Skip to main content


Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Eclipse Projects » GEF » Image Figure differences from Eclipse 3.3 to 3.5m5
Image Figure differences from Eclipse 3.3 to 3.5m5 [message #247341] Tue, 17 February 2009 20:59 Go to next message
Brian Jakubik is currently offline Brian JakubikFriend
Messages: 140
Registered: July 2009
Senior Member
This is a multi-part message in MIME format.
--------------060507070303090609010100
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

Originally posted to GMF, but here may be a better place... I have
figures that extend org.eclipse.draw2d.ImageFigure, and appear to be
ignoring the size dimension (appearing as a square with the image off
center...) and my connection arrows do not have the end directional
decoration... I have figured out that I can add a default size facet to
my node and that will change the size of the box, but my images still
have are centered off the figure... If I setAlignment to northwest,
then that appears to work, but I have a little dead space in the south
and east sides when selected. I'm just trying to figure out what
changed from my previous versionsand why I'm seeing the effects, any
help would be appreciated. See the attached image for more details...


FYI im now using Eclipse 3.5m5 (and dependencies) coming from 3.3

Thanks
Brian Jakubik

Originally posted to GMF:
Running my GMF 2.0.2 codebase on GMF 2.2.0m5 (no re generation yet)
yields different presentation of the figures I am using...

I have figures that extend org.eclipse.draw2d.ImageFigure, and appear to
be ignoring the size dimension (appearing as a square with the image off
center...) and my connection arrows do not have the end directional
decoration...

any ideas on why this would be the case...

attached is an image of the before and after for reference.

I also see this after a re-gen...

Thanks
Brian

--------------060507070303090609010100
Content-Type: image/jpeg;
name="figure_diffs.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="figure_diffs.jpg"

