the definition of lifecycle-independent reusable process elements that provide a base of

documented knowledge of software development methodologies, techniques, and concrete realizations of best

practices. Process workflows organize these process elements into sequences that are customized to specific types

of projects.

A development process defines how development projects shall be executed. It focuses on the actions to be

performed, and their sequence, to deliver the expected result or series of events. Each activity that makes up a

process involves participants and may be triggered by preconditions and results in postconditions.

BreakdownElement

Tool

Role

WorkProduct

WorkProductKind

ProcessElement

Team
Metric

CategoryKind Category

GuidanceKind

Guidance

Iteration
Phase

Classifier
(from Constructs)

WorkBreakdownElement

PerformerRoleKind

WorkBreakdownElementKind

Qualification

QualificationKind

ResponsibleRoleKind

Step
Activity

Figure 10 Taxonomy of classes defined in Process Modeling

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 23 of 85

Classifier

(from Constructs)

BreakdownElement

ParameterDirectionType

in

out

inout

<<enumeration>>

OptionalityType

mandatory

optional

<<enumeration>>

Tool

Activity

*

*

+usedTool *

*

Step

type : ExecutionType

*

1

*

*

0..1

+subStep

*

0..1

Guidance

CategoryKind

ProcessElement

*

*

+guidance*

*
Category

*

0..1

*

+kind 0..1

* *

+categorizedElement

* +category *

*

0..1
+subCategory

*

0..1

PerformerRoleKind

ResponsibleRoleKind

RoleResponsibleRoleMap

0..1

*

0..1

*
1* 1*

WorkBreakdownParameter

direction : ParameterDirectionType

optionality : OptionalityType

WorkProduct

*

1

+responsibleRole *

1
1

**

1

{ordered, subsets ownedElement}
+step

1
+responsible

WorkBreakdownElement

*

1

+ownedParameter

{ordered, subsets ownedElement}

1

PerformerRoleMap

0..1 *

+performerKind

0..1 *

1

*

1

* +performs

*

1

*

1

*

+performerRole

ExecutionType

machineExecution

humanExecution

<<enumeration>>

Figure 11 Base Process Elements

Process Elements are the basic structural building blocks of a process. They are described by defining Activities

that have Steps, input and output Work Products and are performed by Roles. Roles also define an important

responsibility relationship for work products. Figure 11 depicts these core process elements with their relationships.

8.1 Process Element

Super Class

Classifier

Description

A Process Element is an abstract generalization that represents basic structural process elements that can be used to

define a software process engineering model. Process Elements provide the information that is necessary to

construct a process.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 24 of 85

Attributes

• description: String A Process Element can have a human readable description of the

element. Normally this description is expected to be one or two

paragraphs in length; however there is no restriction on size specified

by this document.

Associations

• guidance: Guidance A Process Element can be related to many guidances.

• category: Category Process Elements can be categorized by many categories.

Rationale

Process Elements enable the definition of basic structural elements needed to define a process model based on any

methodology. A Process Element could be described using the description attribute and may have related guidances

providing additional information as needed.

Changes from previous SPEM

Process Element is new in SPEM 2.0.

8.2 Category

Super Class

Process Element

Description

A Category is a Process Element used to categorize, i.e. group any number of Process Elements of any subtype and

Process Components based on user-defined criteria. Because Categories are Process Elements themselves, Custom

Categories can be used to recursively categorize Categories as well. Categories can also be nested with any

Category.

Attributes

No additional attributes.

Associations

• categorizedElement:

ProcessElement

A Category groups together any number of Process Elements (including

other Categories).

• subCategory: Category A Category can have any number of Categories defined as nested sub-

categories. Therefore, one could nest Category into n-level hierarchies.

• kind: CategoryKind Every Category instance can be classified by a Category Kind.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Category Process Element spem2Category n/a

Examples

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 25 of 85

Figure 12 RUP example for categories and categorized process elements

Figure 12 shows examples for categorized process elements. It defines the Discipline Grouping “Software

Engineering Discipline” that categorizes three Disciplines. The Disciplines categorize Activities such as “Develop

Use Case”, “Use Case Analysis”, etc. Two of these Activities have also been categorized by a Custom Category

“Use Case Based Development” that a user might have defined to provide a ‘filter’ on the process elements related

to use cases. The user has also assigned the use case work product from the “Analysis & Design” domain, as well as

specific Guidance (template and workshop guideline) to this category.

Rationale

Enable filtering process elements based on user-defined categories for inclusion in process components and

processes or generating presentation structures by a tool implementation.

Changes from previous SPEM

Category is new in SPEM 2.0. It replaces Categorizes Dependency from SPEM 1.1. This SPEM 1.1 dependency did

not work well with packages, because process engineers wanted to define multiple categories that all categorized the

same element.

8.3 Category Kind

Super Class

Process Element

Description

A Category Kind is a flexible way of defining different groupings for Categories on the M1 level, i.e. the level on

which a user defines process models. Category Kind is Process Element itself that contains descriptions about the

characteristics of the Categories that it groups. Every Category can be associated with a Category Kind element.

The name of the Category Kind indicates what kind of Category it is.

Attributes

No additional attributes.

Associations

No additional associations.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 26 of 85

Examples

See Appendix D for Category Kind examples.

Changes from previous SPEM

Category Kind is new in SPEM 2.0.

8.4 Guidance

Super Class

Process Element

Description

Guidance is a Process Element that provides additional information related to process elements such as Roles,

Activities, and Work Products. The particular Guidance is classified with a guidance kind that indicates a specific

type of guidance. Examples for Guidance are Guidelines, Templates, Checklists, Tool Mentors, Estimates,

Supporting Materials, Reports, Concepts, etc.

Attributes

No additional attributes.

Associations

• kind: GuidanceKind A Guidance element can be associated to a Guidance Kind.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Guidance Process Element spem2Guidance

Changes from previous SPEM

Guidance is unchanged from SPEM 1.1.

8.5 Guidance Kind

Super Class

Process Element

Description

A Guidance Kind is a flexible way of defining different groupings for guidance. A Guidance element can be

associated with a Guidance Kind element. The name of the Guidance Kind indicates what kind of Guidance it is.

Attributes

No additional attributes.

Associations

No additional associations.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 27 of 85

Examples

See Appendix D.

Rationale

Apart from constraining the values of Guidance Kinds to a known set of instances it also enables describing how a

kind of Guidance may be used and maintained. It is essential for keeping the meta-model flexible and inclusive of

methodologies.

Changes from previous SPEM

Guidance Kind is unchanged from SPEM 1.1.

8.6 Metric

Super Class

Guidance

Description

A Metric is special Guidance that contains a number of constraints which provide measurements for any Process

Element. Because Metric is Guidance, different Guidance Kinds can be defined for Metrics to distinguish different

groups of Metrics such as Productivity, Quality, or Scale (example for Guidance Kinds for Metrics).

Attributes

No additional attributes.

Associations

No additional associations.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Metric Guidance spem2Metric

Changes from previous SPEM

Metric is new in SPEM 2.0.

8.7 Breakdown Element

Super Class

Process Element

Description

Breakdown element is an abstract generalization for any type of Process Element that is part of a breakdown

structure. When creating a process or process component, a Breakdown Element is never used directly; instead,

instance representation of Breakdown Element will be used to define a process or process component. Multiple

instances of a Breakdown Element may be defined within the same process or process component.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 28 of 85

Attributes

• hasMultipleOccurrences: Boolean When this attribute is set to True for a Breakdown Element then it will

typically occur multiple times within the same process or process

component. For example, an Activity such as “Detail Use Case” would be

performed for every use case identified for a particular Iteration in a

process or process component.

• isOptional: Boolean The isOptional attribute indicates that the Breakdown Element describes

work, a work result, or even work resources, the inclusion of which is not

mandatory when performing a project that is planned based on a process

containing this element.

Associations

• suppressed: ProcessElement Suppressed defines the process element associations that will be hidden

from the extending breakdown element. In addition, suppressed process

element associations will not be visible to use elements that trace to the

breakdown element.

Semantics

Extension is a taxonomic relationship between a more general Breakdown Element and a more specific Breakdown

Element. It provides a capability for Breakdown element content variation; the specific Breakdown instance may be

viewed as an instance of general Breakdown instance, hence, all visible features of the general breakdown element

are implicitly defined for the specific Breakdown element. The Extension association is only instantiated between

two Breakdown Element sub classes with the same concrete type. In addition, each concrete Breakdown Element

may only maintain one specific reference to a general Breakdown Element.

When defining Extension between Breakdown Elements, the specific Breakdown element attribute interpretation

would apply following rules.

0..1-association instances Association instance of the based-on general Element is kept if it is

visible (not suppressed at the general Element) to the specific

breakdown element. If the Specialized element has defined its own

association, the supplier element’s association is ignored.

0..n-association instances Associations of the specialized element are added to the already

existing association instances of the general element. If both

general associations and specialized associations refer to the same

object, the general associations are ignored. By default, associations

from specialized element and general element are not suppressed.

The specific Element may suppress any association defined in supplier through the suppress association. For any

association defined in a general and current specific element; if the associated element is suppressed, then it will not

be visible to the referenced use element (Breakdown Element Use) and the specific element that references it.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 29 of 85

Figure 13 Breakdown Element Definition View

Figure 14 Consolidated View

Rationale

Breakdown Element is an abstract class that defines a set of attributes available to its specializations.

Changes from previous SPEM

Breakdown Element is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 30 of 85

8.8 Work Product

Super Class

Breakdown Element

Classifier

(from Constructs)

ProcessElement

BreakdownElement

WorkProductKind

Tool

StateMachine

WorkProduct

*

0..1

+subWorkProduct

*

+mainWorkProduct0..1

0..1 *

+kind

0..1 * *

*

+managedWorkProduct

*

*

0..1

1

0..1

1

Figure 15 WorkProduct taxonomy

Description

WorkProduct provides a description and definition for all work product artifacts. WorkProducts may be composed

of other WorkProducts.

