CDT 2.0 Managed Build System FDS

This document describes the design of the new features for the managed build system.

|Revision History

Date Revision Description Author
1/15/2004 @ 0.1 First draft to be reviewed internally Sean Evoy
1/19/2004 @ 0.2 Revised draft Sean Evoy
1/27/2004 1.0 First version Sean Evoy

Table of Contents

I [Yo [0 T4 1o o PP 2
1.1 RElASE GOAIS.. ... 2
O =1 1 S PP 3

P S =To (U1 22T 0 0= | PPN 3
P2 R o =0 [N 1 2= 0 0= | PP 3

3 DESIGN OVEIVIEW ...eeiiieiiiie ettt st ettt e e et e e e e e e e et e e e e et e e e e e e e etnaeeennns 4
S L ULEIBMENTS ... i ettt et e e et e e e et e e eaa e e e aan e eaenes 4

3.1.1 Tool Command EditOr (CL)ooieeuuiccecee et 4
3.1.2 Setting Options for All Configurations (C2)..........coveiiiiiiiiiiiieiiiiie e 5
3.1.3 Converting a Project from Managed to Stan@@8]).................ccceiiivivinnenenns 6
3.1.4 Clone Existing Configuration (C8)cooocuiiiiiiiiiiieiiieeeeei e 8
3.1.5 Support Variables in Path Specifications (CLL......c.ccooovviiiiiiiiinieiiineeeennnn. 9
3.1.6 New Project Wizard Modifications (C13) ..cccccoiviviiiiiiiiiieiiiie e 11
3.1.7 Changing Project TYPes (C15)....ccuuuicceeeam e 13
3.2 Unicode Support and GLIN............oieecummmmeeeeeeiiaeeeeiaaeeeia e eeii e eean e eenanss 13
3.2.1 Unicode in the Manifest and Project File. ..., 13
3.2.2 BUild Property Page........ccuuuuiiiiiieeee e 13
3.2.2 Unicode in Generated Makefilecooeeeiiiiiiiiiiiii e 14

4 DESIGN DISCUSSION.iiiiiiieeiii ettt e e e e e e e e e e e e e eaa e e eeannas 14

4.1 Modifying the Tool Command (C1)ouureeiiiiiiiiieeeei e 14
1.0 USE CASES .. ieiiiiei ettt e et ettt e e e e ea e e 14
o N I 1 = U 0] £ PSPPI 15

4.2 Setting Build Options SImMultaneously (C2) ..cccc.vviveiiiiiiiiiiiiieeee e, 15
A.2.1 USE CASE ...ieiiiii ittt eeeee ettt a e 16
A.2.2 LIMIEATIONS ...ttt eeemm et e et e e e et e e et e e e et e aeea e eeees 16

4.3 Converting a Project from Managed to Stand@8).(............ccoveveviiieieiiiieiennnnnn. 16
.31 USE CASE ...iiiiiii ettt eeeee ettt a e 16
4.3.2 LIMIEATIONS ...t eermm ettt e e e e e e e e e et e e e et e aeea e eeees 17

4.4 Refactor the Current Default Manifest (C4).......ccouovviiiiiiiiiiiiiieiieceieeeee 17
o N I 71 = 11 0] £ PP PTUPPRPPI 17

4.5 Generic "GNU" Target for Default Toolchain (C5).........cccoiiiiiiiiiiiiiiiiienne, 17

Page 1 of 24

T R U LY I O 1Y 17

A.5.2 LIMIEATIONS ...uieieie et eeemm et e et e e et e e e et e e e et e aeean e eeees 18
4.6 Automatically Update the Build Information (CB6).............ccoovveiiiiiiiiiiniiiiinneeens 18
6.1 USE CASE ...ieniiiiieii ettt eemee ettt ettt e a e e 18
4.6.2 LIMILATIONS ...uieeiii et eermm et e e e e et e e e et e e e et e aeean e eeees 18