/9j/4AAQSkZJRgABAQEASABIAAD//gATQ3JlYXRlZCB3aXRoIEdJTVD/2wBD AAUDBAQEAwUE
BAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8f ExciJCIeJBwe
Hx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e Hh4eHh4eHh4e
Hh4eHh4eHh4eHh4eHh4eHh7/wAARCAGQAZMDASIAAhEBAxEB/8QAHQABAAMB AQEBAQEAAAAA
AAAAAAUGBwgEAwIBCf/EAGQQAAAFAwICBAYLCQkMBQ0AAAABAgMEBQYRBxIT IRQVMUEIIjJR
ldIXI1NVYXGUlrTR0xY3OEJUVldidhgkdIGRkqG11SU2UmVyc4KFpbPB1Ak1 dYaxJjM0Q0RJ
hKOkwsPw8f/EABoBAQADAQEBAAAAAAAAAAAAAAACAwQBBQb/xAAwEQEAAgEC AwYFBAMBAQAA
AAAAAQIDBBESITEFQVFxkbETIoHR8FJhocEUMkLh8f/aAAwDAQACEQMRAD8A 7LAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAYixqPqhf1WqR6R27bSLep8pcQq1cb7xNzXUHhfBbZ 8baR8iUfI/gP
JFOourVGh6c3pWb2ty3YlRoVIenU+TT5a3ok1aGXVmlTasOIJJoRnJ+MS+Rl gwGogMUsbWKs
1nRORcdQpkBu8EHHjsU5klky/ImJbXCMkmo1bFpfaNXjHja5z8XlF+zVdP7j v2YugUXr/wDJ
+C70T/rDo3k8Tf5HPy/K+DkA38Bmdk+z7908T7tfYz6g8fpfVHTul+QrZs4v ieXszn8XOOeB
ZdSJd8RaIwVgUqk1CrPSktrOqSFNR47RoWZuq2+MrCiQnann42e4BZwGUaY3 3fb2ptQ041Ho
tDj1dmkprEWbRHXFRXo5u8IyMnPGSrd5+3B8uwz0uuVKLRqLOq85ZoiQYzkl 9RFk0oQk1KP+
QjAewBztF1l1Rg0Gkaj3LaVuRtPqrIYTw48l1VShx31klt9wz9rWXjJPCSIz yXZ3dEgADFNR
Ls15txiv3PEteyFWvRlSHzjvzXznyIjRqPikpPtaTNCd208mWcYM+Q1i0qy1 cVqUi4GGXGGq
nBZmIac8pCXW0rJJ/CRKwAkwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAABy5YV4UnR6wano9qg7XbVTGXMYptwQozqkSo761qS8y 82lZpeTxDMsl
4pknPMjIvBYkufM0516ejXFe1xWgVubaDULkdfWt795STkcM3EpLksyI9qS5 EjPcOsgAYrpB
pzAqFJ0yv5c11Bw7SpyHYBIy1IfRF2sPqPPlNoffSXI/LI8lt547/wC7F/8A 336HZgAKBpzo
1ptp3XHq3Z1t9WVB+MqK4902Q9uaUpKjThxxReUhJ5xnl8Ya86mQNKrHTcM2 MchyTLRBiIMz
JsnlpWolOGkjUSCShRntSo+WCIzMX8AGAaAah6VVG7XWIt9lc+oNyqNUuT1Z KYQpLTalkwyT
jZJbZbQlWCM8qMjMzMzIivcmuwtVdPNRKBQGJbMiI7U7Zd6USEEuShnYakGl R+IZuFgzwfbk
iGiAA48rV7Qr38H6haE0um1dN8rbp1InU1yA6g4RRnGt7zizTtJGGc5zkt3P GDHTv3a0r2U/
Y56PN626k6742xPR+Bx+Dt3bt2/dzxtxjvzyFmABy7qZrZp7dF81WxrxudVu 2pRZy4tSiFDk
Oyay80vCmzU02pLUYlJPPPevGPFLt6GsK5Ldu60oFwWnKRKoslKkxXUMLZSZ NrU2ZEhaUqSR
KQZcyLs5chOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAADDmdSb/pVpWJeNYjQLig3NwOLR7ft94p7fGgvSS4S3Jikr2G2RKyk sp3HyMsCX9m1
/wDQ1q36Bb+2EJo1aNp07wiNU10+2KJDVSnqUVONiA02cMnYPtnCMk+179x7 tuM5POcjT5lx
yptRfptusx3TjrNuRPkGZsNLI8KQhKfGeWk+SiI0pI8ka9yTSVla89tt0Jtw xvMqUetrxFk9
GtWi/wBQt/bAWtzx9mjerR/FQWvtheU0+5Ftpedukku45pYgNpZM/wDJUalY /wBP+PvEXcVy
3Ja1KlT51LZuJlltSy6rRwHk47CNpxaiUnlzUle7zIMSilZ6c/zyV2yzWN7c o8v/AFWT1vdL
t0b1aL/UTX2wFre6fZo3q0f+omvthTC8IW6JSzciWrSGWVFlCXJzi1EXwqJB F/QLtZet1Kqc
pqDctLXQHnVEhuQb5PRFqM8ERuYSaDP9ZJF3bs8hVF6T3MuLtHBltw1vHo/P s2v/AKGtW/QL
X2wiXdSb/q1o35eVHjQLdhWxx+FR7goDxz3ODBZknxVNy0pRvNwyThJ4TtPm Z4G4jB9YrStS
peENpcuo2zRZqqo/VSqXHp7ThyybgZaJ7KT4mzBbd2cYLHYJcp6Q384bwAAI JAAAAAAAAAAA
AAAAAAAAAKbrRRpNesF2nRqJ17/dKnSHqd7T++mGZzDrzeHlJbPLaF8lKIj7 O8ZDpxQKpetS
l3vpDJd0ntapUyIy2hugU1zrJ5p+XvcNpK18PYS0pye01Z7DJJDpAYf4N9aK 3vBPtipmxx3U
tONMMkrbxHXJa0NpM8HgjUpOVYPBZPB4FlKTMcuu8R7oXvFevTmlVWDrERGZ 6/ySIi5mdqQO
X9A8UW2dTJco4sTwkm35BZy03bdOUvl28i5i10qmQKoZS7lNuuTDVv8A3ygl R2TzkiZZPKUE
Xcrmsy8pShYZ9NoEqGcaVSafIYMscJ2OhSP5DLAstW1Z2n2hTXJF43j3UH7g NY/0/SvmnB+o
PuA1j/T7J+acH6h5NT11Wg25KftOtzKZEaLfKhtqJSUtFncbJqI1MmRc9qTJ OE8iIzyeYR+m
Pum4/Vaq66Z5U4ue8ajPz53do5ki+OImduf7R9m/Q6WNZFprbaa9Ya19wGsf 6fpXzTg/UH3A
ax/p+lfNSB9Qrtp3ldNvuIU5NlV2nEftsWUviPpT3m06fjGr9VZmR9mU9o2y i1OHVaPHqsF1
L0SQhLjbhZLJH3nnmRl2GR8yMjIxDjn9vSDPpbYZ+Zzzo5R6W3dtmW1T9Luo boslMVV11Po9
PbyTtKlNEfFZdU49xXVJV2H2ZVgx0sMl0xUSvCO1dUXexQj/APpnhrQjaNpU VneAAARdAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAZDppxPZ81q4OOLxKPs+PoBYHysSaun21SU qStKDiNnlZeN
u2lvJX6+7duzz3ZzzHp0r/CF1l/z9F+gkLbW7ZYiqlVKnyY8SOo1yJcWQ2am FK5qW4kyMjaU
o+ajLckzyo0GozUe3Hlrjma274j2YtThvfa1Z6bvk3cCOH5ZfyiJqFVdmOkz GJS3FHgsCIuu
p0G3rVk12TEkSZENlp2ZAhqJxUfepCcLWZEScb+8iMyJRkRkR4ytzW2HIeXH ctZ5mlqRtW3H
nYff58yU5sLagyzkkESv1sZI7Zy4MU/u8vU6uMW1ctojfzR9vURqrXg5HiY6 serC2kONGRe0
qkGWUdpY2nlPwYFqvOzJFpk4dWJt6lLykpSk4bUX+Csj8k/gPt7siz2brnRa vPp9Mat1MFUi