Attributes

• isDeliverable: Boolean The isDeliverable attribute is true if that WorkProduct is defined as a

formal deliverable of the process. Deliverable is not a basic structural

process element in SPEM 2.0 because not all WorkProducts are

deliverable, and whether a WorkProduct is delivered or not may

change during enactment.

Associations

• subWorkProducts: WorkProduct WorkProducts may be composed by other WorkProducts. For

example, a use case model is composed of use cases and actors.

• workProductKind:

WorkProductKind

Defines WorkProductKind information based on a modeler’s needs.

For example, Artifact, Deliverable, Code, Document and so on.

• stateMachine: StateMachine A WorkProduct be may associated with a state machine that describes

the states that the work product may be in, and the transitions allowed

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 31 of 85

between those states. UML 2.0 State Machine has been reused.

• responsibleRole: Role Multiple roles may be responsible for the same Work Product. See

ResponsibleRoleMap.

Semantics

Work Products are artifacts consumed, produced, or modified by an Activity. Multiple roles may be responsible for

the same Work Product.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

WorkProduct Breakdown Element spem2WorkProduct

subWorkProduct Composite Aggregation n/a n/a

Examples

Figure 16 WorkProduct composition example

Changes from previous SPEM

WorkProduct is unchanged from SPEM 1.1.

8.9 WorkProduct Kind

Super Class

Process Element

Description

A WorkProduct Kind describes a type of work product, such as Deliverable, Artifact, Text Document, UML Model,

Executable and so on. The range of WorkProduct kinds is dependent on the process being modeled.

Attributes

No additional attributes.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 32 of 85

Associations

No additional associations.

Rationale

Apart from constraining the values of WorkProduct Kinds to a known set of instances it also enables describing how

a kind of WorkProduct may be used and maintained. It is essential for keeping the meta-model flexible and inclusive

of methodologies.

Changes from previous SPEM

WorkProduct Kind is unchanged from SPEM 1.1.

8.10 Responsible Role Map

Super Class

Classifier

Description

A Responsible Role Map declares a Work Product’s responsible Roles; these are the Roles that are associated to the

Work Product with varying levels of responsibilities.

Attributes

No additional attributes.

Associations

• responsibleKind:

ResponsibleRoleKind

This association represents the kind of relationship a Role has

with the Work Product. If no ResponsibleRoleKind is

specified the associated role is considered to be responsible

for the Work Product.

• role: Role Defines the work product’s responsible role.

Examples

A WorkProduct-based methodology may define explicit relationships between WorkProducts and Roles instead of

relying on indirect relationships through formal activities. For example, a methodology may use the following

values for ResponsibleRoleKind: Owned, Reviewed, Approved, and Produced. This methodology may then have a

Quality Plan that has the following associations:

• Quality Manager – Owned, Produced

• Project Manager – Reviewed

• SEPG – Approver

Changes from previous SPEM

Responsible Role Map is new in SPEM 2.0.

8.11 Responsible Role Kind

Super Class

Process Element

Description

A Responsible Role Kind describes a type of Responsible Role.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 33 of 85

Attributes

No additional attributes.

Associations

No additional associations.

Changes from previous SPEM

Responsible Role Kind is new in SPEM 2.0.

8.12 State Machine

Super Class

Protocol State Machine

Description

State Machine extends Protocol State Machine from UML 2.0 Meta Model; it inherits all behavior model elements

and allows trigger definition for different transition expression.

8.13 Tool

Super Class

Process Element

Description

A Tool is a special Process Element that can be used to specify a tool’s participation in an Activity.

Attributes

• version: String Avoids confusion between different tool versions used.

Associations

• managedWorkProduct: WorkProduct A Tool can manage instances of one or more Work Products.

For example a Tool can be modeled that specializes in

managing Use Case Models or another Tool that manages

Analysis and Design Models.

Semantics

A Tool describes the capabilities of a CASE tool, general purpose tool, or any other automation unit that supports

the associated instances of Roles in performing the work defined by an Activity. A Tool can represent a resource

useful, recommended, or necessary for an activity’s completion.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Tool Process Element spem2Tool n/a

Changes from previous SPEM

Tool is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 34 of 85

8.14 Role

Super Class

Breakdown Element

BreakdownElement

ProcessElement

Classifier

(from Constructs)

Team

*

0..1

+subTeam*

0..1

RoleKind

Role

**

+team

**

0..1

*

+kind 0..1

*

Qualif icationKind

Qualif ication

*

*

+qualif ication
*

*

0..1

*

+kind
0..1

*

Figure 17 Role taxonomy

Description

A Role is a Breakdown Element that defines a set of related skills, competencies, and responsibilities. Roles are

used by activities to define who performs them as well as define a set of workproducts they are responsible for.

Attributes

No additional attributes.

Associations

• /responsible: WorkProduct Responsibility for a workproduct indicates the role’s ownership of

all instances of this workproduct. For example, the role responsible

for a workproduct answers to management about its quality state.

Being responsible for the workproduct does not mean that the role

is the only one modifying it, but it means that the role makes

ultimate decisions about accepting or rejecting these modifications

when reviewing these modifications. Every workproduct has none

or one responsible role.

• /performs: WorkBreakdownElement Performance of a workbreakdown element indicates the role’s

involvement of all instances of this workbreakdown element. For

example, a role may be involved in a consultative capacity for some

work whereas as a primary contributor for others.

• roleKind: RoleKind This association defines role grouping information based on

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 35 of 85

modeler’s needs.

• qualification: Qualification This association defines the role’s qualifications.

• team: Team This association defines the team membership.

Semantics

A Role defines a set of related skills, competencies, and responsibilities for that role. Roles are not individuals or

resources. Individual members of the development organization will wear different hats, or perform different roles.

The mapping from individual to role, performed by the project manager when planning and staffing for a project,

allows different individuals to act as several different roles, and for a role to be played by several individuals.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Role Breakdown Element spem2Role

Rationale

A role definition needs to describe the responsibilities and associations qualifications for a meaningful role

assignment to activities and work products. This is even more critical for staffing individuals to those roles during

enactment.

Changes from previous SPEM

Process Role in SPEM 1.1 has been renamed to Role in SPEM 2.0.

8.15 Role Kind

Super Class

Process Element

Description

A Role Kind describes a type of Role.

Attributes

No additional attributes.

Associations

No additional associations.

Rationale

Apart from constraining the values of Role Kinds to a known set of instances it also enables describing how a kind

of Role may be used and maintained. It is essential for keeping the meta-model flexible and inclusive of

methodologies.

Changes from previous SPEM

Role Kind is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 36 of 85

8.16 Team

Super Class

Process Element

Description

A team is an organized grouping of roles that collectively focus on common work units.

Attributes

No additional attributes.

Associations

• subTeam: Team A team may consist of sub-teams.

• teamRole: Role A team may be associated with many roles.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Team Process Element spem2Team

Changes from previous SPEM

Team is new in SPEM 2.0.

8.17 Qualification

Super Class

Process Element

Description

Qualifications define a skills profile that will help a user in fulfilling the responsibilities of the role.

Attributes

No additional attributes.

Associations

No additional associations.

Changes from previous SPEM

Qualification is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 37 of 85

8.18 Qualification Kind

Super Class

Process Element

Description

A Qualification Kind describes types of Qualifications, such as Skills, Certifications, Job Role (HR Level) and so

on. The range of Qualification kinds is dependent on the project environment for which the process is being

modeled.

Attributes

No additional attributes.

Associations

No additional associations.

Changes from previous SPEM

Qualification Kind is new in SPEM 2.0.

8.19 Work Breakdown Element

Super Class

Breakdown Element

Description

A Work Breakdown Element is a special Breakdown Element that provides specific properties for Breakdown

Elements that are part of a Work Breakdown Structure.

Attributes

• isRepeatable: Boolean This attribute is used to define repetition of work, e.g. iterations. A

Work Breakdown Element with this attribute set to True can be repeated

more than once on the same set of Work Products.

• isOngoing: Boolean If the isOngoing attribute is set to True for a Work Breakdown Element,

then the element describes an ongoing piece of work without a fixed

duration or end state. For example, the Activity could represent work of

an administrator continuously (e.g. 3h a day) working to ensure that

systems are kept in a certain state. Another example would be program

management work overseeing many different projects being scheduled

for one particular project at specific reoccurring intervals during the

whole lifecycle of the project.

• isEventDriven: Boolean The isEventDriven attribute indicates that the Work Breakdown Element

describes an instance of work which is triggered because another specific

event has occurred and not because it has been scheduled to start at a

certain point of time or because preceding work is being completed, or

because input work products are available.

Examples for such events are exceptions or problem situations which

require specific work to be performed as a result. Also change

management work can be modeled as event driven work analyzing a

change request or defect and allocating work dynamically to resources to

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 38 of 85

deal with it following the work described with such Activity.

• hasMilestone: Boolean A Milestone describes a significant event in a development project, such

as a major decision, completion of a deliverable, or meeting of a major

dependency.

• milestoneDescription: String A human-readable brief description of the milestone.

Associations

• Kind

:WorkBreakdownElementKind

WorkBreakdownElement Kind provides the capability to introduce user-

defined kinds of Work Breakdown Elements.

• performerRole: PerformerRoleMap This association defines the Roles that may provide information or

otherwise contribute in completing the work. Performer Role Kind is

used to classify the manner in which the role(s) contribute to the work

being performed.

• ownedParameter: WorkBreakdown

Element Parameter

Work Breakdown Elements can define an ordered set of parameters for

input and output Work Product Use declarations.

