Need HELP! Performance problem [message #120085] |
Tue, 02 March 2004 17:35 |
Eclipse User |
|
|
|
Originally posted by: smankovski-NO-SPAM-.cybermation.com
------------8Ge1JS4RElBpCwP00SOhRi
Content-Type: text/plain; format=flowed; charset=iso-8859-15
Content-Transfer-Encoding: Quoted-Printable
Hi
Creation of a hierarchical graph spends 78% of its time in =
org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters =
method. When I build large graphs it amounts to most of the time counted=
=
in tens of seconds.
I wander, if anybody knows how to speed this up? Is there way around?
At this point we are pressed to make a decision not to use GEF any more =
for performance reasons. I would hate to see it go... If there is a way =
to =
make this stuff to run faster, it would save the day for us and we will =
stay with GEF.
Thank you
Serge
------------8Ge1JS4RElBpCwP00SOhRi
Content-Disposition: attachment; filename="trace screen.gif"
Content-Type: image/gif; name="trace screen.gif"
Content-Transfer-Encoding: Base64
R0lGODlhQAawBPcAAAQCBASCBAQChASChFPK+G1PBYWEhZsCBCxIhxIJRxtb zKyI
05TalJxCHDAlVsXExXzGBOjq0nxanASezARinIep1oSEBDOp7kRCRKRIUI22 j3wC
VKHG7YQiBA0Ddw0nbTpKqmxmzaCm+JxyVCwoEDtYlLSeRBw4eefo6U+b0Tx6 RB4U
SOyknN/J+0mMS6Ft/LGH+/gDBITWBMT25PwC/BxipHyizAQC/K4qLvKNiwR+ BEY4
aNTSzayqqJi75DkjhTBKcCcZZ6hscGElBAS+vFlJiKTOZLy+BCMTWFimVE1r pO/+
l4ZiE+syLryw3HN61HmI8S8beJqbqj46Rs9LSaDa9CwcWlMCBASC/ISmTPTv 9WZp
BCg5reNnZVl4rmiHuVhSl6WX8QkIM6wWHLfRsdzZ8kQ8erq8uuyYyHhhsAS+ /LHM
6G2bbuoYGCY+hVtJl6KbnPzGxJG03CQkKXN85fDsC0yq7PN3eCILVbKb08TO 2Dkm
bM+4+DZVcZ960mWmBCp51UzORPz+fAT+/AT+BPqEBPyERGVjZe7OBfRCHHix hpp9
M3DqZDqJOfm9TaymJFNJN3Qi7C+GubicO2QkLChmNNyePOfGNwQCvGxoLugr BJyK
eBh6/JRefOfJRnR0lFy+vPz+PPuec/urrNLPmvVxUvfHtORiBDx+nFtcWwR6 fPDu