4.7 Update Target Definitions in ManifeSt (C7)« eeeevurieeeiiiaeiiiiiaeiiiineeeeiieeeens 18
A. 7.1 USE CASE ...ieniiii ettt eemee ettt et ea e e 18
A.7.2 LIMIEATIONS ...t eerem et e et e e e e et e e e et e aeean e eeees 18
4.8 Cloning an Existing Configuration (C8)ccccuiiiiiiiiiiiiiiiiiiiee e 19
A.8.1 USE CASE ...ieuiiii ettt eemee ettt a e 19
4.8.2 LIMILATIONS ... ettt eeeem et e et e e e e e e et e e e et e aeean e aeees 19
4.9 Debug Configuration is the Default (C9) ...cceiveviiiiiiiiiiiii e, 19
4.9. 1 USE CASE ...iiniiii ittt eemem ettt ea e e 19
4.9.2 LIMIEATIONS ...ttt eermm ettt e e et e et e e e e et e e e et e aeean e eeees 20
4.10 Remove Gnu Extensions from Generated Makefi@®)ccoeveevennnnee. 20
4.10.1 USE CASE....uieuniiii e eet et emmeaem e et e et e e e e e e e e e et e e e e ea e e aas 20
o O I] = L 0] KPP 20
4.11 Support Variables in Path Specifications (C11)........ccoooevviiiiiiiiiieiiineeeeiinnne. 20
A.11.0 USE CASES ...uniiiniiei et eei et et e e aea e aeans 20
o I I] = 1 (0] KPP 21
4.12 Supply VC++ Toolchain Implementation (C12).........cccuviveiiiiiiiiiiiiieiiiieeees 21
A.12.0 USE CASESuiiiiiei et eei e eee e e e et e e e e e e e et e e e e e e e aea e aeans 22
I W4] €= L (0] E PP 22
4.13 New Project Wizard Should Show All TargetsJCL.........ccoiieiiiiiiieiiiineeeennnn. 22
.13, 1 USE CASE....uieuiiii et e ettt emeeen ettt e e et et e e e e e e et e e e ea e e aas 22
4.13.2 LIMITATIONS ..t e ettt e e e e e e 23
4.14 Implement Tool INheritance (CL14)......couuiieiiiiieeie e 23
4.15 Automate Changing a Project's Build Goal (C15).........ccccoeviiiiiiiiiiiiiieieiinn. 23
A.15.1 USE CASE....uieuiiii et e et et emeeem ettt et et e et e e e e e e e e e e e e e ea e e aas 23
4.15.2 LIMITATIONS ...eeeiiee e e e et e et e e e e e 23
(O Y (T (=T [T 24

1 Introduction

This document is intended to capture the requirésnien the managed build system for
the 2.0 release of the CDT.

1.1 Release Goals

The focus of this release is to improve the outhetbox user experience. Features such
as searching, content assist, and build are afiadeéo the end-user's positive experience
with the CDT on Eclipse. The build model will bedsed to provide more useful
information to these features without the user mggtb intervene. We will be
incorporating feedback from users on work-flows t@ not supported in the current
implementation of the user interface. We will atsmcentrate on fixing the deficiencies
that have been identified with the builder.

Page 2 of 24

The list of new features we want to implement iscomplete. Many more requirements
were identified at the start of the planning precéisother partners wish to take on the
features from that list, then this document shdddipdated.

The long-term goals for the build systems in thelGIDe not addressed in this document.

1.2 Terms

This section defines the terms commonly used smdbcument.

Term Definition

Build goal The main files that are produced assaltef a build, e.g. an executable, a

shared library, or a static library.

Configuration | A configuration is a line up of to@ad settings for the options for those tools as
well as other information that configures the pcoje produce a build goal.

Target A target in the build sense representsxtbeution environment for the build
output. A target can be described using a numbédifigrent aspects including
operating system, processor, system libraries Pethably the best analogy
would be the --target argument used to configuegtiu tools.

Tool A utility of some sort that is used in the loyprocess. A tool will generally
process one or more resources to produce outpuireeEs. Most tools have a set
of options that can be used to configure the fonétiity of the tool.

Toolchain The main set of tools that produce adbgdal for the project.
VC++ An acronym for the Microsoft Visual C/C++ corigp and toolchain.

2 Requirements

Many requirements were identified for the CDT 2.@naged build feature. The
requirements in the section below were determiodeketthe most important for reaching
the goals of the release. If other partners hagssimg requirements, it is hoped that they
will contribute to the development effort.

2.1 Requirements

The table below shows the list of requirements tiaae been identified as helping us
reach goals of the CDT 2.0 release. Higher priogatuirements will be addressed first,
but no order is implied by the list.

Number = Requirement Priority

C1 The user shall be able to change the defadlctwomand at the project P1
and configuration level. The overridden tool comohaill be
associated with a particular configuration for @jgct. The overridden
setting will be stored between sessions for thdigoration. The user
will be able to reset the tool command back todékult command
defined in the plug-in manifest.

C2 The user shall be able to simultaneously chémgsettings for options P1
in all the defined configurations for a project.
C3 The user shall be allowed to convert a managdcproject to a P1

Page 3 of 24

standard build project.

C4 The build model shall be refactored to allow@ercompact definition, P1
of configurations that derive from a common root.

C5 The Ul shall support a "Gnu" target as the defauexecutable, P1
library, and shared library build goals on all fifains.

C6 The build system shall automatically updaterickide path, linker P1

commands and defined symbols settings for a prejeen another
project is added to, or deleted from, its listefierenced projects.

C7 Default values for includes paths, defined sylsjand macros shall be P1
specified for all targets to ensure a good outa{-bxperience for new
users of the CDT. The defaults shall also be gefficto allow search,
content assist, and indexing to work properly.

C8 The user shall be able to add new configuratiosproject by cloning P2
an existing configuration.

C9 The debug configuration of all the targets sigplpih the plug-in P2
manifest shall be treated as the "default" confgjaon.

C10 The pattern of the generated makefile shalkwth all versions of P2

make. An extension point should be defined to abogustomizable
pattern. The extension point would also allow feftiag of the default
build command.