• stateMachine: StateMachine A Work Breakdown Element may define a state machine. For example

an Activity may have the following states: Pending, Ready, In-progress,

Bypassed and Completed. The state machine definition would depend on

project characteristics and enactment environment. All work breakdown

element instances share the same state machine.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

MandatoryInput Association spem2MandatoryInput n/a

OptionalInput Association spem2OptionalInput n/a

MandatoryOutput Association spem2MandatoryOutput n/a

OptionalOutput Association spem2OptionalOutput n/a

Changes from previous SPEM

Work Breakdown Element replaces WorkDefinition from SPEM 1.1. Work Breakdown Element is an abstract class

to avoid confusion in SPEM 1.1 on when to use Activity and when to use Work Definition. User defined Work

Breakdown Elements like Workstreams, Modules etc can be created when used with Work Breakdown Element

Kind.

8.20 Work Breakdown Element Kind

Super Class

Process Element

Description

Work Breakdown Element Kind is a Process Element that defines a specific type for work breakdown elements.

Attributes

No additional attributes.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 39 of 85

Associations

No additional attributes.

Semantics

Work Breakdown Element Kind provides the capability to introduce user-defined kinds of work breakdown

elements.

Examples

If a process engineer would like to represent a special kind of work breakdown element he can define instances of

work breakdown element kinds and assign these to his work breakdown elements. ‘Phase’ and ‘Iteration’ are

popular examples for work breakdown element kinds. Another example can be found in Microsoft’s Microsoft

Solution Framework (MSF). The first level of MSF’s breakdown structure is referred to as a ‘Workstream’. The

work breakdown element kind class allows defining and modeling such specific interpretation of the breakdown

level.

Rationale

Apart from constraining the values of work breakdown element kinds to a known set of instances it also enables

describing how a user-defined kind work breakdown element may be used and maintained. It is essential for keeping

the meta-model flexible and inclusive of methodologies.

Changes from previous SPEM

Work Breakdown Element Kind is new in SPEM 2.0.

8.21 Performer Role Map

Super Class

Classifier

Description

A Performer Role Map declares a Work Breakdown Element’s participating Roles; these are the Roles that are

associated to the Work Breakdown Element with varying levels of participation.

Attributes

No additional attributes.

Associations

• performerKind:

PerformerRoleKind
This association represents the kind of relationship a

Role has with the Work Breakdown Element.

Examples

Microsoft’s MSF for CMMI Process Improvement uses the following values for PerformerRoleKind: Responsible,

Accountable, Consulted, Informed. The Create Product Requirements Workstream has the following performers:

Responsible:

• Business Analyst

• User Experience Architect

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 40 of 85

• Solution Architect

Accountable:

• Business Analyst

Consult:

• Subject Matter Expert

• Sponsor

Informed:

• IPM Officer

• Development Manager

• Project Manager

• Test Manager

• Release Manager

Changes from previous SPEM

Performer Role Map is new in SPEM 2.0.

8.22 Performer Role Kind

Super Class

Process Element

Description

Performer Role Kind defines the level of participation a role has when assigned to a work breakdown element.

Attributes

No additional attributes.

Associations

No additional associations.

Examples

See Performer Role Map.

Changes from previous SPEM

Performer Role Kind is new to SPEM 2.0

8.23 Work Breakdown Parameter

Super Class

Classifier

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 41 of 85

Classifier
(from Constructs)

WorkSequence

WorkBreakdownParameterUse

WorkBreakdownParameter

PerformerRoleMap

PerformerRoleMapUse

ResponsibleRoleMapUse

ResponsibleRoleMap

Figure 18 General Element Taxonomy

Description

A Work Breakdown Parameter declares the input/output associations between Work Breakdown Element and

WorkProduct.

Attributes

• optionality:OptionalityType This attribute represents the type of optionality as specified by the

enumeration Optionality Type.

• direction: ParameterDirectionType This attribute represents the direction type as specified by the

enumeration Parameter Direction Type.

Associations

No additional associations.

Changes from previous SPEM

WorkBreakdown Parameter replaces Activity Parameter from SPEM 1.1.

8.24 Parameter Direction Type

Super Class

n/a: Enumeration

Description

This enumeration defines for Work Breakdown Element Parameter instances if the parameter represents an input,

output, or input as well as output.

Enumeration Literals

• in A Work Breakdown Element Parameter instance with this direction value represents an input.

• out A Work Breakdown Element Parameter instance with this direction value represents an output.

• inout A Work Breakdown Element Parameter instance with this direction value represents an input and

output.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 42 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

Work Breakdown Element

Parameter (in)

Association spem2Input n/a

Work Breakdown Element

Parameter (out)

Association spem2Output n/a

Work Breakdown Element

Parameter (inout)

Association spem2InOutput n/a

8.25 Optionality Type

Super Class

n/a: Enumeration

Description

This enumeration provides the values for the Work Breakdown Element Parameter attribute optionality.

Enumeration Literals

• mandatory It is mandatory to provide the Work Product specified in this parameter as input or to provide

an instance of the Work Product as output respectively.

• optional It is optional to provide the Work Product specified in this parameter as input or to provide an

instance of the Work Product as output respectively.

8.26 Phase

Super Class

Work Breakdown Element

Description

Phase is a special Work Breakdown Element for which the default value for its attribute isRepeatable is ‘False’. It

has been included into the meta-model for convenience because it represents a very commonly used kind of Work

Breakdown Element.

Attributes

No additional attributes.

Associations

No additional associations.

Semantics

Phase represent a significant period in a project, ending with major management checkpoint, milestone or set of

Deliverables. It is included in the model as a predefined special Work Breakdown Element, because of its

significance in defining breakdowns.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 43 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Phase WorkBreakdownElement spem2Phase

Changes from previous SPEM

Phase is unchanged from SPEM 1.1 except it is represented as a work breakdown element for which its work

breakdown element kind is set to “Phase”.

8.27 Iteration

Super Class

Work Breakdown Element

Description

Iteration is a special Work Breakdown Element for which the default value for its attribute isRepeatable is ‘True’. It

has been included into the meta-model for convenience because it represents a very commonly used kind of Work

Breakdown Element.

Attributes

No additional attributes.

Associations

No additional associations.

Semantics

Iteration groups a set of nested Activities that are repeated more than once. It represents an important structuring

element to organize work in repetitive cycles.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Iteration WorkBreakdownElement spem2Iteration

Examples

The concept of Iteration can be associated with different rules in different methodologies. For example, the IBM

Rational Unified Process method framework (RUP) defines a rule that Iterations are not allowed to span across

Phases. In contrast IBM Global Services Method (GS Method) based method frameworks this rule does not apply

and Iteration can be defined which nest Phases. Rules like these, which play an important role for each individual

method and are therefore not enforced by this meta-model. Instead, process authors are expected to follow and

check these rules manually.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 44 of 85

Changes from previous SPEM

Iteration is unchanged from SPEM 1.1 except it is represented as a work breakdown element for which its work

breakdown element kind is set to “Iteration”.

8.28 Activity

Super Class

Work Breakdown Element

Classifier

(from Constructs)

ProcessElement

BreakdownElement

Step

*

0..1

+subStep
*

0..1

Activity

1

*
+step

*

Tool

* **

+usedTool

*

Iteration
Phase

WorkBreakdownElementKind

{ordered, subsets ownedElement}

1

WorkBreakdownElement

0..1* 0..1*

StateMachine

0..1 10..1 1

Figure 19 Activity taxonomy and key relationships

Description

An Activity is a concrete Work Breakdown Element that describes the work being performed by Roles. An Activity

may consist of atomic elements called Steps.

Attributes

No additional attributes.

Associations

• ownedStep: Step Steps to be performed for Activity.

• ownedParameter:

WorkBreakdownParameter

Define associated input/output Work Product elements.

• usedTool: Tool An Activity can recommend a specific set of tools to be used to support the

Activity.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 45 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

Activity WorkBreakdownElement spem2Activity

Examples

Figure 20 Activity with related content elements

represented using the UML 2.0 SPEM 2.0 Profile.

Changes from previous SPEM

Activity in SPEM 2.0 can have nested steps and also be associated to tools.

8.29 Step

Super Class

Process Element

Description

A Step organizes an Activity’s description into parts or sub-units of work. Steps can describe sub-steps nested into

Steps.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 46 of 85

Attributes

• Execution Type This attribute represents the execution type as specified by

the enumeration execution type.

• isOptional: Boolean Indicates whether the step is optional or mandatory.

Associations

• subStep: Step Steps can describe sub-steps nested into steps.

Semantics

A Step describes a meaningful and consistent part of the overall work described for an Activity. The collection of

Steps defined for an Activity represents all the work that should be done to achieve the overall development goal of

the Activity. Typical kinds of steps an Activity author should consider are:

• Thinking steps: where the individual roles understand the nature of the activity, gathers and examines the input

workproducts, and understands the expected output workproducts.

• Performing steps: where the individual roles create or update some workproducts.

• Reviewing steps: where the individual roles inspects the results against some criteria.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Step Process Element spem2Step

Changes from previous SPEM

Step is unchanged from SPEM 1.1 except that Steps may be nested.

8.30 Execution Type

Super Class

n/a: Enumeration

Description

This enumeration provides the values for the Step attribute Execution Type.

Enumeration Literals

• Machine execution Execution may be performed by a system.

• Human execution Execution requires human intervention.

8.31 Process Package

Super Class

Package

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 47 of 85

Package
(f rom Constructs)

*

0..1

/nestedPackage

* {subsets ownedMember}

nestingPackage

0..1 {subsets namespace}

Namespace
(from Constructs)

PackageImport
(f rom Constructs)

1

importedPackage

1 {subsets target}

1 *

importingNamespace

1 {subsets source,

subsets owner}

packageImport

*{subsets

ownedElement}

Process

Diagram
(f rom UML2DiagramInterchange)

ProcessElement

ProcessPackage

*1

+ownedDiagrams

*{redefines

ownedMember}

+owningProcessPackage

1 {subsets

owningPackage}

*1

+ownedProcessMember

*{redefines

ownedMember}

+owningProcessPackage

1 {subset

owningPackage}

BreakdownElementUseProcessComponent

0

0..1

+nestedProcessComponent

0 {redefines nestedPackage}

+nestingPackage

0..1 {subsets namespace}

*
1

+ownedProcessMemberUse

*

+owningProcessComponent

1 {subset

owningProcessPackage}

Figure 21 Process Package structure

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 48 of 85

Description

Process Package is a special Package that contains Process Elements and UML 2.0 Diagram Interchange elements.