sGGRCXLIcvdRKfScm3h3eFNaqvqzKm+rbJs8O/BZWjk4Nz1ePHymLPjIaOys cnye
nDEXkpRaLMRujByd9RUTFDyanETW9J5XXnB4Bl48OtzevHxKXMeZ+6CdePe4 ldGb
BEVknPr+zKZq0E06lFwNfPu+G3txszw6BHx6PGA6BOHfCEuZSPz+/Kx6/Nxa BCl3
LOSOrAh5rSwarCyX37m7m/z+BGyWJPvXxfwmJGa037x6BJwiJGS+XKRHN987 PM++
yfnelIR6BFK8+Mip9VRHcZTWLHaXx/zeXLt+fNSWUDACBTG8+El30TyevPze PHHZ
9j09XHi6BOS7t8TevCH5BAAAAAAALAAAAABABrAEBwj/AD9Y+UCwoECCAw0q RKLw
YMEgDSNK/HBCYkWDFy9OLKiRoMaMHkNWBElRZMmRFFGeUMkypcuVI1WmhEmT 5syY
N2vq3MmTppuVP2ECAXriJ4KVR38GLXpiqNKmJ45KjUp1qlGqbtwAcWM169Gt XMNu
RRAWgVSpWs2SNcs1qlqua9WuhQtXbl25ePOqLbEXL1++ef8iACx4sNnChgsj Fsx4
MOPHjhP/LfF4MuXLmDNjdqy5s2fNzCiHBl1itOnLoU+rFl26derSqWPDjgWb me3S
sWzrZpY7tu/du5XYVtK7t3BmxHULT458OPLcx5c3V7JcOnXr16tn3879E/fv Srxc
/xcffrz58uLToy+/HpX69+njxw/vRX599PXzp3d/n7/+/wAGWN8XARJo4IBe EJif
ggcmiKCDDh4oYYQJGjihhBZWSKGFHH7hoYcafijiiCSWaKKH8piY4hcrfphi iyiy
GOOMMa744ow35shijjrK86KPO/4oJJA+8ljkkUEOeeSSTDZZpA0+QuljHvJI GaWP
KVCZZZVccgmlDVJCmceWX+ZhQwpgfnkmmFWyaUMYaYIZRptxgllBChXUmeeb Nuzp
Z5+A5lnBn3vaGWiggiLap6CDMupoo5BGKqmkcgxaaQWXZmoppo1W6mkFInwq h6ci
VFCOHKFWGiqmo3ra6qiYlv+Taqqj0vrqrXL4MKquuPLKa67A+hpsrroWG2yx PiCb
bLLELuvss9D6wAG001brwxrLTpusttxK66214H7rLbbWksvBueKeq6601arb rrvw
crAGvPPKa++89dqrbr3zVnGuv+oCfG6//+5bsL4cCAywwAkPzMENBD0j8cQU V/wM
RAolxFBECSW00UYdlWSRSSKTjJLIJMmk8kksr7zSSS/HjBNMObkcU08r/YAz zksx
5TNRTAUlNExLOZUVU0kFrXTSTFflNFpkjSVWVVlpFRVcboVVFldjnRXX13qF LfbY
YQPWF2JymU3YYYmx3djbbUNmmWSRUcaZ3ZfRjffcn/X/7bdno7WGWeCvoUZZ boLf
9trisinuOG67uVZbbb0Bp1vlvFkuXCzHIRddc9OFjp3onmuXXengpf4dedSp x951
qJhHHuu0ryde7O+hhzt9ts933+//8S7g8MQDqCCExw/fIITIb4jghc5jmCGI 1Hco
YoTTl1ihhfic6P333t/ooowtlk++jOf3mH76PfJIvpA7vq8kkfMnmeT8TnbZ pJVX
fvlkkWhqk5fkMSYq+e+AWRJTmdIkjwo0kEsOLBSYzFQnCtbpghJMVKE0uChG LaqD
HWxUCEM4qRJuClM2+BSnKNWpFaoQVqLiVAxdJUMYuuqGrMKVDnfYKhH8yli1 Mhay