S1FbT0hPiGtZILBEguzJchGeEjqtDYhTLIoPAlyXkm1UpCkktuOnvaSR8jc8 5/if5Xk+Na8X
ta+/fP8APd+7LOLR49PbLF957vPw2T/g23uiuW5UaEt559dEfSiK44pW5cVe eFnPM9ppUn/J
JGeY/erEyn0/WDS+46tWqNSqZT5FWVJeqNSYi7SciE2nal1aVOeMpJHsJWNx ZwRjNfBFbc6/
uSQkj4SIbDaj8ylLWZF/IlQsmv8AZtrajX3p1aFyorKOnPVNDEmnTWmeBtjt vK3IWy5vzwkk
WDTjJnz7BqxRM4+Lzet2Zntm01Jv+bTydEgPE7R6S64t12lwVrWZqUpUdJmo z7TM8cx+OpKL
70U/5Mj6hB6qQAR/UlF96Kf8mR9QdSUX3op/yZH1AJABH9SUX3op/wAmR9Qd SUX3op/yZH1A
JABH9SUX3op/yZH1B1JRfein/JkfUAkAEf1JRfein/JkfUHUlF96Kf8AJkfU AkAEf1JRfein
/JkfUHUlF96Kf8mR9QCQAR/UlF96Kf8AJkfUHUlF96Kf8mR9QD5qr9MRWV0l 182pSVJSlKk8
lmoiMiI/4y7cDFdDITU/waqTa1MqtGqlfoRokSoVPqkeXtUUpbyWlLaWpCTc QlSUmZ4Izz+K
Y11u0qciuqqhElBEtC2mW2ySlBpIv+JZ5EXaMo8C2yLWoOm53jbSKzH+6hCF yItQmtSeDwHH
kJJK0MtZzuUZ5LzebnZS1q/NHdMIXrW0cM96yU9x8mDk09SpEYlGhWUmlbSi 7ULSfNCy70qI
jIeg6nOWWxLDmfiFkvGnmqbCl0+huyZy3Uk/KjLSy4llB7til70mpJngtpmZ YNR45Ctaq0y5
jsGfVos1cCoxdr3ApjykkTJKLiZcIkqWrblWcJxjBF2qPb/l1mN7QwU0N5vw Vttv6KpqXUI1
OoMiHV5BpmVJlUdqM3g3UtuEaVvGnuJKTUZGeCNREXfysjOn9v1eQms0ibw6 VK9tUhJ44XeZ
J83xH5PxchgdDap8y4GEVuc/HiyXyOZLwbjnPtUZnzMz5EajzjtweMHrMvV6 nUSqMUm3qUTl
vwy4JmR4U8XYak5/lIz8rmZ9oy5885do7ofT4OyMmirtimZtbrPdtHSPNF6h 3Jb9OrK4tAhG
RMNk1yM9i1EWNx5//p4yeM5E54OdcmSaTcFMfcNaI8puSg+wk8clmpJF3Fub M/8ASMZ1qiq2
3bl6bbM5ciPKZS862aTJLCz/ABCM+fZzNP4p8s9xXnweoT0SiVmrOp2tz322 miP8ZLJKyovg
3OKL/RMVY4mbRDZr6Y6aHfnvy69fzqn9LlGvwidWlH2nGoJn8meGuDHNHVb9 ftV1eeNQvo7w
2MTzRtfby9nzdOcAAAqTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZLpX+ELrL/ AJ+i/QSGpz4c
WfDchzY7ciO6WHG3E5SovMZDENH7qpUrW+9auhiss0283aYq3ZkmjS2GKgTN PUpexxxpKS8V
tai3GW4kmackN2E8k8/pHsjXoi6lQaXOtqVbzsNpunSmFsLZZQSEkleSPBF2 Hzznz8xxLqVY
VasatuwJ7K3YxmZxpaUeI8jz/AfZku4/gwZ93CJuGi02sxzj1GGiSyfNSFpN STPuPb5/hFGT
Hx9Ory+1OzY1tI25Wjo/z+jPOMPtyGXVtPNLJbbjajSpCiPJGRlzIyPnkeik 06fV6g3Cp0V6
VJeXtQhCcmozHXs7R+x1yd6bfcLHMyJSjI/4+Z/0j2Uu16Fb6TKj0dEQzLaa kko1GXm3GZnj
4BXi0mW07TtEee/9PnsfYGo4tssxFf2nf0hCaVWk3Ytopp7im3KhJXx5rqOw 14wSCPvSkix8
e4+8RFxu8XwgNJefZJq/0BQuM11wiMti/wCQxlVw3LCh6xWlXn4tYXSbSfqK q9Oj0eXIjwCc
gZTvcbbUnscQZ4M9pKI1YIe38OuLFMft/T6jDjjHFcdI5Rs6cAAHmN4AAAAA AAAAAAAAAAAA
AAAMl8Dz8G6z/wDMP/SHRdNTaxVaHahTKIqEie9UqfBaXMYU8030mazHUtSE rQatqXTMiJSc
mRcxkdj16qaHk3pbUKTX72g02lx5kGXbtuOrdaJ+RL3pkFxlkXNojQZbc+MW OWROJ+WY8v7R
nru6CH8URKSaVERkZYMj7xkp65M92k+rXzVd+sfw9cmzxjSjVgvPm1XfrDgl zjiP/kq3qFpS
43Pcl2406lhxRq4JtLJLZ+YjL8Xzd5dnPtFEcsW7EO8M6M8fwktP/gZ5/oGv Pa4NqThGlOrJ
fHarv/BQj3tYeIeT0v1ZM/htR0//ALgjDv37PWxdu5cVeG1eL6KhbWmVRkyE rrSlRI5c1ElJ
ms/gLJdvx8vj7BqySjQITUKG0lmOwgkNtp7EkQpMjVRxzO3THVQvjtV76xHS dRZbhHt0z1Qz
3f8Aks+Q3afDSnW0erzdd2jl1cxvE7R3bSsehy9+ueqivPGon+5fG1DnzRuH c9Grls33MrVI
mNalogonwW6U4yqGTdMlSWuE4chWcGnarcg9xHkto6DGPNaL5JmOivHG1dgA AVJgAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAMcVoxUKxbFp2delxUms2xbfC2RYlJkQZEnhRXI7 e99MxW3HEJZ7
Ulk045EZkPT+5w0c/NWV6bn/AGw1oBKLWjpLkxEsm/c46OfmrK9Nzvtg/c46 OfmrK9Nzvthr
IDvxb+MucFfBk37nHRz81ZXpud9sH7nHR381pXpud9sNZAPi38ZOCvgyb9zl o7+a8v03P+2H
lLRmoUi2Lss+y7jpNGti5OLxIsukyJ0iNxYrcdzY+qYndnhmstyTwascyIiG xgOTe1usuxWI
6AAAi6AAAAAAAAAAAAAAAAAAAA8VbpNKrlLepdbpkKpwH9vFizGEvNObVEot yFEZHhREZZLt
IjHjtm07WtfpH3M21RqJ0nbx+r4LUfi7c7d2xJbsblYz2ZPziZAAAAAAAAAA ABWaJp7YNDqb
NUotj2zTJ7G7gyolKYZdb3JNJ7VpSRllJmR4PsMyFmAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGV693Rc8OpWlYNlzGabXbumP MoqTjROdDjsN
k4+4lB8lL2mWM/D2Hgyp1w2XTbQmtoqHhQ3RQ6+ton0IrlfjKZURmZEsoru0 jQZpUXbjkZZ5
AOhQHOGslzXTQfCbizqbWaoVDoNoNVqpUpt9Zx5DHTlMSFm0R7TWhlxThHjO Wkj+ybsuCs+F
RYs+n3BPTaNSk1emxoTMpRRZpQohmuQpCT2ry+44kjPPJlJkA6OAchal3TbL PhEX/S9QNY7/
ALMgQ+rep4tDqMlDS98RKn8obbcJOD2H2Jya1Hz7ul9LIkCJp5RU0u4qzccB +MUqLU6u+p6X
JaeM3UKWpSUn5KyIiNJGSSIj7AFmAc/a42ZXbetu59Qz1pvSBUIxvSqXCakp bgEo1GbETo5F
7YZmaWyMzyZnkyPmQ2uy36tKs6iyq+wUervU9hye0RYJt820m4nHdhWSASwD PdTNPahd9YRP
XqVdts0yPEJHRKJMTEI3CUs1PLcwZmRkpJbeRFsz3iM8F6rXJWNOpb1wVZ6t sR6xLi0iqvI2
uVCC2oktPq85qMl8+eSIuZ9oDVQGYeEncldoVmUmm21P6tqty16HQmJxJJSo vHUrc4kj79qF