It redefines the owned Member association to allow elements of these two types. Process Package extends from the

Package element from UML 2.0. It is a container that maintains base process elements used to define process

structure. In addition, Process Package may also contain sub Process Packages, Process Components and Processes

as it may be used to package an entire process library.

Attributes

• description: String A Process Package can have a human readable

description of the package. Normally this

description is expected to be one or two paragraphs

in length; however there is no restriction on size

specified by this document.

Associations

• ownedProcessElements: ProcessElement A Process Package can contain Process Elements which are used to

define Processes. A Process Element instance can be part of only

one Process Package instance.

• ownedDiagrams: Diagram A Process Package can contain UML 2.0 Diagram Interchange

diagrams which contain any number of diagram elements.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

ProcessPackage Package spem2ProcessPackage

Changes from previous SPEM

Package is renamed to Process Package in SPEM 2.0.

8.32 Process Component

Super Class

Process Package

Description

A Process Component describes a reusable cluster of work breakdown elements. Process Components express and

communicate process knowledge for a key area of interest such as a Discipline. They are also used as building

blocks to assemble Processes or larger Process Components ensuring optimal reuse and application of the key

practices they express.

 A Process Component defines a set of Work Product Ports that define the inputs and outputs for a Process

Component. There might be many components defining the same Work Product Ports, but using different

workflows to achieve similar outputs for similar inputs. Acting as gray box reusable assets, Process Components

can be utilized in Processes or be combined with other process components using the Work Product Ports with or

without modifying the process workflow within the Process Component.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 49 of 85

Guidance

Category

ProcessComponent
*

*

+guidance

*

*

*

*

+category

*

*

Figure 22 Process Component categories and guidance association

Attributes

No additional attributes

Associations

• ownedUseElement:BreakdownElementUse This association defines a specialized Process Component’s new

Breakdown Element Uses and Work Sequences that contribute

to the general Process Component.

• suppressed:BreakdownElementUse This defines any use element that will be hidden from the

process component workflow structure interpretation. In

addition, a suppressed use element is not visible to any

extending Process Components.

• ownedPort: WorkProductPort This association defines the ports required or provided by the

Process Component. They define work product types used,

produced, or changed by the Process Component.

• guidance:Guidance A Process Component can be related to many guidances process

elements.

• category:Category A Process Component can be categorized by many categories.

Semantics

Process Component Extension

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 50 of 85

Process
Component 1

Process
Component 2

general

specific

<<spem2Extension>>

Figure 23 Process Component extension

Process Component work flow cluster definition may be inherited and extended by another Process Component

through Extension much the same as extension between Breakdown Elements. The specific Process Component

may extend the general process component workflow structure by defining new work sequence or breakdown use

element instances within the workflow. The specific Process Component may also suppress inherited work

sequence or breakdown use element instances. No modification is allowed to attribute values and association

instances for inherited breakdown elements. However, a breakdown use element may have its base element

redefined in the specific Process Component. New breakdown use elements defined within the specialized Process

Component will contribute to the general Process Component work breakdown structure.

Specialized Process Components apply the following rules for attribute and association derivation:

attribute values Values from the general Process Component are inherit and used to

populate the specific Process Component. If a value is defined in

the specific Process Component, then value from general Process

Component is ignored.

association instances Association instances defined in the general Process Component are

inherited by the specific Process Component. The specific Process

Component may add additional association instances or suppress

inherited instances.

Process Components may also define a suppress association to its breakdown usage elements so they are not

included in a consolidated view of the Process Component’s workflow. The suppress association may reference to

all usage element owned by existing Process Component. In addition, it may include all visible usage element

reference from extending general Process Component. The inherited usage elements that have been suppressed will

no longer be visible or used for all process components extending current component package. For all work

breakdown use element, if it is defined as part of the suppress association, then all sub work breakdown use element

associated with it are automatically set as suppressed.

A Process Component may not reuse itself or any process component that extends from it. Such a constraint is

defined to avoid a recursive loop within the work break down structure hierarchy.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 51 of 85

Process Component 1

Process Component 2

Phase 1

<<PhaseUse>>

Iteration 1

<<IterationUse>>

+sub workbreakdown

Iteration 2

(f rom Process Component 2)

<<IterationUse>>

+sub workbreakdown

<<spem2Extension>>

Activity 11

<<Activ ity Use>>

+sub workbreakdown

Activity 12

<<Activ ity Use>><<<<spem2f inishToStart>>>>

Activity 2

(f rom Process Component 2)

<<Activ ity Use>>

+sub workbreakdown

<<<<spem2f inish2Start>>>>

Figure 24 Definition View

Phase 1
<<PhaseUse>>

Iteration 1
<<IterationUse>>

+sub workbreakdown

Iteration 2
<<IterationUse>>

+sub workbreakdown

Activity 11
<<Activity Use>>

+sub workbreakdown

Activity 2
<<ActivityUse>>

+sub workbreakdown

Activity 12
<<Activity Use>><<<<spem2finishToStart>>>> <<<<spem2finish2Start>>>>

Figure 25 Consolidated Workflow View for Specific Process Component

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 52 of 85

Process Component 1

Process Component Use 2

Process Component Use 3

Activity 11

<<Activity Use>>

Activity 3
<<ActivityUse>>

Activity 12
<<Activity Use>>

Activity 5
<<ActivityUse>>

Activity 2
<<ActivityUse>>

<<spem2FinishToStart>>

<<spem2FinishToStart>>

Activity 4
<<ActivityUse>>

<<spem2FinishToStart>>

<<spem2FinishToStart>>

<<spem2FinishToStart>>

Figure 26 Definition View

Activ ity 12

<<Activity Use>>

Activ ity 11

<<Activity Use>>

Activ ity 2

<<ActivityUse>>

<<spem2FinishToStart>>

Activ ity 5

<<ActivityUse>>

<<spem2FinishToStart>>

Activ ity 4

<<ActivityUse>>

<<spem2FinishToStart>>

Activ ity 3

<<ActivityUse>>

<<spem2FinishToStart>>

<<spem2FinishToStart>>

Figure 27 Consolidated View

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 53 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

ProcessComponent Process Package spem2ProcessComponent

Examples

Examples of process components include "use case-based requirements management,” “develop components,”

“validate build,” or "ongoing management and support."

Rationale

Process Components provide a key process modeling mechanism to construct reusable building blocks of work

breakdown structures.

Changes from previous SPEM

Process Component in SPEM 2.0 replaces the flawed self-containment constraints and unification mechanism of

SPEM 1.1 with ports concepts.

8.33 Work Product Port

Super Class

Process Element

Description

A Work Product Port defines the work products input and outputs for a Process Component. It is defined based on

exactly one type of Work Product and defines for exactly one Process Component if this Work Product is to be

expected as a required (input) or supplied (output) by the Process Component. It also specifies if this input or output

is optional or not.

Attributes

• portKind : WorkProductPortKind This attribute defines if the port represents and input or output Work

Product.

• isOptional: Boolean This attribute specifies if the port represents a mandatory or optional

Work Product input or output.

Associations

• portType: WorkProduct This association defines the exact type of the Work Product Port.

Changes from previous SPEM

WorkProduct Port is new in SPEM 2.0.

8.34 WorkProduct Port Connector

Super Class

Process Element

Description

A WorkProduct Port Connector is used to connect Work Product Ports for assembling Process Components.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 54 of 85

Changes from previous SPEM

WorkProduct Port Connector is new in SPEM 2.0.

8.35 Process

Super Class

Process Component

Description

A Process is a special Process Component intended to stand alone as a complete, end-to-end process. It is

distinguished from normal process components by the fact that it is not intended to be composed with other

components. In a tooling context, the instance of Process is the root of the process model, from which a tool can

start to compute the transitive closure of an entire process.

Attributes

No additional attributes.

Associations

• includesProcessComponents: Process

Component

Provides traceability for a Process document which Process

Components have been used for defining the process.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

Process Process Component spem2Process

Changes from previous SPEM

Process is unchanged from SPEM 1.1.

8.36 Breakdown Element Use

Super Class

Classifier

Description

A Breakdown Element Use is an abstract generalization that references a concrete Breakdown Element. A

Breakdown Element Use provides a proxy-like representation of a Breakdown Element within process component

workflows. A Breakdown Element Use can modify the Breakdown Element’s structural relationships upon usage in

a process component.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 55 of 85

BreakdownElementUse

Classifier

(from Constructs)

ActivityUse

ActivitySequenceType

finishToStart

finishToFinish

startToStart

startToFinish

<<enumeration>>

ParameterDirectionType

in

out

inout

<<enumeration>>
OptionalityType

mandatory

optional

<<enumeration>>

Constraint

(from Constructs)

WorkSequence

linkType : ActivitySequenceType

WorkBreakdownParameterUse

direction : ParameterDirectionType

optionality : OptionalityType

WorkBreakdownElementUse

*

1

+postcondition
*

1

*

1

+precondition
*

1

*

1

+linkToPredecessor
*

+successor

1

*

1

+linkToSuccessor
*

+predecessor

1

*

0..1

+nestedWorkBreakdownElement*

{order, subsets}

0..1

*

1

+ownedParameter*

{ordered, subsets ownedElement}

1

PerformerRoleMapUse
*

1

+performerRole

*

1

WorkProductUse

1

+parameterType

1
*

*

+impactedWorkProduct *

*

RoleUse

1

*

1

*

ResponsibleRole

MapUse
*1

+responsibleRole

*1

1

*

1

*

+performs

+responsible

Figure 28 Use Elements

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 56 of 85

Classifier
(from Constructs)

ProcessElement

BreakdownElement

BreakdownElementUse

Activity

ActivityUse

1

*

1

*

WorkProduct

WorkProductUse

1

*

1

*

WorkBreakdownElementUse

Role

RoleUse

1

*

1

*

WorkBreakdownElement

Iteration

IterationUse

1

*

1

*

Phase

PhaseUse

1

*

1

*

Figure 29 Key relationships of Breakdown

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 57 of 85

ActivityUse

RoleUse

Classifier

(from Constructs)

PhaseUse IterationUse

WorkProductUse

WorkBreakdownElementUse

BreakdownElementUse

ProcessComponentUse

*

0..1

*

{ordered, subsets, ownedMember}

0..1

Figure 30 Breakdown Element Use structure

Attributes

• presentationName: String Every Breakdown Element Use can maintain a presentation

name which is externally visible/published name of the

element, which might be localized.