Cl1 The build model shall support the use of vdeglwvithin any path P2
specification.

C12 A default implementation for the Visual C/C-bbls shall be provided| P3
along with the gnu implementation that currentlipsiwith CDT.

C13 The user shall be presented with the entireflidefined targets when | P3
creating a new project.

c14 The build model shall support tool inheritancéhe plug-in manifest. P3

C15 The user shall be able to change the typeiluf Qoal for a project, for | P3

example from an executable to a library.

3 Design Overview

3.1 Ul Elements

This section contains some mock-ups of the Ul efgmthat may be required for the new
or enhanced features in the managed build systhaseldo not represent final design
decisions.

3.1.1 Tool Command Editor (C1)

We can add the capability to change a tool comnbarlde property page of a managed

build project. At the moment, when a tool is sedelabothing is displayed in the settings

edit pane. We can add a label and text entry wittgatlow the user to change the name
of the command as shown below.

Page 4 of 24

Properties for Project

C/C++ Build

-

... Directories
- Oiptimizations
--- Debugging
: - Wamings
E3--1F--- Linker
L..f - Directories

Restore Defaults | Apply |

Figure 1 Edit tool command for project

3.1.2 Setting Options for All Configurations (C2)

The figure below shows one possible way to displatyons for an "all' configuration. In
the case where an option is overridden in one aermbthe configurations, the option
can be shown as disabled as is the case with gekdiox in the example.

Page 5 of 24

€/C++ Build

il

g---’[----- C++ Compiler
: ;........ Freprocessor
-

. Optimizations
.- Debugging
i l Wamings
&34 Linker
i... - Directories

Figure 2 Edit all configuration options

3.1.3 Converting a Project from Managed to Standard (C3)
3.1.3.1 Wizard Option

We will need a conversion wizard to change a ptdjeen managed to standard build. A
managed build project can have as many configurats the user wants to add. Each
can have different include path and defined synibts. The standard build system does
not, at least for now. The first page of the wizaitl ask the user which configuration
they want to copy their settings from. If ther@igdy one configuration, then this page
will be displayed with that configuration selected.

Page 6 of 24

T
Convert Project Builder @
Use the standard builder for the project

Select configuration to copy setlings from:

F Debug
[~ Release
I~ Profile

R | Mext = | Firish | Cancel l

Figure 3 Configuration selection page of project aoversion wizard

The second page of the wizard summarizes the gettirat will be transferred to the
project when the conversion takes place.

T
Convert Project Builder @
The following settings will be tranferred

Include paths:

loptignomelinclude
/homefdevigoo’expenmentalfinclude

Defined symbols:

GNUDE_TEST :i
_ DEBUG_LOGGING

FALSE=0

TRLUE=1

BO O =hoal Ei

<Back | Nex> Finish Cancel |

Figure 4 Summary page of project conversion wizard
3.1.3.2 Alternative

Rather than creating some sort of project convensizard, we could collapse the two
project property pages into one. We could use e@iproperty page for both build

Page 7 of 24

systems. On the first page we would have the conshatlike the command for make
and the location of the project's build output. K& field could be selecting whether or
not the CDT generates a makefile, since that ecéaffely the only difference between
the two projects from the user's perspective. @fs® turning off makefile generation
would not imply that the user's option settings lddae lost, but they would still have to
keep the includes paths up-to-date manually.

Properties for Project

C/C++ Build

- Project References Basle settings] Builder] Error parser | Binary parsar]

MEkEﬂIE wﬂﬂﬂtiun ...
(v Automatic

[Manual

[Mone

—Build command
[+ Use default

Build command:

B BuiH bmtim ..
[¢ Use default

Location: | Browse...
Restore Defaults ! Apply E
ok | Cancal |

Figure 5 Alternative Ul for converting projects

3.1.4 Clone Existing Configuration (C8)

There is already a dialog to add new configuratioarsed on the default settings found in
the plug-in manifest to a project. The clone gestuil create a new configuration and
copy all the tool settings from a configurationidedl in the project. For now, the Ul
impact will be minimal if we simply add a new buttto the dialog that adds new
configurations.

Page 8 of 24

Manage target settings

Build outpul : - e B S e L N B B e N e U B U B U Ve B N i D
Artifact name:

[P‘raject. EXE

—Make command
¥ Use default

—AddRemove configurations

Current: Remove:

Add.... | Release

Ok Cancel

Figure 6 Dialog to support configuration cloning

3.1.5 Support Variables in Path Specifications (C11)

A number of elements need to be added to the Blipport the use of path variables
specific to the CDT.

3.1.5.1 Build Property Page

Users can enter includes paths to the settingsvdraaged build project using a simple
dialog. If we permit the user to supply a macrthie name of a path, then it would be a
nice touch if allowed the user to see the definednos. The dialog below has a
“Macros” button that can be pressed to reveal #feneld macros.