/441LGYZcVnNala0lkgtJmprid3SFrm2la50teta33qXFd3Frni9y4sGCyMY HeYw
fCFMX2ZMo8HUSEaAmfFeaCxYxD4QhChE4QfQuGMUghAEJCDBCmYoCEMggjGD eOxj
iExkR0KmkJOFBCOPTFkkW0ZJlbVkZpi8Gcx2ljNO3syTP6tJz4ZCFFJeBSs+ S9pV
jjaVpzntKklp2lS8JpavuQUtQIgaW97CllzqMi104SXYyLa2wLAtbWU7pmGW ucy1
OTNu0MRb3OQ2mbpJxjJ/00zd9pZNwQFucIljjeTCyRvWLA42rqGNbdTZOHRa rjaO
u5zlgPM5zRlHOfi0juiwQ/+d0k1nO6gDT+y2M1DqfIJ14HFd7ZSwO2nY7qG5 +53w
wuMe4cWHP/Sxj38ClNHiNc+jC/ro80bKIJKaFHooxV6IUHqilYLvC9176Yls VCP0
iQhGNz3fF1KAI/TRVH1A/VH82vc++xUpSPfLn1KXulT+HfB/B6TSkZ7qJqoa 0H93
UpOX6lSlCNLpgnyKU6LC+qdDHYpQE+SgBzUoQkiR0IRw3dQLIaXCFcrwrqKa oV5z
eEMbvoqvPLxVsmj1q2G1Cog+JNawEussJSr2iEyMLBapWEXKeuuy4cpsFa+I rniZ
q4udHaNoPeswfxHMXqYNGAewwdrWuva1GHitbF2LAXn/zfa2tV0DQcxQRw94 gBcS
+0EQoIEEPOABCc+YCMYKWchEToSRjCwZRx4JSZKhbJKUvK4lX8Jdmb0kkzlp 2Sdv
8l1Q7mxoS0kv0YDG3qQYDSpMccorXbmWp3GtLbO0L32vFhf80rK/ZAuwgJmp F7NB
sy/NPKZi3JZguL3twdHcZt42w7cKY7ObfVtN4LwZznGeU8PudGfjRhxPEc9T N/DE
3DzryWLStbif1dlnQAOquhozlKCyu/F5Ztc66gyUx/CBaJDlk1GL5qfIwQOp 8ZQX
0uYlT6QPOl5Jp+xklWJopViuHom6tyESuVSmOQ2zTb9H05qKT6fqW5+Z2bc+ +CHp
/81GQupR3Yy/Ois1TPrL8//2jGc3DbB/AtSqVi1oQToVekx7ghNYAaVoPcnJ UIrO
E5zUCkIR5qGtkXprXE2oqUux8K6ghiFeWUVqHPqVhq0qtah1aKvA9mpXhy3i Yx+r
LCJK9taYtayznkhZa+X61+XabLA7u8XQwgu0oPVivkZLRtXWCxs8MAUPpk2G aT9g
2tM2gC2gbYpqX5sH38a2AWq7Wmxfu9vgnra0YUHuiAXBA2/IwwLCIA2JmWEP QcCD
FZK7Medu7JDODXgjpZtdR55MkgevpMJnBrPvdte7MuNJeCVuXlH2BL1Ae8op j5Lx
oqzSK0FbJVZY6cqqaW2WW/+bS15SrvKugS3ld7HLgAuMYAMb+GzIbDDOde7g CO9t
m3ezJoWHjuGiGy6bqykBGE6j9MKlZumSK2dq1Bl118SGnb/ZDTsRd2J6dn3F Xten
2PlpuhnbeHU9zs5CtxPRHrf9ob2LO5F9N3cjHznJSs578Uoa5SpXOaWAt3L2 rIw9
E8V0y2AuEU5JZD4ajW+mYv6pT+PX5jYL9fJDHSqcNQ9nJiWVqUztM5ekSsAu ib5K
ZKKTlwwYaAb6uaquX3ScGg3WSQPq9oNKE6UrYPvcYxpRa8X0oybl6U2H+oRz leuo
UVXqHDb/r6hytfRfHWsgCkuIshYiErevrMbi+vvduqz/uHKt2WlhS9hdzKIX scjF