• hasMultipleOccurrences: Boolean This attribute maps to the respective attribute in Breakdown

Element and is modifiable for the Use element.

• isOptional:Boolean This attribute maps to the respective attribute in Breakdown

Element and is modifiable for the Use element.

Associations

• baseElement: BreakdownElement Each Breakdown Element Use references one Breakdown Element with

the same element type. For example, Role Use can only reference Role.

• suppressed:

BreakdownElementUse

Suppressed defines the breakdown element use associations that will be

hidden from the process component workflow interpretation.

Semantics

Breakdown Element Use can be characterized as a reference or instance object to a Breakdown Element which has

its own properties and associations. When a breakdown element use is created it shall be provided with attribute

values and association instances defined for the referenced breakdown element. In other words, each association

defined for a referenced breakdown element will be represented as associations for the breakdown element use in the

process. Multiple breakdown element use elements may reference the same base breakdown element when

constructing a process. Each breakdown element use instance can be part of only one process instance. Since

sequencing breakdown elements is always in context of a process or process component, the pattern used here has

separate classes for usage (Breakdown Element Use) and reusable definition (Breakdown Element). The meta-model

supports tailoring at the use level to allow process engineers to customize a use instance as it is being applied in a

process.

Examples

In this example from Macroscope, the “Define Owner Requirement” activity has an optional step “Define Owner

Models” with circumstances of use presented in the process description.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 58 of 85

Figure 31 Optional work breakdown elements

Changes from previous SPEM

Breakdown Element Use is new in SPEM 2.0.

8.37 Work Product Use

Super Class

Breakdown Element Use

Description

A Work Product Use is a concrete Process Element Use object that represents an instance of a Work Product within

a process or process component. A Work Product Use represents the occurrence of a real work product consumed,

produced or modified when performing an activity when the process is instantiated.

Attributes

No additional attributes.

Associations

• baseElement: Work Product This association represents the reference from Work Product Use to

the Work Product it refers to. Every Work Product Use can

reference only one WorkProduct. However, a WorkProduct can be

represented by many Work Product Uses.

• subWorkProducts: WorkProductUse This association maps to the respective association in Work Product

and is modifiable for the Use element.

• workProductKind: WorkProductKind This association maps to the respective association in Work Product

and is modifiable for the Use element.

• stateMachine: StateMachine This association maps to the respective association in Work Product

and is not modifiable for the Use element.

• impactedWorkProduct: WorkProduct This association represents an impacts dependency amongst Work

Product Uses. It indicates that content or information of one

referenced Work Product Use is being used to produce, refine,

validate, etc. for the other referenced Work Product Use. For

example, a link from one Work Product Use to another could

indicates that one Work Product is required as input to an Activity

that produces the related Work Product (‘impacts’ role end). It

could also mean that a change on one Work Product instance may

affect a change on the related product.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 59 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

WorkProductUse Breakdown Element Use spem2WorkProductUse

subWorkProduct Composite Aggregation n/a n/a

impactedWorkProduct Dependency spem2ImpactedWorkProduct n/a

baseElement Dependency trace n/a

Examples

Figure 32 Macroscope example showing work product impact dependencies

Rationale

A WorkProduct definition can be reused as multiple usage instances. See Breakdown Element Use also.

Changes from previous SPEM

WorkProduct Use is new in SPEM 2.0.

8.38 Responsible Role Map Use

Super Class

Classifier

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 60 of 85

Description

A Responsible Role Map Use is an instance representation of a Responsible Role Map element in context of a role’s

association to work product.

Attributes

No additional attributes.

Associations

• responsibleKind:

ResponsibleRoleKind

This association maps to the respective association in

Responsible Role Map and is modifiable for the Use element.

• role: Role This association maps to the respective association in

Responsible Role Map and is not modifiable for the Use

element.

Changes from previous SPEM

Responsible Role Map Use is new in SPEM 2.0.

8.39 Role Use

Super Class

Breakdown Element Use

Description

A Role Use is an instance representation of a role element. Each Role Use element may be defined as the performer

role of a Work Breakdown Element Use or a responsible role of a Work Product Use.

Attributes

No additional attributes.

Associations

• baseElement: Role This association represents the reference from Role Use to the

Role it refers to. Every RoleUse can reference only one Role.

However, a Role can be represented by many Role Uses.

• /responsible: WorkProduct This association maps to the respective association in Role and

is modifiable for the Use element.

• /performs: WorkBreakdownElement This association maps to the respective association in Role and

is modifiable for the Use element.

• roleKind: RoleKind This association maps to the respective association in Role and

is modifiable for the Use element.

• qualification: Qualification This association maps to the respective association in Role and

is modifiable for the Use element.

• team: Team This association maps to the respective association in Role and

is modifiable for the Use element.

Semantics

A RoleUse represents an instance object to a role without defining the specifics of the role itself in a process.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 61 of 85

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

RoleUse Breakdown Element

Use

spem2RoleUse

Responsible Association spem2_Responsible n/a

role Dependency trace n/a

Rationale

A Role definition can be reused as multiple usage instances. See Breakdown Element Use also.

Changes from previous SPEM

Role Use is new in SPEM 2.0.

8.40 Work Breakdown Element Use

Super Class

Breakdown Element Use

Description

A Work Breakdown Element Use is an abstract generalization that references a concrete Work Breakdown Element.

A Work Breakdown Element Use provides a proxy-like representation of a Work Breakdown Element within

process component workflows. A Work Breakdown Element Use can modify the Work Breakdown Element’s

structural relationships upon usage in a process component. It uses work sequence and nested work breakdown

elements to create the process component’s work breakdown structure and workflow.

Attributes

• kind:WorkBreakdownElementKind This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

• isRepeatable: Boolean This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

• isOngoing: Boolean This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

• isEventDriven: Boolean This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

• hasMilestone: Boolean This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

• milestoneDescription: String This attribute maps to the respective attribute in work breakdown element

and is modifiable for the Use element.

Associations

• nestedWork Breakdown Element:

Work Breakdown ElementUse

This association represents work breakdown element structure nesting. It

defines an n-level hierarchy of work breakdown element grouping.

• linkToPredecessor: WorkSequence This association links a work breakdown element use to its predecessor.

Every work breakdown element use can have predecessor information

associated to it. Specific predecessor information is stored in instances

of the class work sequence, which defines the kind of predecessor

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 62 of 85

another work breakdown element use represents for another work

breakdown element use.

• linkToSuccessor: WorkSequence This association links a work breakdown element use to its successor.

Every work breakdown element use can have successor information

associated to it. Specific successor information is stored in instances of

the class work sequence, which defines the kind of successor another

work breakdown element use represents for another work breakdown

element use.

• performerRole: Role This association maps to the respective association in work breakdown

element and is modifiable for the Use element.

• ownedParameter: Work Breakdown

Element Parameter Use

This association maps to the respective association in work breakdown

element and is modifiable for the Use element.

• stateMachine:State Machine This association maps to the respective association in work breakdown

element and is not modifiable for the Use element.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

MandatoryInput Association spem2MandatoryInput n/a

OptionalInput Association spem2OptionalInput n/a

MandatoryOutput Association spem2MandatoryOutput n/a

OptionalOutput Association spem2OptionalOutput n/a

Changes from previous SPEM

Work Breakdown Element Use is new in SPEM 2.0.

8.41 Work Sequence

Super Class

Process Element

Description

Work Sequence is a Process Element that represents a relationship between two Work Breakdown Element use

instances in which one Work Breakdown Element Use instance depends on the start or finish of the other Work

Breakdown Element instance(s) in order to begin or end.

Attributes

• workSequenceType:

WorkSequenceType

This attribute expresses the type of the Work Sequence relationship by

assigning a value from the Work Sequence Type enumeration.

Associations

• successor:

WorkBreakdownElementUse

This association links a Work Breakdown Element to its

predecessor. Every Work Breakdown Element can have predecessor

information associated to it

• predecessor:

WorkBreakdownElementUse

This association links a Work Breakdown Element to its successor.

Every Work Breakdown Element can have successor information

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 63 of 85

associated to it.

Semantics

The Work Sequence class defines predecessor and successor relations amongst Work Breakdown Elements.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

WorkSequence Classifier spem2WorkSequence n/a

Changes from previous SPEM

Work Sequence replaces Precedes Dependency from SPEM 1.1. Made a bi-directional association for improved

navigability and added the missing fourth type (start-finish).

8.42 Work Sequence Type

Super Class

n/a: Enumeration

Description

Work Sequence represents a relationship between two Work Breakdown Element Use instances in which one Work

Breakdown Element Use (referred to as (B) below) depends on the start or finish of another Work Breakdown

Element Use (referred to as (A) below) in order to begin or end. This enumeration defines the different types of

Work Sequence relationships available in SPEM 2.0 and is used to provide values for Work Sequence’s linkType

attribute.