Enter Include Path

Indude path:

| Browse
Macros == | Ok I Cancel |

Figure 7 - Basic Include Path Entry Dialog

When the button is pressed, the dialog is resizesthdw the macro list control. The user
will be able to drag a single macro onto the texiget at the cursor location. The
“Macros” button can be clicked again to hide to. lis

Page 9 of 24

Enter Include Path

T
—

sz OS_HOME - C:\Cygwin
s COMPILER_HOME - C:\Cygwiniusr
i MY_INCLUDES - D:llocallincludes

Figure 8 - Include path Dialog Expanded to Show Maos
3.1.5.2 Dedicated Preference Page

There will be a preference page for editing thesgables at the workspace level. The
analog for this feature @asspath variable in the JDT.

Page 10 of 24

Preferences

-8 Workbench Defined Path Variables

i Ant

. Build arder Some G11N-compliant explanatory text about the purpose and use of path varables in a
COT praject.

H=

: i...... Build Console Defined path variables:

CIC++ Editor S HOME - CA\Cygwin ﬂ New... |
Edi.. |

- i Code Templates ; COMPILER_HOME - C:\Cygwirbin

‘L& Debug OMPILER_INCLUDES - C\Cygwin\usninclude Remove |
S -
§ 2o New Make Projects

: Path variables
L Help
L InstalliUpdate

fEEI Java

|-1-| Plug-in Development
H

H

L Run/Debug

Team ﬂ

Rmtorenafaufts| Apply |

import.. | Export.. | ok | cCancel |

Figure 9 - Path Variable Preference Page

3.1.6 New Project Wizard Modifications (C13)

Imagine a scenario in which a user is running tBd ©n Linux. There are two
toolchains defined for Linux, one based on the G@ls and another based on the Intel
compiler. The build model also has definitionstfoe VC++ and Mingw toolchains that
are hosted on Win32 and target Win32. There is aldefinition for a Cygnus toolchain
hosted on Solaris and targeting PowerPC 603.

The figure below shows a target list when filterisgurned on. Note that the user can
only choose one of the two targets with tools hdbste Linux.

Page 11 of 24

Mew Project

Select Build Tools @
Select the tools to build the project

Build tocls:

F Ta Linux-gnu :l

I~ T Linux-intel

i
[Filter for tools on host
< Back Next > Cancel |

Figure 10 — Filtered Target List

The figure below shows the same dialog when fitigeis turned off. The target platform
for the build goal is shown inside the parenthe8sshis might be different than the
platform that the tools are hosted on, we mighttwamronsider how to show that
information.

Mew Project

Select Build Tools %
Select the tools to build the project
Build tocls:
I~ Ts GCC ﬂ
I_:fﬂ; Irited

[Filter for tools on host

< Back Mext = Cancel |

Figure 11 - Unfiltered Target List

Page 12 of 24

3.1.7 Changing Project Types (C15)

We want to support the work flow where the usendiecto change the build goal of the
project from one 'type' to another. In order tahiat, the user interface will need a bit of
tweaking. One possible solution is shown belowsTisia modified version of the current
manage target/configuration dialog that currerxigts in CDT 1.2. This mock-up is
based on the assumption that the managed makertyrppge will have a tabbed
component and that the make command editor withbeed to the 'Basic settings' tab to
make room for the type selector widget. If thauagstion is incorrect, the existing
dialog will have to be stretched to accommodatesttiea widget.

Manage target settings

Artifact name: %ijec.i.exe

Build goal type: |Executable (EXE) LI
Executable (EXE

—AddRemaove confi

ric [ibrary
Current:
Debug Add... I Release
Praofile
Remove I
__Restore_ |
Ok Cancel

Figure 12 Ul support for changing build goal of a poject

3.2 Unicode Support and G11N

There are two areas of the managed build systetinmitga require some work to be G11N
compliant. The first is the Ul, which is based ba standard SWT widget set and layout
managers. We have to assume that these widgetaysmd managers will behave
properly in whatever locale they are created ihenwise we will not be able to meet all
of the requirements described in [2]. However, faistion will discuss any work that still
needs to be done to make the Ul fully G11N complian

The managed build system also interacts with dtheds that may or may not conform to
these requirements. This section will discuss thesees.

3.2.1 Unicode in the Manifest and Project File

The plug-in manifest and the special file the bgijdtem uses to store user settings are
encoded in UTF-8, so we should have no problenmngt@nd retrieving Unicode
characters in either.

3.2.2 Build Property Page

The build property page is generated dynamicalpedding on what options are defined
for a toolchain. The labels for the widgets arestdred in the plug-in properties file.

Page 13 of 24

Based on how the workbench handles translatiorcamesafely assume they are ready
for translation and that aspect of the Ul will GEON compliant. Controls that take a
value populate their default settings from the glugnhanifest, so we will have to make
sure the default values are externalized in thg-pliproperties file too.

For the most part, the widgets on the build propeage will not be used to supply
locale-specific information like dates or time. Témry widget that accepts a string does
no translation, so if the user should happen teremnumber with a decimal place, it
would simply pass it, as found, to the compilefirdter.