EXmzkuZEKtbse4tMNcrWtB++biuqh3dCm4TXJBSHo0mMgnTWheCMkmk8bez4 +WA3gBgNS8IK
5GyvCTSdI6lVKZaVXmQanUEVVttlLUdWDdTuRuUvGVG2kj2ltM1HnlI0nXmf KrdrvVDTSt0m
0rpmNQqTW5ctoluuullndHTk0JX2ko1cy5lkBtoDnTwurgj0e+9NYlavu5rN tqb1p1pMocx1
l09jTJs5JtKjV7YZFzSrBLV2ZMxp2hEegNWIUq2r7r97U2bJW+3UazUDlvpP alBtEo0pNKSN
GdhlkjUo+8BfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
ZtrlYtcucrfuWzp8WFdlry1y6YctJnHfStJJdYcxzIlpIiyXmxyzksp1ZtXV TV2iP0Gr6J2r
Qas8hlgrpk1mPIcYbQ6Thk1sbN5KT8YsZ7Fq85jp8AGXS7Pq8vwnHbrk0xD1 svWKqjuvrcbN
K5BzeIbRozvwbZ5zt292c8h467p3Igaq6Pv2pREMWvabNVZkmh5OIqHoqW2S wtW9ZqUR5Mtx
55q7cjXQAZnp5a1dpWuuqdzVCDwaTXeqOrZHFQrj8CKpDvikZqTtUZF4xFnu yQ0wAAc5172Z
39Vpteq2jv3WU6lTnCtpsrmiRIrDaVGlEk2VblKfUnB7ln4mfFSkxp0iu6nS rZtWfEseHTar
MrbTNfpsme3J6BTt7hOPIdQtCVr2pbURFuxvMtqjIX4AGIeENG1Sq9yU6iW/ Yzlz2QcQnqnH
j1tinOTH96i4Di3DNXBJJIM0pSW7dg1YIyFltOv6mSrLuFEjSiHaVSplOxb0 I6zHmMTHibc2
NGTWwmkJUlpPMyIyXyMsZGlAAynVK1LxvrSK3XyYgQL5pMin11EVa/3smeyR KcZ3EpXi5U4k
j3GXZzxzETaVC1HvLWChX1ftqwrShWzCktU+C3U0TXZEiQkkOOGpBbUo2F2H zzjtyeNsABht
tWFdkPS3WyiyaTsn3NW69Ko7XSGj6S1JYJLKskrCNxljCzSZd+AuWwrsmaW6 J0WNSd8+2a3Q
ZVYa6Q0XRmozBpeVk1YXtM8YQajPuyNyABn2pNf1Qo1abRZ+nlPu6kPREkvd WG4TzL+5W7cT
hGlbe3ZjHPO74B5/B2ser2PZU9qvdBaqlZq8msSokEv3vCU9t9ob/VSSS7OR GZkWSIjPSQAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY pP1A1dR4R0iy
YNisv2alpRsVd6BKabW50HipSqWW5tKTf9rNRNqMi5YNQvHWWqf5m2Z865P9 nhSPv33R+zdG
+k1QXMBTOstU/wAzbM+dcn+zw6y1T/M2zPnXJ/s8XMAFM6y1T/M2zPnXJ/s8 UG99QtZ6Nq1Z
9twdPoUih1LovXM2HGmT2ofEluNubZRJaQW1lKFnvbLaajzksGe4imah/wB9 2nH7SPf1TUQF
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzzOv+oITJehasMv3Qm8VUxi1H pNNabWz1z0VL
SklGVJSk4+FGsjUoi8fn2DoYUykffvuj9m6N9JqgB1lqn+ZtmfOuT/Z4dZap /mbZnzrk/wBn
i5gApnWWqf5m2Z865P8AZ4dZap/mbZnzrk/2eLmADnO9tQa1T4Woz9d1ShWf ctD4nVVvRJ1P
fac205h9racmIl97iOuKI8EnnlKfJyfRgpmoX992nH7SPf1TURcwAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAFMpH377o/ZujfSaoLmKZSPv33R+zdG+k1QXMAARF71V2g2XXK5 HbQ69TqdIlto
X5KlNtqWRH8BmQh2bHhONpXUq5c02WZZefTXpkYnF95k0y6htBfqpSREOxHL dGZ2W8Zbqre9
l0y/LHgVK7qBCl06vuPTWJFSZbcitqpU4krcSpRGhJm42RGrBGa0+ch91U+z VPrap8286otJ
mkzg12qut7iPBp4xPcIlEfI0mojLvGT6g2xdsupP2lSKK21EueuSnKfLrVWl KeQp23X4i0uq
Np7JJ4biy9tUo8JTtSnKkytTaN0a5N525erqMBH9TxPdqh6Qf9cOp4nu1Q9I P+uILEgAj+p4
nu1Q9IP+uHU8T3aoekH/AFwEgAj+p4nu1Q9IP+uHU8T3aoekH/XASACP6nie 7VD0g/64dTxP
dqh6Qf8AXASACP6nie7VD0g/64dTxPdqh6Qf9cBIAI/qeJ7tUPSD/rh1PE92 qHpB/wBcBIAI
/qeJ7tUPSD/rh1PE92qHpB/1wEgAj+p4nu1Q9IP+uHU8T3aoekH/AFwEgAj+ p4nu1Q9IP+uH
U8T3aoekH/XASACP6nie7VD0g/64dTxPdqh6Qf8AXASAyuVe1mUHXS52q7d1 ApThW/SGTRNq
TLKuIT1QWaMLUXjEh1pRl24cQfYos6J1PE92qHpB/wBcY9ctHvCZWNU9Pbfp dEkMXBBampnz
60+2thEyF0EiNBR3DWpK4Lq/LIjSpBZLngNxAfwQl71Z2g2ZW63HaS69T6fI ltoVnapTbalk
R47jMgiJmeTlpiI3lN8gMy84qDViU9baV1Kt3LNlmWXX012ZGJxfeZNMuobQ X6qUkRCFVT7N
W+tmnzLzqi0maTODXaq81uI8GnjE9wiUR8jSaiMu8WRSJ6Sqm9o6xEfVLahf 33ac/tI9/VNR
F0GPTYECLqBp8tiJdcZ868+W2q1KXJaNPVc/mXEecbJWceZWM45ZGwiExtyW VtvG4AAOJAAA
AAAAAAAAAAAAAAAAAAAAAAAAplI+/fdH7N0b6TVBcxgL2sUCl+FvVrDXbExb 71NYjP1FqWp7
2qNEkTk7IqGTWpZnIcRglqNWE4LPI9L9ku3Pe28/mZVv+WAerV48aT3f/wBh zf8AcLEVqXNc
cqdLt9ajTT5LL0icRcuMhCm0pZP9RRrM1eckEk8pUojjNR75pFY08uOlU+kX k9Mm0qVHjt/c
fVU73FNKSlOTjkRZMyLJmRDx3zdVFqLkOqwKReD0yElxtTCrQqqekMObTW2S jjYSvchCkmfL
KdpmklmotGC1K2jiZdTW9qzwfnNeKNUmG4zbTaUIbQkkoQksJSkiwREXcRF3 CEvSYiTeunSE
nnFxPH/smoCmlckZpKVxaZeaSUkj4btoVTcj4DxHMsl8BmXwipXRqlCo+s2m dvSLbq0iTPls
y2JEh5cA2FyHJNPPiRno/EMkoWpZZUjcZpxy7bM1cURM1ndXp7ZZmItXZ0+A AMbcAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAACmUj7990fs3RvpNUFzGGSK3d9Nk1bVFdSoyoD1 bYtyRTGqFJek
dDjVuRDSttaJBmp40yHF4JpW4ySkkecNy7xVdX/vT3d/2HM/3Cx5vZKt3P8A 1befzNq3/LCv
6jXxSqvp9cVKp9HvJ+ZMpUqPHb+5Cqp3uLaUlKcnGIiyZkWTMiEqf7RKF43r MQltTJrjlVpl
vrUaafJZekTiLlxkIU2lLJ/qKNZmrzkgknlKlEczR6iwiM20gkIbQkkoQksJ SkiwREXcRF3C
j3zddFqLsOrQKReD0yElxtTCrPqqekMObTW2SjjYSvchtSTPllG0zSSzUUUV xxmkpXFpl5pJ