Enumeration Literals

• finishToStart Work Breakdown Element Use (B) cannot start until Work Breakdown Element Use (A)

finishes. For example, if you have two Work Breakdown Element Uses, "Construct fence"

and "Paint fence," "Paint fence" can't start until "Construct fence" finishes. This is the most

common type of dependency and the default for a new Work Sequence instance.

• finishToFinish Breakdown Element Use (B) cannot finish until Work Breakdown Element Use (A)

finishes. For example, if you have two Work Breakdown Element Uses, "Add wiring" and

"Inspect electrical," "Inspect electrical" can't finish until "Add wiring" finishes.

• startToStart Breakdown Element Use (B) cannot start until Work Breakdown Element Use (A) starts.

For example, if you have two Work Breakdown Elements Uses, "Pour foundation" and

"Level concrete," "Level concrete" can't begin until "Pour foundation" begins.

• startToFinish Breakdown Element Use (B) cannot finish until Work Breakdown Element Use (A) starts.

This dependency type can be used for just-in-time scheduling up to a milestone or the

project finish date to minimize the risk of a Work Breakdown Element Use finishing late if

its dependent Work Breakdown Element Uses slip. If a related Work Breakdown Element

Use needs to finish before the milestone or project finish date, but it doesn't matter exactly

when and you don't want a late finish to affect the just-in-time Work Breakdown Element

Use, you can create an SF dependency between the Work Breakdown Element Use you

want scheduled just in time (the predecessor) and its related Work Breakdown Element Use

(the successor). Then if you update progress on the successor Work Breakdown Element

Use, it won't affect the scheduled dates of the predecessor Work Breakdown Element Use.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 64 of 85

8.43 Performer Role Map Use

Super Class

Classifier

Description

A Performer Role Map Use is an instance representation of a Performer Role Map element in context of role’s

associated Work Breakdown Element Use.

Attributes

No additional attributes.

Associations

• performerKind:

PerformerRoleKind

This attribute maps to the respective association in Performer

Role Kind and is modifiable for the Use element.

Changes from previous SPEM

Performer Role Map Use is new in SPEM 2.0.

8.44 Work Breakdown Parameter Use

Super Class

Classifier

Description

A Work Breakdown Parameter Use defines input/output association between Work Breakdown Element Use and

WorkProduct Use. It is reference to Work Breakdown Parameter defined by the base Work Breakdown Element.

Attributes

• optionality:OptionalityType This attribute maps to the respective attribute in work breakdown

parameter and is modifiable for the Use element.

• direction: ParameterDirectionType This attribute maps to the respective attribute in work breakdown

parameter and is modifiable for the Use element.

Associations

• parameterType: WorkProductUse This association links zero or one Work Product Use instances to a

parameter.

Changes from previous SPEM

Work Breakdown Parameter Use is new in SPEM 2.0.

8.45 Phase Use

Super Class

Work Breakdown Element Use

Description

A Phase Use is an instance representation of a phase element in context of a process or process component. A Phase

Use can form work breakdown structures by nesting and logical grouping of related sub Activities.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 65 of 85

Attributes

No additional attributes.

Associations

No additional associations.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

PhaseUse WorkBreakdownElementUse spem2PhaseUse

baseElement Dependency trace n/a

Rationale

A Phase definition can be reused as multiple usage instances. See Work Breakdown Element Use also.

Changes from previous SPEM

Phase Use is new in SPEM 2.0.

8.46 Iteration Use

Super Class

Work Breakdown Element Use

Description

An Iteration Use is an instance representation of an iteration element in context of a process or process component.

An Iteration Use can form work breakdown structures by nesting and logical grouping of related Work Breakdown

Element Uses.

Attributes

No additional attributes.

Associations

No additional associations.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical Stereotype

IterationUse WorkBreakdownElementUse spem2IterationUse

baseElement Dependency trace n/a

Rationale

An Iteration definition can be reused as multiple usage instances. See Work Breakdown Element Use also.

Changes from previous SPEM

Iteration Use is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 66 of 85

8.47 Activity Use

Super Class

Work Breakdown Element Use

Description

An Activity Use is an instance representation of an Activity element in context of a process or process component.

An Activity Use can form work breakdown structures by nesting and logical grouping of related sub Activities.

Attributes

No additional attributes.

Associations

• precondition: Constraint This association adds an optional pre-condition to an Activity. A pre-

condition defines any kind of constraint that must evaluate to true before the

work described for the Activity can start. For example, a pre-condition could

define that an input Work Product needs to be in a specific state or that other

related work must be in a certain state (e.g. ‘Input document X has been

reviewed and signed by customer AND the work defined by Activity

“Management Review” is complete’) before the work can begin.

• postcondition: Constraint This association adds an optional post-condition to an Activity. A post-

condition defines any kind of constraint that must evaluate to true before the

work described for the Activity can be declared completed or finished and

which other Activities might depend upon (e.g. for their pre-conditions). For

example, a post-condition could define that a work product defined to be the

output must be in a specific state before the Activity can end (e.g. ‘Use Case

must be in state fully described and reviewed by System Analyst’).

• ownedStep: Step This association maps to the respective association in Activity and is

modifiable for the Use element.

• ownedParameter: Work

BreakdownParameterUse

This association maps to the respective association in Activity and is

modifiable for the Use element.

• usedTool: Tool This association maps to the respective association in Activity and is

modifiable for the Use element.

Semantics

Activity Use represents a general unit of work assignable to specific performers represented by Role Use. An

Activity can rely on inputs and produce outputs represented by Work Product Uses.

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

ActivityUse WorkBreakdownElementUse spem2ActivityUse

baseElement Dependency trace n/a

Rationale

An Activity definition can be reused as multiple usage instances. See Work Breakdown Element Use also.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 67 of 85

Changes from previous SPEM

Activity Use is new in SPEM 2.0.

8.48 Process Component Use

Super Class

Work Breakdown Element Use

Description

A Process Component Use represents a Process Component application in any other Process or Process Component

defined by a breakdown structure. In other words, it represents a reference of the Process Component from within

another Process. The Process Component Use can define its own set of relationships such as it own predecessors

and successors as well its own Ports that can be connected within the breakdown structure in which it is defined.

Attributes

• presentationName: String Every Process Component Use can maintain a presentation name

which is externally visible/published name of the process

component, which might be localized.

Associations

• baseProcessComponent:

ProcessComponent

This association represents the reference from the Process

Component Use to the Process Component it refers to.

• suppressed:BreakdownElementUse This defines any use element that will be hidden from the process

component workflow structure interpretation.

• guidance:Guidance This association maps to the respective association in Process

Component and is modifiable for the Use element.

• category:Category This association maps to the respective association in Process

Component and is modifiable for the Use element.

Semantics

If there are three Process Components as shown below in Figure 33, when Component A and Component B are used

within Component C, both Component A use and Component B use can extend their corresponding Process

Components. However, when Component C is used in My Process Component C can extend its corresponding

Process Component, but Component C > Component A use and Component C > Component B use cannot be further

extended although they can be exchanged for another Process Component Use. Note that My Activity > Component

A and My Activity > Component B can be extended from their corresponding Process Components.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 68 of 85

<<Process>>
My Process

<<Process Component>>
Component C

<<Process Component Use>>

Component A

<<Process Component Use>>

Component B

<<Process Component>>

Component A

<<Process Component>>

Component B

<<Process Component Use>>

Component C

<<Process Component Use>>

Component A

<<Process Component Use>>

Component B

<<Activity Use>>
My Activity

<<Process Component Use>>
Component A

<<Process Component Use>>
Component B

<<trace>> <<trace>>

<<trace>>
<<trace>>

<<trace>>

Figure 33 Process Component Use

SPEM 2.0 Profile Notation

Process Element Extended Meta-Class Textual Stereotype Graphical

Stereotype

ProcessComponentUse WorkBreakdownElementUse spem2ProcessComponentUse

Changes from previous SPEM

Process Component Use is new in SPEM 2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 69 of 85

9 Process Enactment

The Process Enactment package introduces process element extensions to guide process engineers and project

managers in tailoring and facilitating process enactment and improvement, but does not attempt to describe a full

enactment system. Software development processes that are created using the Process Modeling package alone are

not always sufficient for enactment. Project managers and practitioners typically have difficulty applying these

processes to their daily activities, making process monitoring and improvement difficult. By allowing process

engineers and project managers to decompose the process into discrete units of work that can be assigned to

individuals and tracked based on the workflow and events defined in the Process Modeling package, this package

enables the formal process to be abstracted from project practitioners.

Project enactment is typically done by creating and assigning a series of tasks and work items for project

practitioners. Adding Tasks and Work Items to the meta-model and allowing them to be associated with Work

Breakdown Elements allows the process to become transparent to the practitioner in an enactment system. The

enactment system would help practitioners focus on their current assignments and avoid process information

overload by filtering the process for practitioners, ensuring that they are provided only the information that they

need when they need it. These Tasks and Work Items also facilitate data rollup and increased process feedback and

improvement by allowing enactment data and metrics to be fed back to the process engineers and project managers

during enactment.