The widgets on the property page do no sortingesihe order entered by the user or
discovered in the manifest is assumed to be cotrdestiever, in order that we support bi-
directional languages, the property page will hevbe updated to display input correctly
based on how it was encoded.

3.2.2 Unicode in Generated Makefile

The builder must generate a makefile with the im@ation from the build model. This

will include path locations with Unicode charactershem, and toolchain options. If we
stick to the principle that the compiler toolch&rJTF-8 only, then the Unicode
characters will be encoded properly. But what hap this point depends on how the
make utility interprets this input. If the make neant the user has installed on the system
does not support UTF-8, then we will have the sproblem we had for projects with
spaces in the path names. Eclipse will work jus,fbut building will fail because of the
limitations of an external tool.

4 Design Discussion

4.1 Modifying the Tool Command (C1)

One important work flow that has been identifiedtfte managed build system is
changing the command line invocation of a tool. Tike case identifies a user who wants
to invoke a special variant of a tool without hayto create a new target specification in
a plug-in manifest. Typically, this involves rungisomething likeuri fy

<your _conpi | er _nane>, or one of the target-specific GCC variants, tikesk, in place

of the compiler command specified in the tool digion.

4.1.1 Use Cases
ucil
The first use case begins when the user wantsaiagehthe tool invocation for a

particular configuration in their project.

1. The user opens managed build settings on the gyopage for the project.

2. The user selects the configuration to edit. Altawedy, if the user wants to
change the invocation for the entire project, tbay select the 'all' configuration.

3. The user selects the tool from the list of toolghia configuration settings.

Page 14 of 24

4. The user will be shown a widget in the settings acBa that contains the current
tool command. The user will edit the command andh@Apply or OK button to
make the change.

5. If the user selectapply, the property page will remain open and the bsiiduld
not occur, even if the auto-build feature is turned

6. The user may also hit thRestore Defaultsbutton to reset the change before they
hit OK. This gesture should reset the tool command taléfeult in the plug-in
manifest.

7. The managed build system will flag the project aisai-date so that all files will
be rebuilt using the new command when the progebtilt again.

8. The managed build system will change the settinghfe tool in the file it uses to
store settings between sessions.

uc 2

The second use case begins when the user warttarigeethe command line invocation
for a tool for all projects in the workspace.

1. The user opens the preference page for managetidatiings.

2. The user selects the toolchain from the list ofraaf toolchains the managed
build system contains.

The user selects the tool from the list of toolnsl for the toolchain.

The edit area will display the command line invammain an edit widget.

The user will change the tool command andApiply or OK.

The managed build system will flag the project aisaf-date so that all files will
be rebuilt using the new command when the progebtilt again.

The managed build system will change the settinghfe tool in a special section
of the file it uses to store settings between sessi

o0k w

~

4.1.2 Limitations

There has to be an arbitrary ordering of the legétsverrides when the managed builder
generates a makefile for the project. By defabt, huild model will use the command in
the manifest. If the user has set the commandegbribject level, that setting will be used.
If the user has overridden the setting for a camfgjon, that setting will be used.

I am concerned that this feature might lead teefalgpectations about how to create new
managed build targets. The work-flow that someoighiiry is to create a new project
based on one of the defined tool chains, and thahifynthe name of the compiler and
linker for each configuration. This will clearlyifaf they try to use the options shown in
the Ul for their new compiler or linker unless thigiols have identical command line
syntax.

4.2 Setting Build Options Simultaneously (C2)

Users have pointed out that it is tedious and erone to set options individually for
each configuration of a given target. The buildeysshould supply aal configuration
by default where any changes to the options woeldgplied to all defined
configurations.

Page 15 of 24

4.2.1 Use Case

The user opens the build property page for thesptoj

The user selects tlal configuration from the list of available configtioms.

The Ul will display entry widgets for options thate common to both.

The widgets for options that contain default valoesalues that are identical
shall be populated with that option value. Widdetsoptions that are not the
same in every configuration shall be empty.

The user enters the option value.

When the user clicks OK, the option value will le¢ ®r all the configurations in
the project.

PwpE

o o

4.2.2 Limitations
Only options that are common to both configuratiilsbe displayed.

Assume the user has set (overridden from the dgthel value of optio®1 in
configurationC1 but not configuratiol©2. At some later time, the user switches todle
configuration. Sinc®L1 is overridden IrC1, it can no longer be treated as part ofdte
configuration and is displayed as blank. If therus@nges the value 6fl in theall
configuration and applies the change, the new valll@ppear when the next time the
user looks a€Cl.

When the all configuration is selected, the 'Resiefaults’ command will reset every
option in every configuration to the defaults definn the manifest. Therefore hitting
this button with the all target selected may haardyf major consequences for the project
settings. This may be a good candidate for a praskihg the user to confirm this
gesture.

If the toolchain implementer supplies ah configuration, it will be ignored by the build
model.

4.3 Converting a Project from Managed to Standard (C3)

4.3.1 Use Case

1. The user creates a managed project.

2. The user adds all of the relevant classes andtéilésat project and the CDT
generates a makefile.

3. At some point the user decides that they want toage the makefile themselves
and run the project conversion wizard to switchpgigect from a managed to a
standard project.

