Task description

Currently EclipseLink supports a native XML metadata format derived from Oracle TopLink. It supports verbose ORM, OXM, and EIS mapping. This file format must be enhanced to support:

1. Alignment with JPA so consumers can choose to use this file to extend/override a JPA ORM.XML configuration with naming ans structure alignment. This means that values specified in the JPA ORM.XML may be omitted except for those required for scoping of the extended configuration (i.e. attribute name)

2. Consumers can use this file exclusively. This means that they can choose to use this single file and configure all values including those that could be specified in the JPA ORM.XML

3. The XML documents customers create must be human readable and as easy to understand as possible. Minimal configuration should be used allowing defaults to be assumed wherever possible.

4. Configuration of top-level data access queries using SQL or stored procedures. Basically, definition of session queries. This must be possible also in cases where no entity mappings are defined. The intent is to allow simplified data access use cases.

5. Support for dynamic entity persistence where no concrete entity exists. This configuration will need to be designed in coordination with the ER (to be filed) formalizing the dynamic persistence capabilities used in DBWS.
Plan of attack

Two options: bring the JPA schema content to our EclipseLink schema or bring our EclipseLink schema content to our JPA schema. Note: When we say our JPA schema we mean the schema as defined by the JPA spec + the elements we have added (or will add) to it.

Bring the JPA schema content to our EclipseLink schema

· Update existing EclipseLink schema element names to align with the JPA name (for existing functionality offered in JPA that is available in the EclipseLink schema)

· Implement the processing of those elements that are offered in the EclipseLink schema (and not in the JPA schema).

· Going this route, barring any decisions to amalgamate the current EclipseLink schemas, will mean multiple schemas will remain in place.

Advantages

· Much of our schema is already defined.

· Mapping Workbench currently fronts the EclipseLink schema functionality.

Disadvantages

· Users are presented with a large schema with many elements that are will not be supported though JPA (until their respective internal processing is completed)

· Are we even going to present the schema to our users before full support is implemented?

· Develop this feature in an incubation package?

· Our naming conventions will be a mix between EclipseLink and JPA.

Bring our EclipseLink schema content to our JPA schema

· As we did for advanced annotations we would bring EclipseLink functionality to the JPA schema in buckets. These buckets would include both the xml and annotation support. 

· The following link is an example of a feasible 30 day bucket using this approach: http://wiki.eclipse.org/EclipseLink/Development/1.0/ER-200040_DS
· Further configurations continue to be supported through the use of a descriptor/session customizer until such time that they their respective xml and annotation counterparts are added.

· Going this route, we will have one schema. (After several discussions with Blaise however this may no longer be true since JAXB and SDO would likely have their own schemas since it really does not make much sense to bring them into a JPA schema)

Advantages

· We continuously offer a schema that is fully supported.

· We get a new cleaner easier to read schema and follows JPA naming conventions.

Disadvantages

· Many EclipseLink features are currently unavailable through the JPA schema.

Other points to consider:

· In either case, the existing JPA XML metadata processing should and needs to be changed to use OX mappings and remove the existing dependency on the old SAX parser. It would be beneficial to do this sooner rather then later to avoid doing throwaway work.

· Does this feature include support for the associated annotations to the XML schema we provide (above and beyond the JPA and Advanced annotations we already have)?

· In both cases, the full feature set cannot possibly be implemented and tested in a 30 day milestone. We’ll need to provide this functionality through many milestones or scope this work into its own managed milestone, which will be much greater than 30 days.