LzKbtGuMIxzzNS9o84AM0o42tvPPbvtj+//Vdn/jZlv6938GyAMDqFsf8Awn 4AEL
gA1aEAtgMIFFcG9WgFwGoQWy9RDKpRCt9QGsRRAh2BAfgV0k2BAjWBIjKEmU FIIu
I14L13ARNxKstRKz9TI1OIM6UTPnxV498zM9g3FPgUpJcTSsdTRPYRVg0RZZ MRRo
cTVX44RXszW3lV8IMBZHiACstUsANjbBFDazpRZbGGBm01oExmAJhoaN0TY+ V009
54acEYcWNmEXJodGlxkbBk5H52HjRE5V92EkJmIm5jgqdmKFuE7rVE/55BzS wTnS
//FPkMhPqGN2Z5dQ3MFjaYd2O1YePwZRQtY7wGN3GVVReleKD/IfDfJkzCNl IZWK
rRg9hEc90dMh2/MhgleLtZh4ibd4j3c+PAVUNZV5kic+wFiM7kM/mKdUn9d5 oNeM
oac/eDZ6fxYmB1SNW/VVqjcncfJAFWBBi1ZWuKd74qhWHKQovudWwjd8xmdX LtRC
7uhpc7VqeLVXqAZ9tgJYrDZ9wkJ9qQJE2VdE2gdZSvR9kRV+2aJrBrlZ6Icu U7Qu
mXVsopVsYLRsZ0Ra/IJG/neAAYiA24ZtAPCRIAkA+sdu9TdtH2ltPHCS1cZu 5xIx
bvAGzoANn8AMaSCBYFCBVv8ASAQBESPIECnoXD9ZEEEpcCwzXRWxgiKIDde1 lC/Y
lDAoMzXocDHhgjlIETmYgzQDcRX3gzoxhB03NFg5hOpVFEcYXx4ncvKlhPtV X2Ah
FVkIcyrHFVsYTCz3hV8YYGNoFmOYl2ojhtjgl37BhmnIhsW0hm8YTXJzTW44 dNNE
dJ9xN3dYOHuYh0zndOKkYVS3OOxkYpQDOVZHYsBxiGDXOc4RdqEjY2V3HTRW ieeh
OgiVienhHa6zO+zRdraJH0Ymd0eGUXjXUcBDPO7Biqh4igWyik22PFQWeLJ4 Idkz
PSFSeCaCi9XzZbqoIj0lUzxlUzhVZpNXjJpXVMlIP/f/Y3niiYxLtYxLEo3+ A415
Ro1XMkD+U0DTWI1mIkAOlCbe+GgMlFUXRHsYlCaNVo5nZSdsNaDpSEKaVkIp VELF
pynKB2rIp3x6tSo9VEN59SqlMn065AOEBWvYpyuhYkQAaWsiukS0xkTnZ1kJ aZCa
pZAP6aLgsn7uxy4S+X5jpEbLxjD+4n/fVm35B27jBm3XFpIgKW7kZn9FmpIf mX/j
Ni8RgwfQgAzS4AZpkAYTeJNmsAP7ZhBBOZQb4aVeSl3VFTKM5IIegZRMWTIg 4ZTb
FTNVqYMgiA02KKc0U4NRWXF4yl4+oTR86gZlCUtAgYRDcYRKUTVEYXIfVzVW aF9a
/xEWhOqEcOmof6lyKzdzXCgXeamXf5mpgTmGJbCFaFNzahhhPleq0kSHP7eY iqlN
3DSHd7iHeihOfOiHH/aHVhdivcGZwAFP8ySaYMc5muNijDisMOY5kRhjp2M6 qvkd
3pFjl7gerwObafd2QGY7B9U6vkMfB0V3vvmb+tGtpkic+uGKyYOcfUdlH5Wc s9hl
txidV1aduzgivMh4lXdmZZZm3pmvx+hm32ln6Kkk/+ok/HNnU2V6T/JU8Jmw sScm
aMImiNZ628gme2ImcNJAddJojUZBfpJohnJpZ2Um6HhpmXag60hXJlt8J9SO Ebp8
LEuPFgpYzncrraahwFIrr/9ifTULotk3RNAykAS5awUJtOJHflTkay+qRcZG o+63