4. If there is more than one configuration definedtfo project and if the path and

symbol settings are different, the user will berppted to select the configuration

settings they wish to transfer.

The wizard shall insure that the include pathsdeifthed symbols are transferred.

The make command for the standard project willdig¢sthe same value that was

used in the managed project.

7. The makefiles will not be deleted. If they were awvailable for the selected
configurations, they will be generated before tleavd finishes.

o o

Page 16 of 24

4.3.2 Limitations

After the conversion, the same limitations for di@al projects apply. Every new file that
is added to the project will have to be manuallgeatito the list of source files in the
makefile, all of its dependencies captured, asamil custom build commands.

A project can be converted to a standard buildgatojput the wizard will not convert a
standard project to a managed project.

The wizard requires that the add-ins for both bayidtems be installed. If the standard
build system is not available, the wizard shouldvgla dialog to the user explaining why
the conversion can not start.

4.4 Refactor the Current Default Manifest (C4)

The current default manifest that defines the Gmichain is bulky because options are
duplicated for each tool on each host. The detaolchain definition should be made
more compact by better defining inheritance off¢a@oid options. This will make it easier
to correct problems and maintain the definitionsgdorward.

4.4.1 Limitations

This will require changes the build model itsetf.drder to support backwards
compatibility, a versioning scheme will be neededead in older variants of the build
model.

4.5 Generic "GNU" Target for Default Toolchain (C5)

Given that the GCC tools have the same commandnieeation and flags for every
platform they run on, the user can reasonably éxjped managed build projects to build
anywhere the GCC has been ported to. Currentlyighist the case because each target
in the default manifest is defined in terms of thEatform and toolchain. This means that
while it is probably sufficient to have a "Gnu Exéable" target, we now have a "Linux
Executable", a "Cygwin Executable" target and solfaifie user wants to add a new
target for a new platform, even if the tool setsirigr that target do not differ in any
meaningful way, they have to edit the plug-in mestif This needlessly complicates
porting projects and porting the managed buildew platforms.

45.1 Use Case

1. The user starts Eclipse &hatformA.

2. The user creates a projePtpjectA, using one of the supplied default targets
based on Gnu. The user sets the required path®aingkttings to build the
project correctly orfPlatformA.

3. The user runs the CDT datformB. Note that GCC must be available and
installed onPlatformB.

4. The user import®rojectA into their workspace oRlatformB. After modifying
any settings that may not be identical (like in€lymhths), the project will build
with no additional input from the user.

Page 17 of 24

4.5.2 Limitations

Unfortunately, this is one of the requirements thatild have been easier to implement
in the first release. The Ul displays the platfataning project creation and on the

property page.

Note that this feature is not intended to suppariate building on another platform. The
user will be importing and building their projeatsthe Eclipse Ul.

4.6 Automatically Update the Build Information (C6)

4.6.1 Use Case

1. The user specifies that a managed project refesearu@ther managed project in
the workspace.

2. The build system shall update the build informafmnthe managed project
automatically.

3. Ifthe referenced project is a library, the libramd library search path will be
added to the linker information.

4. Header file search paths should be updated iretleeencing project, if possible.

5. If the referenced project is a standard proje& uber will be warned that they
will have to add the build information manually.

4.6.2 Limitations

The library and library search path information cauty be added automatically if the
referenced project is a managed project. Standajdgbs do not know what type of
build goal they produce.

Adding header file search paths to the projectilsl lmformation may prove more
difficult. While both managed and standard projegtshave includes path information,
it is not clear what should be added to the refargnproject's build information.
Consider the case where the referenced projeditsaay. The build information in the
referenced project contains the information needdulild that project, but only the
header files that define the interface should lmeddy the referencing project. Blindly
appending the path information to the referencirgjegt is not only overkill, it may also
lead to errors if there are header files in theneziced project with the same name. For
now, | am not sure this is feasible.

4.7 Update Target Definitions in Manifest (C7)

4.7.1 Use Case

1. The user creates a new project with a build gos¢thaon an execution target.
2. The user builds the project.
3. The project builds correctly with no input from thser.

4.7.2 Limitations

The goal of providing a reasonable set of defauldisettings is easier to say than do.
We cannot be sure that user has installed thei baols or cross-platform development
environment in a default location. In order to ancaodate this, we will have to define

Page 18 of 24

defaults using environment variables or macro®ofessort. The user will still have to
intervene to set these up correctly.

Basically, the problem boils down to defining wigateasonable. The sticking point for
the clients of the build information seems to keldcation of header files. Using
variables in path specifications should get us gkithe way there, absent an installer or
bundled toolchain.

In the case of compiler settings, we could tryetedmine them automatically using the
same scheme being proposed for the standard matearsyif the tools are not in the
path, this will not work either.

4.8 Cloning an Existing Configuration (C8)

4.8.1 Use Case

1. The use case begins when the user selects a éadjebnfiguration from the
C/C++ Build property page for their project anccké Manage.