SSPhu2hVNyPgPEcyyXwGZfCNuP4VscVmdpYMkZq5ZtEbwuV6zUyb106Qk84u J4/9k1AaAOa5
k+76nTbk1CplTgwGNP5UmXDp1Ut6Uh6StFJ3qJ3e80tBKKW4Re1l5KFeMR4P pQZMkVi3yt2K
bTX5uoAAK1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAKz7Htg9ede/cPbPW3Sel9O6qY6Rx92/i8Tbu37vG3ZznnnIswAA AAAAAArNb09s
GuVN6qVqx7Zqc9/bxpUulMPOubUkkty1JMzwkiIsn2ERCzAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAxfUbVqv2pr9SbOTApjlrro8eo1WUtC+ksE9MVE StKiXtJCXFMm
eUny3nnsxtAwa7KHCuXwt6nb1SRuh1HSxyM9jtJK6iacl5jLOSPuMiAXW0r+ m1HVjUu2asVO
iUe0kU1yPJ5oXskRlOuqeUpRpwk08jIk4LOc9o/Fsa6aTXNcqLcot6wJNTdX w2mjbdbS6ruS
ha0khZn3Ekzz3Dm+jwryvah+ENSW477l1JiUKFJbR5cl2Ihbb5pLv4pMLMi7 yWRd4smp192R
qfpvSNN9N6FP+63pcMoUIqU4yqhKbcQpa1rNJJQSUpUkzSZ9oC6N+E5ZVJ1X vm2bvrkKnUmj
SWItKeap0pbr7qUKKWlw0pUXiOp2kZJSRlzLcXMX6y9QY8ijXpWbnr1utU+3 rhmU45ERL7KI
zLWwktvm+RbnyNWFG3lBmaSSZjMkX9bWlnhMamyL7kTKTEuRqkO0qT0F55uQ TEY23CLhoUeS
UrHZ3GKJUaZOn6dX9Mj0mRWKfSNa5VSrFPYb4i5MJtTfFRs/GLmkzLzEZ9wD o2w9YdNL5kTY
9r3ZDmuwGFSZKVtuMG2ykyJTh8VKcoIzLKi5Fkh47f130kr9zt21Sb3gSKm6 5wmm+G6hDq84
JKHFJJCjM+RESjz3ZGb6lXpa2s2mF121pRGl1CvoouSkIpTjBNspfYU5EJxa U+OtJGRNpySt
p+YhjlcrMe4LUi2lU9b6s47GU0ti3GNL0MzIzrZkaUtm2aSQojIi8VZZ5kZ4 MwHc1eqkCh0O
fW6o/wBHgU+M5KlO7FK4bTaTUtWEkZnhJGeCIz8w5zs/wnKRdGjFQN6uQqfq V1JVZTUGHTn+
E07HafdbUlTiVtnhtpKzJSzIzyX6o6ZHH2l9/W1SfBYruj9WkTIF7QaBXmnq Y/BeSZGSJT5n
v2bCLYfeouZY82Q2PSHXCx7ipdp27PvODLvKfSIjktlLZp3yVMJU4nclJNEv du8QjIyPljuF
i1B1i00sGqIpd2XZEp85aSV0dLbjziSPsNSW0qNJH3bsDGbmgQYmi3g3vRYc eO590ttmammy
SZm6wanD5d6lERq858zFQuKRcOnmrV9vV/U+Xp83Wau7LiS12WirMz4y8cNJ SMGotifENvGE
4z2mYDsG3K3SLjokWt0KoR6jTpSN7Ehhe5Cyzg+fnIyMjLtIyMjFc1G1U0/0 7ejMXjc0alvy
i3Msm2464pOcbtjaVKJOcluMiLkfPkKX4IEKHC04q3V9dn1yLIr0iS3Mk0Q6 WhfEbaUrgs7j
LhbjUZGRJLJqIklt51msXVb+mXhP3fXtQY8tmNXabARbtQTAckJJLbZpfjoN tKjJSl4Vj4Cz
jJZC1aDanJuO079uy47liO0Kl3ZPjU+c6ltlpqnoS0pkskSclhfI1ZUeSyZi x2JrRpffFdOh
Wvd0SdUsKNMc2nWVOERZPZxEpJeCIz8XPIjPsHMp0utXfoZfk22INQZaZ1Zk 1SVDKnE9IREJ
LZmk4q8E4pBqQo2lcj2GRj00KtxLw1EsduTrfUrrnUmuRXo9NjaeFDdZ9sJK kreSaeG1tMyX
zUki57TwQDoGr+EFo9Sblk25Ur1jRqnFkriyG1xX9jTqFGlSVOcPYWDIyM92 OQs1+6jWRYlG
jVe6rjh06HLP97L8Z1T/ACI8oS2SlLLBkeSIyLJecce3Xdb122VdrWoGoWoE a9WmJxuWhS4T
jMKMlsl7Cdw2aVsEkiUtSlEe3Pb2neKdWqVZFzaP37fMeQq1vY5iQIs4oq5D cKoGltZrMkEo
0qU2e0jIsnz8x4DUtDNTVaiap6kN0yvIq1q04qUdF2R0tk3xY7hv89qVnlxB 8l5wZYLAvuoN
+2hYFLaqd4VyPSYzzhttKcSpanFEWTJKUEajwXmIZL4OFdp9za76yV2kxpce DLOiLZTJiqju
KSUV0t5oURGRKxuIzLmSiPvEh4Uj9oU6faFcuK4a7a9Rpr0p2lVyDTemsRVG ltLiH29qiPeR
ltLHPYrmXeFqp+uGldQs2q3fCu1h+jUg2SqDyIz++PxV7G9zWzieMrkXi9x+ Yx6LW1l0wui7
VWrQLxp8+rlu2sNksku7SyfDcNJIcwRGfiqPkRmOa75vGqXj4Nercqb0OrQo silMwbmYo6qe
qro6U2oyW2rnlszx5vH7OfO73Pd1o6qX9ptQNMoEl+Xb1wM1GoSE0tyK3TYb RK4jKjWhO3f4
pbS5GaSLzANKq/hBaPUm5ZNuVK9Y0apxZK4shtcV/Y06hRpUlTnD2FgyMjPd jkLPfeolk2NR
o1Yuq44dOhSv/RlmZuKf5EeUJQSlLLBkeSIy5l5xx5dd1vXbZV2tagahagRr 1aYnG5aFLhOM
woyWyXsJ3DZpWwSSJS1KUR7c9vad6gVODZNe0g1FvSBKftNOncSntTkRVSEU 6caELN1ZJIzS
amz2kZFk+fmMBvcHVrTibYzt7x7up52+y9wHJizUgku4I+HsURL34Mj24yZH 2D9ac6rae6iS
JEazrmjVORGTvdY4bjLpJzjdscSlRpyZFkiMuZecYHrpVGL8plqag6fdZU62 6RXZR1OpN20U
ozdUwyTc4ojpFxkJwaOIospPOPJIfPR+pwrs1+teuezDPvqoQWZbCksWP1a2 20uOvKX3yNOE
kpKTSRkvxsEWNxmA6C1tumZZemFXuanzqLAkw+DskVdqQ5ERvfbQe9McjdPJ KMi2kfjGWeWR
8761Z08sesqo913NHpU5MAqhwnWXT3MG4bZGk0pMlK3EZbCM1YIzxgsioeG1 +DFd3/wX01gf
GTFiyfDhYXJjMvKj6dcVk3EEo219YmncnPYeFKLJdxmXeA1Kybrt69beYuC1 6ozU6a+ZpQ82
Sk8yPBpNKiJSTLzGRGMz1p1zpGmmq9n2zV50KLSahGlSq287EfddjNEgyiqb NvJHvdQ4ky2r
MiLJ7SMjP8eCi03HjanxmEJbZZ1GqzbTaSwlCS4OEkXcRDxeEdWItoavaTX5 W25Tdu0d6rM1
CY1HW6mOciMhts1EkjPBmR93cYDxL8IK2W9YY0169I7OnUqzFVCOp2IaOLNT UFxzNJKbJ41b
W1lsLlhJqx3jXKJqBZdZshV7U+44LlvISpTk9azaQ3tPBkveRGk845GRHzLz kMitWuW1fXhd
0256Ktup013TlT0GQ7FUgyWmqLaNaUuJJST8tOcFkjPHI+eZ1e265V9H9RYl ssPmzSdX5kqT
Hiw0ylFEa2EZIjqwl0kGpC+GfIyRg+QDpCxNaNL74rp0K17uiTqlhRpjm06y pwiLJ7OIlJLw
RGfi55EZ9g0AcXUKtxLw1EsduTrfUrrnUmuRXo9NjaeFDdZ9sJKkreSaeG1t MyXzUki57TwQ
7RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZLcGvdtUy4apR4FrXvcJUmSqL UJtGoxyYsZ1O