tPaCbBRJL3HEMPCSWvLCLxl5gNSmbf4nkv8nktfGkmtgf2RApFybbbbgpAsI BVAQ
Bmrbtm77BPiQXAkRgoUUgq6lBUn5gXE6gnyrlHmbgq81MpOEplG5t2b6WicQ lRt4
lK5Fg4GbuB/IuJELuVaplFMpp1iJuDChuZDbWpvbuJ7LFJwrW2TpuaRENIjr p3Sq
uq3VqKz7l1fTuEWIFo16FrH7l3D5Wpoql5MqW3HhWr8LvHrBqVuYl7qrhWYo vMjb
WoChu87rqaTqYNKLmHYImdMEmUaHvaTxTR3GYUl3TrT/aqvtRIiCaDmFyKvB +qv9
BDqd82KoaawwlqzcEVDN2poClYnPemOYmDu1iR7XKlG/Q4r4MXf2EVF3F65K popM
Nq5993ewyFLPOZ22KMHM6WUT/FK5CK+NN2Zkdp332lP6Wq/CKGfmSZ6X53lL ErDN
GI3v2cKsZ3pUBZ8Me1Vl0nqqB3v7+VViZbFmJaDhmHt8UqBr9UG/Z0IjZLJw 5aAr
246d1rLLV4+mho/QR7OxVsU566G0NqIfeiw8C1k/O7RCS7TiF0VKq5DnR2yc xZBZ
9FnG9n5P6y4Ec1piVH/fFgf3J23fJm1BqqREmpJGWpLpFpLYtpIY4C+79QwL IAIg
/xALNZkGEgAGElAECGAGybWTP6mBeSuUfhunSanJnczJn6y31kVdF3Fblnu4 crq3
Kmi5J0GVrKy4sFy5KXGnsDynNFHLkPu5tly5uWzLnfvLVymnP1GWrZvLqpuE Hven
R3iEQECox3zMkDvM2JAVWciorstfs2U1b7nMuJuFZqi6mkoWezmpyDu85FzO 6Gy8
vUvOoIrOn/qX7wzPyxvPyPtMh+lM0lsZQHdhnRF0qPqqscphAQ2+5hS+lhmI kfM4
8wQ5sqFimPPQ7RscvBHRFH2aYxeJ/7SsrLnRSiCb0BqtCjUe2VqttjnSuHl3 4Aog
Ke1RClycwlmuxkkhI+XAyv8ZweyqZbkoeDi9nPAqZuHzeN45eTolwvkqjOV5 1OCp
jE2iws7Ywno2jVDVJVJlJTHsegoraDZAQVXin1ktVrOnJhLk1bMHxILSQOTY JyJL
xJUmKcBXskj8aUwcoU2cV6r2fHSNK5wys1R8s9V3xfs4RLPWfc/isz4btGB8 xkL7
ROUHbC5axkmLLfOCbMxWo248kQgjMGE7yBo5bf3Hx4JctiRZbh6ZpA8wDg8w gBwA
Ec9AB3QgAlDwBKwd20/gBdIQAoGEMbPlybi9yX3ryaAMuH6Lppqstx1xp6Gc yr+d
yowLEqjsuLzMy7k8y5rryo9LuXPauL18y3Tay8E8p9L/rMu9DM01iHHjjRXj /brj
7cxVU81kQTW6y1/UDLuUuoVRWM7gjLxw4c3nHM78jRez1bzsfLzq7JcAHs4F Xs7v
rGAMNr3UBDcSZr2paoeeob0AjYeXKdB9WNB/OL4lsJnju066+nUijogSjU/P QazC
iqzwC1CpydGwM63225qusx7XqnaeCMAWNcC/2a0nXcChWIowzTziOtPpOtPQ 4zwP
3K6DxyHQeT093dMwMq8y9cGSh2ZETdRBZVREYsLmyYxN3VROjbAGO0D1WdUP VI2C
dp837Hr32ScN62gAOkFubigZRKC7Z6Br7XuadsTEl7Ip26B+HkNOPEN2HbMY io+Y
/0IrrKLX0vcrIWqz14fFPLuzX4xrvHaQKnqQZMxZ42JFkq3GX/Tp6WejFQm1 cORG