2. The build system will display a dialog with a leftdefined configurations.

3. The user selects one of the configurations inidteahd the Clone button is
enabled.

4. The user clicks the Clone button and is prompted fconfiguration name.

5. The name field will be populated with the nameh#f selected configuration with

the string "_clone" appended to it.

The user accepts the default name or enters a ae& and clicks OK.

The build model shall create a new configuratiothwihe name selected by the

user and all of theurrent settings of the configuration selected in the list

N o

4.8.2 Limitations

The Ul that supports managing configurations wasmbled rather quickly. There are
now two gestures the user can perform; creatingnaaonfiguration based on the default
settings defined in the plug-in manifest (the caotlyesupported gesture), and creating
one based on a modified configuration (the gegttwposed here). We should probably
consider how to make this distinction clear, whioluld simplify the dialog.

4.9 Debug Configuration is the Default (C9)

To improve the out-of-box experience with creatamgl building a managed build
project, the debug configuration should be the wlefahat way, a first-time user can get
the project up and running in the debugger with@wing to open a single settings
dialog.

4.9.1 Use Case

1. The use case begins when the user creates a neag@tbbuild project.
2. The project shall be created so that the debuggumation is selected by default
when the user builds.

Page 19 of 24

4.9.2 Limitations

A Target does not know which configuration is tlegadilt. Currently, the build model
treats the plug-in manifest as an ordered listsarpplies this list to the Ul. The only way
to make the debug configuration the “default” igledine it before any other
configuration in the manifest.

4.10 Remove Gnu Extensions from Generated Makefiles (C10)

A key theme for this release is to improve the exmee for new users. One problem that
experienced and new users alike have encountetiedtithe makefiles generated by the
managed build system rely on Gnu-specific exterssiorbuild correctly. This problem is
compounded in systems where there is more thamake utility available, or where the
make utility supported by a toolchain does not pttiee extensions.

4.10.1 Use Case

1. The use case begins when the user adds a resouhsartproject and builds the
project.

2. The build system will update the makefiles corgeathd call thevake utility
specified for the project.

3. If themake utility fails to run, the build system will preseatreasonable message
to the user with as much information as possible.

4. The build system will report any errors encountetedng the build to the user or
report that the build completed successfully iréheere no errors.

4.10.2 Limitations
The user has to have a make utility in their path.

4.11 Support Variables in Path Specifications (C11)

This feature is difficult to scope. The goal idmable to specify a location in a file
system using variables instead of fixed locatidvad tan vary from user to user.

4.11.1 Use Cases
ucil1

1. The first use case begins when a toolchain impléeneneates a new toolchain
specification.

2. The implementer defines a compiler that searchesyaer of paths by default, so
an end user will not explicitly set these pathsh# implementer does not specify
these paths, the built-in parser will be unabledmpletely parse a file and core
features of the CDT that rely on the parser wili work correctly.

3. The implementer defines the search paths usingiabla instead of a fixed
location knowing that users may install their coleysi in different locations.

4. The implementer specifies a default value for theable, but expects the end-
user to supply another value if this default iomect.

Page 20 of 24

5. The implementer shall specify a unique variable @amlive with the best effort
of the build system to resolve duplicates.

uc 2

1. The second use case begins when a team leadeitcbebgineer creates a new
project for a team of developers based on a defm@dhain.

2. The user supplies a default value for the variadtesshares the project with
other developers through their CM system.

3. When a developer checks out the project into thenkspace, the build system
will insure that the variable is defined for thenkgpace and populate it with the
default value.

ucs

1. The third use case begins when a developer adel& @rmoject to their
workspace.

The default location of the compiler is incorrect.

The developer changes the value of the variabllearworkspace so that the
search paths are correct.

wnN

4.11.2 Limitations

Other IDEs allow users to use macros in any tetxyemidget. Allowing that degree of
control may be valuable to users, but a featureahmbitious is probably better
implemented in Eclipse. For now, this feature temiled to allow the use of a linked
resource in any entry widget on a project buildgernty page that expects a path. In
future releases, we may want to widen the scod emtry widgets that accept a path.

Path variables are associated with a workspacesldskt path variable by manipulating
Linked Resources in the workspace preferences.hEsswo major implications. The
first is that a user may only want to change therggfor a particular project, not every
project and there is currently no way to suppaat.tihe second is that workspace
preferences cannot be shared, so there is no wiaonf implementing the second use
case.

Even if we resolve the limitations inherent in pa#niables, we have to face the fact that
this feature will not improve the out-of-the-boxpexience for naive users. The variable
itself will have to be set and only the end usdr lvd able to do this reliably, since we do
not provide build tools like other commercial ID&sd we do not have an install program
that would prompt a user to set this up manuallylikg Eclipse, which has the built-in
failsafe that if there is no JRE, you cannot esamcth, a user can get all the way to the
compile step before they notice that no tools artheé path. The only way they would
notice that includes paths are not available tisaf try to use content assist.