N6Fr3FzTnB4IBrQDLbn1ztCjrpMaBTbluSpVSnNVNmnUSmKkSm4ziSUhxxBm nZkj7DPPwD+u
66WQnSmr6iNIqr0GjPojVGAUYkTozynUNk2tpakkRkbiT8rGM4MzLADUQFZu K9aVQ77tWzpc
eaufc/TOhONISbTfRmidc4hmojLKTLGCVz7cdoxnQ7Xeu1+uVul12y9QKjx7 ukQoMpqgITHp
MVSm0tsS1oMuGtrJm5uJSiI8mZgOjAHLPg++EHSKPo/a0e9Du+qSlvvR6jX3 ojsiLHcXKc4a
XpK1ZM9ho5FuwWC7sF1MAAMmurXSl21VqhFqun+o7cCnvONyKum31HBSlCjI 3Sc3ZNvlklEX
MuYk7/1ktCzXbWKa1Vai1dLLz1LdpsTpBOE22haS2kZLM18RBJ2pPmfPaXMB owDO7J1js+5r
duGtOJqdATbZmVXi1mL0eRELaaiNaCNXaRHgi5mZYxkZRqFrd91dS05i2vS7 7t9iZe9LI58u
C5Di1KIpS0rbS4lWHEK3JM0K7SLOOQDpsB+XnG2WluuuJbbQk1LWo8Eki7TM +4hjT3hIWOhx
UpuiXk/byHeGu42qItVMT4201cXOdue8kgNnAZ/f2qMa05sSOxZN83O1Kipl IlW9RzmRyQo1
ERG4SiLd4uceY0n3jxr1wsZOnSb3JdUVGVUSpRQChK6d07OOjcHt4nfjPZ3g NMAYXdWvTT2n
94PUm0b8oNw02hvzYbVToPDcLmlon0pUakKQ2t1C157EJUeDIjITfg+6pz77 odHg1S0bzhTy
ojEqVWalSExoE53a2S1MuJVhW9SzWkiSRGkjMsYwA1kAABTNbbF9krTCr2V1 p1V1jwf330fj
cPhvtu+RuTnOzHaWM5+AXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADzg8 doAA/GHv8NH8
w/rAB+wAAAAAAAAAAAAAcn6kJq1Kuq6XrHsLWC3LolzX3GZNDw/Rqi8SjJuS 8SjNBEsiSpRb
SMsnnnnPWAAOc4Em/NM9S6ne9w2HW7qbuyi0sp67ejpkvQZ0dgm3WuFkva1K M1biPHZ28xX7
lsG+r10t1kuQ7Xk0ioXm/T3qbQ3jLpBNQlIM1LSXJLjhJUe3tyXwlnqwAHOS K9dWoGv2lFwO
aZ3bbtJpKasmTJqkPYSXHYZJMlJLPDRuSkkqXt3moyIvFMevSer3Bp7qJeNo 1jTy75jNx3rK
qkGsU6AT0FDEpSCSp1zcRIJJJyrtMizy5c+ggAcmHaV0n/0dpWv9zNZ6/LmV M6A70sv7r7//
ADW3f5Hjdnk8+wdZgADhysWZWKxbNzQ770r1JurUYm5q0VU33Oq0Kws2lsGl wkrJJbTS0SVb
jLaRcyItdo9vV9u6PBqecodTS3RrfmNVRaoiyTBcVTGUJS8ePa1GsjSRKwZm Rl2joYAHMeoO
n103TWvCIptNpUxlVbj0FdKedaU21NVHZ3uIbcURJUeU7DweCNREeB+b5um7 dRHdM4MbSK9K
I1SL0pUypPzIGxpjhmpKtiSypTREpRm6ZJSkklnyiHTwAIa+qO7cVkV232JH RnanTZEND3ua
nWlIJXLzbsjjiDZ1dpdrt2bdFJ8JB2U3G6E9DotTakUZ5G3aaUK27UtKL8Qy PBHg8juAAHIN
yWrVG7np9Nv/AE+1KuW1WrepkagUyjyjdbhuIjpS+iWppTaeJxCMjc5EZd2M Y+lh2gujaJXP
Sq/pDdciF7IEiTEpMF1ZT6ewTKOFJjuGZG/sNJNktKjJWTPJlkddAA5hsiLq RdFN1Bt6NDv5
Np1C1JMWnIvdtDc4qi4hSEpQryjaNJnk1GeDxz8+geDfdtTlWtRbGrGn9429 OoNEYjPzKlT+
FCeUyltrDTu7K1K8oi29hK58uevAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAMO1dqmscXwgbJplnVGIxaE4o51GM49AS7IJuQo5ZtoePjq 2sG2Z8Mjxksc
xuIyTUz8JPR/+D176OwJ0rxTt5+yN7cMb+Rw/CV/KtJPk1Q9cOH4Sv5XpJ8m qHri2XBcEqTX
Xbfo8noZxtvT53DStTZqSSktNJVlPE2mlRqURpSSk+Ko1Ht+8e2rffbzNak1 FRnuNU6Y7I5+
ciWo0p+JJEXPkQ0cNYiJtWOfn92bjm1pitunl9lM4fhK/leknyaoeuHD8JX8 r0k+TVD1xbZ9
Ii09JvUOoz6W+ksIJMhb0ciLsSbC1Gjb59pIVjkSiHPd6XtqixdcynVK7H4q mXNzSKcyhlk2
1c0qTlJqMscvGUoyMjLPIQybVrxxWJj6/dm1WtjTRvff6bfaGr8PwlfyvST5 NUPXH8NPhJl2
y9JPk1R9cZxaupWoVJeS4qslXI5eVEqLaSNRZ57XUJJST+E9xF5hvNkXhTbv opz4BOMPNK4U
uI9jixnMZ2qx2kZcyUXIy5l3iqmalv8AmP5+6Wl1uPU8q2mJ8J2+zNr2l+EZ EsetKbm2Kmrr
aYbpK6O2ppfSVS2E7VKmuG1hTanSItpmajLBkeCVetA5d4T9I6DOv2SzKuGS 049IfZcjrbdQ
p1ZsrSqP7UpJtG2ZGnkZH58j7ahqzQopf47pH9ZRg0J+8hYf7N076M2J5Kxt Fojb8hupM7zW
Z3XMAAUrAAAAAAAAAAAc6as1SJFrOoNMnVHUFi7ZxPHZsamPVlLMgm6XGMjY RGPgK2yDcNeS
PBme/kOixkmpn4Sej/8AB699HYE6V4p28/ZG9uGN/I4fhK/lWknyaoeuHD8J X8r0k+TVD1xb
LguCVJrrtv0eT0M423p87hpWps1JJSWmkqynibTSo1KI0pJSfFUaj2/ePbVv vt5mtSaioz3G
qdMdkc/ORLUaU/EkiLnyIaOGsRE2rHPz+7Nxza0xW3Ty+ymcPwlfyvST5NUP XDh+Er+V6SfJ
qh64ts+jxqeg3qHUZ9LfSWGyTIW9HLHYk2FqNG3z7disciUQx+6771BduCXT ZVZRSyjqLa1T
mUpS4g+aHCWslL5lnJZIiMjLuHLREV4orG31+7TpcVtRl+Fx7T9Of8Lnw/CV /K9JPk1Q9cfw
0+EmXbL0k+TVH1xTaPd98w3kvMXM/J55UzOZQ62v4DwRKL/RUQ1mxL2YuVty JKjlAq8dG96N
v3JcRyLitq/GRkyI+9JmRH2kZ1Res/8AMfz92rUdn5sEcU23j6fZml5S9VYl StlWps2lptRd
X4c5dkt1VqXuVGfSylxTLhu8NT6mSIkpPKzRky5Eq9aES2J9MuKdS5NwSrek 1dD1DfrDkxbj
sVUCIZrbVL9tU0bpvGR+SZme3kJPUNWaFFL/AB3SP6yjBoT95Cw/2bp30Zsd yVjaLRG35DHS
Z3mszuuYAApWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJNTPwk9H/4 PXvo7A1sZJqZ
+Eno/wDwevfR2Bbi/wBvpPtKvL/r9Y94eiqwpcK9603jDst5M6MWDLjs8JtC sH3qQtBkoi7E
qbM/KIepmuPMp2OIWky85C+1amQatFKNPjpeQlW9B5NK21kRkS0KLCkKLJ4U kyMs9oqVEN2W
4+xHpU+Y2qSpLL9Qb4SGGU4SRmpSUrdzhSixvM8pJSk5yW3HqK3p80dHn5NN al96z1Rj1Qmz