An automated enactment system also needs to be able to interpret the workflow and events defined by process

engineers and project managers to ensure timely information is relayed to project practitioners. A process engineer

is not required to formally define the entire workflow sequence in order for a process to be enactable. An automated

enactment system should be continuously listening for and enacting breakdown element state changes to help

facilitate dynamic process execution. For example, the starting of one Activity may trigger the start or finish of

another Activity. Alternatively, a state change of a WorkProduct may trigger a state change of another

WorkProduct, Activity, or Task. An enactment system should also allow activities and decision nodes that have

constraints (e.g. precondition or postcondition) defined to listen for events that would allow their constraints to

evaluate to true. Process engineers may also decide to not have all state changes and constraints be automated. For

those constraints that are not able to be evaluated by the system, an enactment system would still be able to notify a

practitioner that their attention is required to help facilitate process enactment.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 70 of 85

PriorityType
<<Enumeration>>

High

Medium

Low

Abandoned

ComplexityType
<<Enumeration>>

Eas y

Medium

Difficul t

WorkBreakdownElementUse

isPlanned : Boolean = true

complexity : ComplexityType

weight : Integer

priority : PriorityType
state : State

startDate : Timestamp

finishDate : Timestamp

duration : Float = 1.0

effort : Float

Task
0

+nestedTask

0

{redefines

nestedWorkBreakdownElement}

*

*

+relatedTask

*

*

*

*

+enactedWorkBreakdownElementUse*

*

ActivityUse
(from ProcessModeling)

Figure 34 Task Activity Use

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 71 of 85

State
weight : Integer

StateMachine
(from ProcessModeling)

WorkProductUse
state : State

uriLocalization : String

WorkItemKind

0.. 1

*

+usedStateMachine0.. 1

*

WorkItem

priority : PriorityType

state : State

effort : Float

*

*

+relatedWorkProductUse*

*

1*

+workItemKind

1*

BreakdownElementUse

*

*

+referencedWorkItemKind*

*

*

*

+relatedWorkItem*

*

Figure 35 Work Item Breakdown Element Use

WorkBreakdownElementUse

WorkBreakdownElementUseAssignment

*

1

+participantAssignment

*

1

WorkItem

* **

+referencedWorkItem

*

Participant

1

*

+participant
1

*

*

*

+assignedParticipant*

*

Role
(from ProcessModeling)

1..*

*

+participatingRole

1..*

*

* ***

+assignedRole

Figure 36 Participant Assignments

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 72 of 85

9.1 Work Breakdown Element Use

Super Class

Breakdown Element Use

Description

A Work Breakdown Element Use for enactment extends the modeling Breakdown Element Use by adding additional

attributes and associations to capture enactment specific data and relationships for planning and reporting purposes.

Attributes

• isPlanned: Boolean Defines if the element is to be included in a project plan.

When the isPlanned attribute is set to False for an instance of a Work

Breakdown Element Use, then the element is not included when a

project plan is generated from a work breakdown structure that contains

the element.

• complexity: ComplexityKind Defines the complexity of the Work Breakdown Element Use to show its

degree of difficulty.

This attribute is useful for participant assignments during enactment.

For example, an Activity that is of medium priority and high complexity

would suggest more skilled people and less rigor during enactment.

• weight: Integer Defines the weighting of the Work Breakdown Element Use to show its

representation of relative completion of its nesting Work Breakdown

Element Use. For example, a weight of 10 can be used to indicate that

the completion of the nested Work Breakdown Element Use represents

10% completion of its nesting Work Breakdown Element Use.

• priority: PriorityType Defines the priority of the Work Breakdown Element Use to show its

importance relative to other Work Breakdown Element Uses in the

process.

• state: State Defines the current state of the Work Breakdown Element Use.

An enactment system would be able to determine the state of a Work

Breakdown Element Use based on the actions and constraints defined

for the Work Breakdown Element Use State Machine defined in the

Process Modeling package.

• startDate: Timestamp Defines the start date for the Work Breakdown Element Use. If the

Work Breakdown Element Use has started being enacted, then this date

can be considered as the actual start date for the Work Breakdown

Element Use, otherwise the date is considered as a planned date.

• finishDate: Timestamp Defines the finish date for the Work Breakdown Element Use. If the

Work Breakdown Element Use has completed its enactment, then this

date can be considered as the actual finish date for the Work Breakdown

Element Use, otherwise the date is considered as a planned date.

• duration: Float Defines the duration of the Work Breakdown Element Use. Until the

Work Breakdown Element Use has completed its enactment, duration

could be an exact recommended duration, or an approximate relative

duration. Duration can be used to derive a project timeline when

generating a project plan if no startDate or finishDate have been defined.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 73 of 85

• effort: Float Defines the effort required to complete the Work Breakdown Element

Use.

Associations

• participantAssignment: Work

Breakdown Element Use

Assignment

This association defines the Participants that are assigned to the Work

Breakdown Element Use.

9.2 Task

Super Class

Activity Use

Description

Task is a special kind of Activity Use for enactment that does not have a Base Element or any nested Work

Breakdown Element Uses.

Attributes

No additional attributes

Associations

• enactedWorkBreakdownElementUse:

Work Breakdown Element Use

This association defines a link between the Task and the Work

Breakdown Element Uses that it enacts.

Creating a link between the Task and its Work Breakdown Element

Uses allows a process engineer, project manager, or enactment

system to provide participants with a concise view of the work that

they are to perform.

• relatedTask: Task This association links a Task and its related Tasks.

Rationale

Task is a special light-weight enactment Activity Use that allows process engineers and project managers to further

define/tailor their work breakdown structures to meet their specific enactment needs and facilitate accurate data

capture, process monitoring, and enactment. Tasks are created to guide and capture the real tasks that project

participants perform during process enactment. When a Task is defined and associated with Work Breakdown

Elements, the Task’s definition is constructed such that it only contains the information necessary to perform the

task reducing the effort required for participants to distill large amounts of process documentation and relate it to

their daily tasks.

9.3 Breakdown Element Use

Super Class

Classifier

Description

A Breakdown Element Use for enactment extends the modeling Breakdown Element Use by adding additional

associations to capture enactment specific relationships.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 74 of 85

Attributes

No additional attributes.

Associations

• referencedWorkItemKind:

WorkItemKind

This association defines a link between the Breakdown Element Use and

the kinds of work items that are to be referenced during its enactment.

• relatedWorkItem:Work Item This association links a Breakdown Element Use and its related Work

Items.

9.4 Work Item

Super Class

Breakdown Element Use

Description

Work Item is a general purpose light-weight enactment Breakdown Element Use that does not have a Base

Breakdown Element. It allows process engineers and project managers to identify and track work to be done during

process enactment that does not justify the creation of Activities, Tasks, or Work Products. A Work Item instance

has its state machine and custom properties dictated by its workItemKind.

Attributes

• priority: PriorityType Defines the priority of the Work Item to show its importance relative to

other Work Items.

• state: State Defines the current state of the Work Item.

• effort: Float Effort required to implement the Work Item.

Associations

• relatedWorkProductUse: Work

Product Use

This association links a Work Item and its related Work Products.

• workItemKind: Work Item Kind This association defines the Work Item’s kind. The kind of work item

dictates the State Machine and properties that are used by the Work Item

(see Section XX, Work Item Kind).

• assignedParticipant: Participant This association defines the Participants that are assigned to implement

the Work Item.

Rationale

Work Items are flexible in that they can represent bugs, requirements, change requests, ideas, suggestions, risks,

issues, etc. and can be created or assigned to one or more participants at any point in time. Instead of incorporating

a full-fledged work item management system, an enactment system may choose to reference an external system for

the management of such work items.

Examples

As bugs are discovered during enactment, a work item could be created as a bug in Bugzilla or Microsoft Visual

Studio Team System and then later assigned to participants to fix and then test while being monitored by the

enactment system.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 75 of 85

9.5 Work Item Kind

Super Class

Process Element

Description

A Work Item Kind describes the type of a Work Item. When a Work Item is associated to a Work Item Kind, the

Work Item Kind dictates its state machine and custom properties to the Work Item. This ensures that all Work Items

of the same kind have the same state machine and share a common set of custom properties.

Attributes

No additional attributes.

Associations

• usedStateMachine: State

Machine

This association defines the State Machine that is to be used by the

Work Items of the Work Item Kind.

Examples

The Microsoft Solution Framework for CMMI Process Improvement has the following Work Item Types: Bug,

Change Request, Issue, Requirement, Review, and Risk. Each Work Item Type has its own state machine and set of

fields.

9.6 Work Product Use

Super Class

Breakdown Element Use

Description

A Work Product Use for enactment extends the modeling Work Product Use by adding additional attributes to aid

enactment.

Attributes

• uriLocalization: String Represents the location where the Work Product and its accompanying

files can be located.

• state: State Defines the current state of the Work Product.

Associations

No additional associations.

9.7 State

Super Class

State (from UML 2.0)

Description

A State for enactment extends the UML 2.0 State by adding an additional attribute to aid enactment.

Attributes

• weight: Integer Defines the weighting of the State to show its representation of relative

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 76 of 85

completion of its associated element. For example, a Work Product state

Draft may have a weight of 50 to indicate that a Work Product Use is

considered 50% complete when its state is set to Draft. This attribute

can be used by an enactment system to estimate the percentage

completion of WorkProducts and their composite WorkProducts.

Associations

No additional associations.

9.8 Participant

Super Class

Classifier

Description

A Participant represents a person, system, or team that is assigned to a Work Breakdown Element Use or Work Item

during process enactment.

Attributes

No additional attributes.

Associations

No additional attributes.

9.9 Work Breakdown Element Use Assignment

Super Class

Classifier

Description

Work Breakdown Element Use Assignment represents a relationship between a Work Breakdown Element Use and

its assigned Participants.

Attributes

No additional attributes.

Associations

• participant: Participant This association defines the link between the Work Breakdown Element

Use and a Participant.

• participatingRole: Role This association defines the Roles that the Participant is to perform

during the enactment of the Work Breakdown Element Use.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 77 of 85

10 Using SPEM 2.0 as a UML 2.0 Superstructure Profile

TBA

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 78 of 85

Appendices

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 79 of 85

Appendix A Migrating SPEM 1.1 Models to SPEM 2.0

SPEM version 2.0 is a major revision of SPEM version 1.1. Many issues and defects have been fixed in version 2,

new capabilities have been added, as well as gaps and limitations of version 1.1 have been closed. SPEM 1.1 was

based on UML 1.4 and SPEM 2.0 is now based on UML version 2.0, which represents a major revision of the UML.

The following table provides an overview to how the concrete SPEM 1.1 meta-classes defined in this Specification

map to SPEM 2.0 classes. It lists the SPEM 1.1 concepts in the order as they have been defined in the SPEM 1.1

Specification.