4.12 Supply VC++ Toolchain Implementation (C12)

This is a very complex feature that requires atahought before it is undertaken. It will
require a lot of work to scope this feature propeahd to determine the needs and

Page 21 of 24

expectations of the users who would take advaraégas capability if we do add it to

the CDT. There is a partial list of use cases belbthis feature is committed, then the
use cases can be elaborated. | am including aal idiscussion of the feature for the sake
of completeness.

4.12.1 Use Cases

1. Allow existing VC++ users to import and build exigt VC++ projects in Eclipse
as managed build projects.

2. Allow developers to create new managed VC++ prejecEclipse.

3. Allow the user to import an existing VC++ projecta the CDT as a standard
project.

4.12.2 Limitations

There are several important technical problems attenhow we scope the work. The
current CDT parser is not expected to support a@yVextensions in the near term.
Content assist will either be unreliable or unaaale if the parser fails. Indexing and
search will also have similar problem. As the mablguilder relies on the indexer to
track resource-level dependencies, we will havilmtba reliable replacement since there
is no VC++ equivalent toakedepend.

Another critical problem is that there is no int&grn with the VC++ debugger. It is hard
to imagine anyone taking advantage of this integmawithout that basic capability.

If we do decide to continue, VC++ projects ofter nsany different tools. For example
there is an IDL compiler, a resource compiler,gnétion with .NET interpreted language
tools, and an installer utility. If we are trying support VC++ project imports, we will
only be able to define tools with command line iifgees. Even if we do support every
critical build tool, there will be no way for theser to edit GUI resources other than as
text files.

If we want to limit the feature to creating new igsé projects that use the VC++
toolchain, then the work is almost as complex aditist use case. In addition to all the
tools the VC++ user might reasonably expect to e are many different "types" of
VC++ projects; MFC, ATL, Win32, and .NET.

Importing an existing VC++ project as a standardiGidoject may be a more attainable
goal. In this case, the CDT becomes a replacentdtior dut the VC++ tools are used to
build the project. While this pushes the problenmaihaging the build settings back onto
the user's plate, VC++ users are probably unwiliongacrifice the convenience of the
build system of their current IDE.

4.13 New Project Wizard Should Show All Targets (C1 3)

4.13.1 Use Case

1. The use case begins when the user runs the Neacpigard.

2. After choosing a name for the project and its lmegtthe user is prompted to
select one or more execution targets for the lgolal of the project.

3. The list of choice shall be populated with all tefined execution targets.

Page 22 of 24

4. The user will select one or more targets from t$teaind continue.

4.13.2 Limitations

The user will be able to create a project that oaibe built on their host platform. This
will undoubtedly lead to confusion for naive users.

4.14 Implement Tool Inheritance (C14)

This requirement is not user driven, although It miake it easier to maintain the plug-in
manifest and it will facilitate the C4 and C5 reguments. Currently there is no way for a
tool to inherit its settings from a parent tool. iSthe user wants to create a tool that
differs from another in a minor way, they still leato create an entire specification
leading to needless duplication, a large manifasd, more maintenance headaches.

4.15 Automate Changing a Project's Build Goal (C15)

The use case to be supported is a user that veaakshge the type of project build goal,
for example from an executable to a library. Thisat an activity that occurs that
frequently, so automating the process seems likea work for very little reward. | am
including a full discussion of the feature for Sake of completeness but | do not think
there will be time in this release to complete thature.

4.15.1 Use Case

1. The user selects a project in the navigator oeptagxplorer.

2. The user selects tidew > Project > Conversionwizard.

3. The build system will present the user with adisvalid build goals and the user
will select one.

4. The build system shall do its best to preservedsgltings between build goals.

5. The project will be rebuilt the next time the udees a build.

6. If auto-build is turned on, the rebuild will beggered when the user selects
Finish.

4.15.2 Limitations

| really don't know what the frequency of this tymfegesture will be after a project is
initially created. In other IDEs, you chose theetyynd live with it. If you made a bad
choice at project creation time, you start agauh iamport your source files into the new
project. Frankly, as a developer, | think that reasonable limitation.

It will likely be difficult or impossible to transf all the build settings when a project's
'type' is changed. For example, include paths aedrpcessor symbols should be straight
forward, but if the user switches an executablggotdo a library, the build model will
have to discard the linker options. We can atteémptake the build system work on
'best-effort’ basis and warn the user that theylshmanually verify that all the settings
are properly configured for the new type.

We will have to decide how much automation to pieviConsider the user who converts
a project from an executable to a shared librane @ossibility would be to use the quick
fix feature to highlight thént main (...) function and suggest the user change it to
BOOL WNAPI DIl Main (...). This is probably sufficient, but it will requiteat the

Page 23 of 24

build system understand what type of method to fooland what to replace it with. At
the moment we do not have this capability, so 8ex will have this pain-point anyway.

10 References

1. CDT 2.0 Managed Build System SRS
2. Globalization FDSin CDT 2.0.

3. FDSC/C++ Parser for CDT 2.0

Page 24 of 24