1k1GaWpSuRchnVyWVXrtunrKkwVyKazHRFKYlaNrziFuGvbk+aUmvbnGMpVj kM2uTVDUM6i/
TKlOjxThyFNSYTERtDSloUaVIWWNy0ZIyNKjNJ95GJaka8X2waWpdQYUylJJ QlqEykkkXYRE
SewYtXraWw2x035+Hr3vBtr9JktwZuL0j7toqWlTb1tU9+mNoh1liG0iSyZk TchaUER5xySs
8dvYZ9vbkZZpXd0una6s0pyI5CZlpcpcxlwsLN1G5SFKLsylZGkvMS1efAm9 StdnfuKplJtq
ZvrU2A05Up7eC6KpaCNTaMcuJkzIzLyO7xvJzDQanyKjq3QzaSo0xXHJb6yL OxKEK5n8ajSn
41EMdbRNqxVZqNTh/wAvFTS9d438PzxdU34vNGil/jqk/wBZRh99CfvIWH+z dO+jNim6xR4k
tdqSKla33U0uHX0KmU3hx3OKT0aRGa8SQtDavb5DHafLyu4e/QSmMv0OtV+h UeVZ9v1+os1O
j05piG2RxlwIiSd4bXESjetDh7ckfeZEZmN+beIiNvzk+pxxzmd/zm1YBH9X y/fuofzGPsw6
vl+/dQ/mMfZjOtSACP6vl+/dQ/mMfZh1fL9+6h/MY+zASACP6vl+/dQ/mMfZ h1fL9+6h/MY+
zASACP6vl+/dQ/mMfZh1fL9+6h/MY+zASAyTUz8JPR/+D176OwNL6vl+/dQ/ mMfZjGdQ41vw
tdI0S7NPXr+euGhsMUQ3YVOfNtcRyU5KT7etsm/EkMKz+N2ZM04KdJmJ5R4+ yF43j091jqsK
XCvetN4w7LeTOjFgy47PCbQrB96kLQZKIuxKmzPyiHqZrjzKdjiFpMvOQl9P bX4GkVo25ckB
KZlNo0Jh9viFvjyG2EoUaHEH4qknuIloV8Rjz0Y3papDMWlT5iFSFJYfqLZt IYaThJGajSlb
ucKUWN5nlJKUnOS349RW9Pmjo87JprUvvWeqNdqE2esmozS1KVyLkKlTqBSL 1uOusw6uz1lB
ZjsMmSspdNCnlO8+w05dSjJcyUg+4+dX1aq920+56nbEysPpp6DSbaWGkRyf aUgj8ZSCJSi5
qSZGZpPB8hJaSLtq1KC/e9WqLb8ltZxodNYP2xK8dqi85l2fiknnzPkVWbU1 mk0pHV7uh7Gy
4YjV3t83/MRz5zy5/ttv+cptj1nUu2rcl1S5Jq23FI2xm0KIjSvzn3H8XYRZ 78YzSVeaKZXa
VU6eWSp0knXncH47Z+K4gvgNJn/GReYX64rjoGpVlTjcns0WsU1o3tshWG3E eYu8yM8Fy5kZ
lyPPPEmIT1TkMUyOkzemOoYbL4VqIv6M5GHm+i0uLjpec/Xvjuh1Jf6sUiMj zVukl/tKMPto
T95Cw/2bp30ZsR19PkuDEIj8qt0o/wDaMYSOhP3kLD/ZunfRmxrzxtSv1/p8 bjne8+Uf2uYA
AyrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkmpn4Sej/8AB699HYGt jE9XLitineEh
pgzUbjhwqnEbloap7seSpyT04247OxbbSmy8ZtzO9ScYT3HkrMUxFufhPshk iZjl4x7tsH5W
rBCsnfdF7oN0fNeo/YD5Kvejn2Qrn+bFS+wHYwZP0z6OfGx/qj1Zd4QmkvX0 526bcNpFRWku
mRTPHHMiwS0927BYMu/GS55JXOU2i1eFIUxJpspDiTwaeEZmXxl2kO2F3lSV f+x3L82Kl/y4
8ku5qLITteplwPJLsJy1qiov6Y4qvoMlp3py84l832h2Nh1GScmLJFZnr3x7 xs47olr16syk
xoFMkOLMyI8p2kn489hfCeCHS2k1jQ7Gozq1uok1aYkukvp8lCS5k2j4CPmZ 95/EQsrlzU9L
exmm3GlJdhJtmokRf/IEbKr7a87aXcp/93Kh9gNOl0FqW4r858tk9B2Xh0du O1+K3pEfTefc
uqRvap6c9tapX9YRxZtCfvIWH+zdO+jNjN7mrsCDTDrdbOo0WjUqZBnTp1Qp ExlCENzGTJCS
NrctalbUkRFgiMzMyIueheD/ADqZP0Ss5dIqTNTiRqQxCKUy24ht1cdJMOGk nUoXt3tqItyS
MyLOBbrdo4a/nc9zT85me7l/a8gADC0gAAAAAAAAAAyTUz8JPR/+D176OwNb GDatV+oNauUu
84No1qo0TTdupIrsph2Ikvb4UZ72pLj6Vr2NK3H4pZPCSzzMrMUxFufhPshk iZjl4x7t5H5W
rBCsnfdF7oN0fNeo/YD5Kvejn2Qrn+bFS+wHYwZP0z6OfGx/qj1ROrtlQrrh NykuojVOMg0t
Oq7HEduxX8eTI+7J+cc+VG165BeUhynvO4PG5lO/+guf/AdJrvKkn2Q7l+bF S/5ceZ666Ssj
I4FxqL4bYqP/AC47OlyT0iY+j0tF23/jV4J2tHm5vi2/WpLpNopcolGf/rGj R/48z/iGrabW
OihPJrNTUhyeSTJhsuZM5LBqM/8ACxy+AjPvPlb3bmp5JwzTLjIvgtmol/8A gEbKr7a87aXc
p/8AdyofYC/Do7RO9vY13b06ik46bVievPcuqRvap6c9tapX9YRxZtCfvIWH +zdO+jNjMLkr
c06lQIMK17lnPzK1F4TfVyohqNhRy1JJUs2UGZojL5bvqPQtAZsn2N6dbNRp M2lVa1Y0SiVG
PJWyv29uHHWakKaWtKkGl1BkeSPtyRGO63aOGv53PI0/OZnu5f20AAAYWkAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAUy6tLbEui+KVetdoXS6/SOD0GX0t9HC4Tput+ IhZIVhajPxiP
OcHkuQuYAKZ7E+ln6NLM9BRvUD2J9LP0aWZ6CjeoLmACmexPpZ+jSzPQUb1A 9ifSz9Glmego
3qC5gApnsT6Wfo0sz0FG9QPYn0s/RpZnoKN6guYAKNU9H9LZ9Gn0hdhW/FiV BpLMooENENx1
CXEOkg3GSQvbvbQrBHgzSWRYLJtahWXbES2bZg9ApMPf0ePxVubN61LV4yzN R5UpR8zPt8wm
QAAAAAAAAAAAAAAAZ/dGmLdcXczab0uamQLnz1nAhphG05ujNxlbVOxluJ3N NII8L7cmWBoA
AKZ7E+ln6NLM9BRvUD2J9LP0aWZ6CjeoLmACmexPpZ+jSzPQUb1A9ifSz9Gl mego3qC5gApn
sT6Wfo0sz0FG9QPYn0s/RpZnoKN6guYAM/qOkNk9MptRtmlQrNq1OknIj1Gg UyGzI8ZlxpTa
jWytKkGl1WSNPaST7SFgsu2E20mqrXWqnWZdVnFNlSp5ME4pZMNMEREy22gk khhBck5zkzM8
iwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA /9k=
--------------060507070303090609010100--
Re: Image Figure differences from Eclipse 3.3 to 3.5m5 [message #247388 is a reply to message #247341] Wed, 18 February 2009 18:00 Go to previous messageGo to next message
Brian Jakubik is currently offline Brian JakubikFriend
Messages: 140
Registered: July 2009
Senior Member
Going to GMF m5a (and its dependencies) has resolved this problem.