SPEM 1.1 SPEM 2.0 Comment

External Description <deprecated> Description is now an attribute for Process Elements and

Process Components.

Guidance Guidance No change from SPEM 1.1.

Guidance Kind Guidance Kind No change from SPEM 1.1.

Categorizes

Dependency

<deprecated> Made a direct association in SPEM 2.0 for simplicity.

Impacts Dependency <deprecated> Made a direct association in SPEM 2.0 for simplicity.

Import Dependency <UML 2.0 Infrastructure>

Element Import

Reused from UML 2.0 Infrastructure.

Precedes Dependency Work Sequence Made a bidirectional association for improved navigability.

Added missing fourth type (start-finish).

Refers To Dependency <deprecated> This dependency required modeling redundant information

in the process model which leads to maintenance problems.

Trace Dependency <deprecated> Deprecated because of lack of semantics and overlap with

other concepts (such as Impacts).

Work Product Work Product No change from SPEM 1.1.

Work Product Kind Work Product Kind No change from SPEM 1.1.

Work Definition WorkBreakdownElement Made it abstract class to avoid the confusion of SPEM 1.1

of when to use Activity and when to use Work Definition.

Introduced more subclasses to support commonly

understood WorkBreakdownElements such as phase,

iteration and activity.

Activity Parameter Work Breakdown

Parameter

Renamed Work Breakdown Parameter in SPEM2.0 because

every Work Breakdown Element can have parameters not

only activities.

Activity Activity No change from SPEM 1.1.

Step Step No change from SPEM 1.1.

Process Performer <deprecated> SPEM 2 does not separate the Process Performer and

Process Role anymore, but allows assigning Roles to any

Work Breakdown Element reducing the number of objects

defined for processes as well as increasing reusability of

these concepts. For modeling more general roles or role

groupings, SPEM 2.0 introduces the concepts of Role Kinds

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 80 of 85

and Team.

Process Role Role Renamed Role in SPEM 2.0.

Package Process Package Renamed Process Package in SPEM 2.0. Derived from the

UML 2.0 package.

Process Component Process Component Removed flawed self-contained constraints and

“Unification” mechanism of SPEM 1.1 and replaced with

Ports as part of the component definition.

Process Process No change from SPEM 1.1.

Discipline Category Defining discipline as a specialization of Package in

SPEM 1.1 created unnecessary restrictions on the way

elements could be packaged. In SPEM 2 Disciplines can be

represented as a category of kind discipline that allows any

element in any package to be categorized to be part of a

specific Discipline independent of its physical location.

Phase Phase

No change from SPEM 1.1.

Lifecycle <deprecated> Each process would represent a complete end to end life

cycle and it would be redundant to maintain lifecycle

element.

Iteration Iteration

No change from SPEM 1.1.

Precondition Precondition No change except for reusing UML 2.0 constraints.

Goal Postcondition Renamed Postcondition in SPEM2.0.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 81 of 85

Appendix B SPEM 2.0 UML 2.0 Profile Summary

TBA

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 82 of 85

Appendix C Process Diagrams for SPEM 2.0

SPEM 2.0 utilizes the UML 2.0 Diagram Interchange. Diagrams defined in this format can be stored in a Process

Package.

TBA

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 83 of 85

Appendix D Standard Guidance Kinds and Category Kinds

The following section provides some examples of Guidance Kinds and Category Kinds:

D.1 Standard Guidance Kinds

The following table provides the semantics for commonly used guidance kinds.

Guidance Kind Description

Checklist A Checklist is a specific type of guidance that identifies a series of items that

need to be completed or verified. Checklists are often used in reviews such as

walkthroughs or inspections.

Concept

A Concept is a specific type of guidance that outlines key ideas associated with

basic principles underlying the referenced item. Concepts normally address more

general topics than Guidelines and span across several work product and/or

activities.

Estimate (metric kind)

An Estimate is a specific type of Guidance that provides sizing measures, or

standards for sizing the work effort associated with performing a particular piece

of work and instructions for their successful use. It may be comprised of

estimation considerations and estimation metrics.

Estimation Considerations

(metric kind)

Estimation Considerations qualify the usage and application of estimation metrics

in the development of an actual estimate.

Estimating Metric (metric

kind)

Estimation Metric describes a metric or measure that is associated with an

element and which is used to calculate the size of the work effort as well as a

range of potential labor.

Example

An Example is a specific type of Guidance that represents a typical, partially

completed, sample instance of one or more work products or scenario like

descriptions of how Task may be performed. Examples can be related to Work

Products as well as Tasks that produce them as well as any other Content

Element.

Guideline

A Guideline is a specific type of guidance that provides additional detail on how

to perform a particular activity or grouping of activities (e.g. grouped together as

iterations) or that provides additional detail, rules, and recommendations on work

products and their properties. Amongst others, it can include details about best

practices and different approaches for doing work, how to use particular types of

work products, information on different subtypes and variants of the work

product and how they evolve throughout a lifecycle, discussions on skills the

performing roles should acquire or improve upon, measurements for progress and

maturity, etc.

Practice

A Practice represents a proven way or strategy of doing work to achieve a goal

that has a positive impact on work product or process quality. Practices are

defined orthogonal to methods and processes. They could summarize aspects

that impact many different parts of a method or specific processes. Examples for

practices would be "Manage Risks", "Continuously verify quality",

"Architecture-centric and component-based development", etc.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 84 of 85

Guidance Kind Description

Report

A Report is a predefined template of a result that is generated on the basis of

other work products as an output from some form of tool automation. An

example for a report would be a use case model survey, which is generated by

extracting diagram information from a graphical model and textual information

from documents and combines these two types of information into a report.

Reusable Asset

A Reusable Asset provides a solution to a problem for a given context. The asset

may have a variability point, which is a location in the asset that may have a

value provided or customized by the asset consumer. The asset has rules for

usage which are the instructions describing how the asset should be used.

Roadmap

A Roadmap is a special Guidance Kind which is only related to Activates. A

Roadmap represents a linear walkthrough of a Process. An instance of a

Roadmap represents important documentation for the Activity or Process it is

related to. Often a complex Activity such as a Process can be much easier

understood by providing a walkthrough with a linear thread of a typical

instantiation of this Activity. In addition to making the process practitioner

understand how work in the process is being performed, a Roadmap provides

additional information about how Activities and Tasks relate to each other over

time. Roadmaps are also used to show how specific aspects are distributed over a

whole process providing a kind of filter on the process for this information.

Supporting Material

Supporting Materials is catch all for other types of guidance not specifically

defined elsewhere. It can be related to all kinds of Process Elements, i.e.

including other guidance elements.

Template

A Template is a specific type of guidance that provides for a work product a

predefined table of contents, sections, packages, and/or headings, a standardized

format, as well as descriptions how the sections and packages are supposed to be

used and completed. Templates cannot only be provided for documents, but also

for conceptual models or physical data stores.

Term Definition

Term Definitions define concepts and are used to build up the Glossary. They are

not directly related to Process Elements, but their relationship is being derived

when the Term is used in the Process Elements description text.

Tool Mentor

A Tool Mentor is a specific type of guidance that shows how to use a specific

tool to accomplish some piece of work a Work Product either in the context of or

independent from an Activity.

Whitepaper

Whitepapers are a special Concept guidance that has been externally reviewed or

published and can be read and understood in isolation of other process elements

and guidance.

D.2 Standard Category Kind

The following table provides the semantics for commonly used category kinds.

Software Process Engineering Meta-Model 2.0 Version: 1.1

SPEM 2.0 RFP ad/2004-11-04: Revised Submission Date: June 2006

 Page 85 of 85

Category Kind Description

Discipline Grouping

Discipline Groupings are used to group Disciplines. For example, the Discipline

Grouping "Software Disciplines" would be the group of all disciplines related to

developing software such as “Requirements Management” or “Testing”; "IT

Infrastructure Management" would be a Disciplines Grouping for disciplines

such as “IT Operational Services”, “IT Customer Relationships”, or “IT Enabling

Services”. Disciplines can be associated to more than one Discipline Grouping.

Discipline

A Discipline is a categorization of work based upon similarity of concerns and

cooperation of work effort.

A discipline is a collection of Activities that are related to a major 'area of

concern' within the overall project. The grouping of Activities into disciplines is

mainly an aid to understanding the project from a 'traditional' waterfall

perspective. Typically, for example, it is more common to perform certain

requirements activities in close coordination with analysis and design activities.

Separating these activities into separate disciplines makes the activities easier to

comprehend.

Role Set Grouping

Role Sets can be categorized into Role Set Groupings. For example, different

methods might define similar Role Sets which may need to be distinguished from

each other on a global scale. Thus, Role Set Groupings allow distinguishing, for

example, Software Services Manager Role Sets from Software Development

Organization Manager Role Sets.

Role Set

A Role Set organizes Roles into categories.

Role Set is used to group roles together that have certain commonalities. For

example, the “Analysts” Role Set could group the “Business Process Analyst”,

“System Analyst”, as well as “Requirements Specifier” roles. All of these work

with similar techniques and have overlapping skills, but may required as distinct

roles for activities.

Domain

Domain is a refineable hierarchy grouping related work products. In other

words, Domains can be further divided into sub-domains, with work product

elements to be categorized only at the leaf-level of this hierarchy.

Work Product Type

Work Product Type is a second category for work products, which in contrast to

Domain is more presentation oriented.

A work product can have many Work Product Types. An example for one Work

Product Type is “Class Diagram”, which categorizes the Artifacts Analysis

Model, Design Model, and User Experience Model. Another example is

“Specification”, which categorizes requirements specifications that define a

system with a well-defined system boundary, such as use case or functional

requirements specification. A Work Product can be categorized as many Work

Product Types. For example, a use case model can be categorized as a

Specification as well as Diagram Work Product Type.

Tool Category A Tool Category is a container/aggregate for Tool Mentors. It can also provide

general descriptions of the tool and its general capabilities.