Brian Jakubik wrote:
> Originally posted to GMF, but here may be a better place... I have
> figures that extend org.eclipse.draw2d.ImageFigure, and appear to be
> ignoring the size dimension (appearing as a square with the image off
> center...) and my connection arrows do not have the end directional
> decoration... I have figured out that I can add a default size facet to
> my node and that will change the size of the box, but my images still
> have are centered off the figure... If I setAlignment to northwest,
> then that appears to work, but I have a little dead space in the south
> and east sides when selected. I'm just trying to figure out what
> changed from my previous versionsand why I'm seeing the effects, any
> help would be appreciated. See the attached image for more details...
>
>
> FYI im now using Eclipse 3.5m5 (and dependencies) coming from 3.3
>
> Thanks
> Brian Jakubik
>
> Originally posted to GMF:
> Running my GMF 2.0.2 codebase on GMF 2.2.0m5 (no re generation yet)
> yields different presentation of the figures I am using...
>
> I have figures that extend org.eclipse.draw2d.ImageFigure, and appear to
> be ignoring the size dimension (appearing as a square with the image off
> center...) and my connection arrows do not have the end directional
> decoration...
>
> any ideas on why this would be the case...
>
> attached is an image of the before and after for reference.
>
> I also see this after a re-gen...
>
> Thanks
> Brian
>
> ------------------------------------------------------------ ------------
>
Re: Image Figure differences from Eclipse 3.3 to 3.5m5 [message #879905 is a reply to message #247341] Fri, 01 June 2012 05:12 Go to previous message
chavi   is currently offline chavi Friend
Messages: 67
Registered: April 2011
Member
Hi Brian,
I have shown your post in eclipse dzone in which you are asking about synchronization in between GEF Model and xml.I also have the same concern as you had.

http://www.eclipsezone.com/eclipse/forums/t61707.html

Are you able to achieve the same as you asked.If yes can you please tell me that how are you synchronizing in between GEF Model and xml.

Thanks...
Previous Topic:How to create a tranparent color?
Next Topic:GEF Documentation
Goto Forum:
  


Current Time: Thu Nov 14 11:37:17 GMT 2024

Powered by FUDForum. Page generated in 0.03072 seconds
.:: Contact :: Home ::.

Powered by: FUDforum 3.0.2.
Copyright ©2001-2010 FUDforum Bulletin Board Software

Back to the top