pbVaPoqSeWy20Fa2JrmkQHqkoy3IRiovEbMH8PAO0pAARXCTRdAH8IABDrCl um1I
oPzJnBwEwH3cgZvsBBcRzh0SrrzKy73KrczK1h2ny33tVZm5qdzdOyHu3L3d nzvd
dCruNwjNxlyWZgnNSEjM0xzfSuFaR9PMrXvN9WWFW8HeWjOXczHO4jyp9/26 axGG
ecGpgOnOoNrOnvrw8Ay9Db/OhMlz15uYrZqqp5rxjznhFX7hFg5OB/2HUMc4 t6o4
HR5PWZfyCT3iI06aWqeIjP84diq+rDQ2ifG7mjrmmjZeOwu1vxN14z1+0kPv rQKy
0gjc0gy8PKfId8LpwEkuwYUXwU4+wdSpZRYM5fIaeTQCjNop1MQI9vWajP0a nirM
eXP25c8osOx5eqKH1QQEJW8eexCLw2GFJ1mdQLRHw4YCKB47jn1voGcdfAh6 jm4d
KYD+5xLaQoTe+DX0fHWdarBSWFTcjzYLa/+4xYPtxd7XxZz/s2Q8xkWL6Zvu 6cPG
fkrbxkxL6qZe6spWRudytVjLA53ttdYG62QwgFUgpEmapLTfbgtYAlYQBO8A BjsA
D0VQBPAwBfyQk5Xsk5v8Af32k82e7L0N7b49piahEcb/ndylHNybvO3GHd3W jcrP
Tf7BfP4qQe7kDt41oe7pLsyHWt7yfqhAUd71Pu/KjA1bURT9LqcAgcDNQDfY sBF0
g+CEQoYDBTo0KFAhkIQIDCbEaBGbwIsaJUZEEDIkSJAiTYoseZLkxpEsSxos 0TKm
R48zI5aAqTHmTgQ8ffYE+lPozqE9iZZAajTp0qBHnSKFGlXqVKjMqFq1WrVE Vq1b
tWL1ClZsWLFlt8YqixUMM7ZsY21ltrYtWmZ027JVcretkrx78TLLG/ivYMKB DfM1
DBjxYsaNHSvxwjcyY1SNJ0PGnHly5MucMXvmDPqzZ1ReTEMOjfo06NOlQ5uG HVv2
/2zasb+Yvn17dm7Yur3oBv5bOG/ew40TH56buPIvy5M3h978ufLf0a1fvy4P +/Yv
2q173+5dO/juzcWXH49efXr23ce/f+/efXx57eHXp49/Pv76+/n/x88G/gSU h0AB
CSxwwAQTPJDBBfNwEEIIG4SwAnnysCHDBDHMsMMCbcDwww47rMCGEk0cMcMT TQxD
RRMxLDFGFCuAccYYK7jRRBx11BFHH3f8MUghg5RjyAqKPJLIJJEssskln2wy yiWj
lIPKI6vE8sorseSyyyp9wBJMOcAkc0wzyzTzTDXHLJPMNn2AM0435aSTTg7g vNOH
POvcs0889fzzzjwFDRRQDv8IPRTQNfREVNBDH20UUkknpbTSKh5dg4NML830 0DWw
4YEHAEYlFQAeHgjVAAxANTXUUFtFlQdVDwVVVFNNeRWAWGdd44MPzBADADPy 8EMC
M+Dhhx8HrMDDgWd89dUgaKf9QFpotcAGWmutrTbbbqP19ltxT6C23GnJ5RZd bNT9
gN0TDCJXXXnbpRfedu219911uz1B3nnh1bdfgQXGd91+AQY44IQRNpjhEwoy OGCJ
IX74oocvdkPfjCHmWOOBLuIYYoVAvgiIhU5maKGBKBr5IIkSWiiihCLqaCWX XF6p
JZRYqkjnk3x+6eaQcGKJ6KFvAimmnI0GKiinhXraJ6L/jFKqaqagUooqrbfm Gqms
uOoqKrDE9qrssb4OK+221MZqbbbgcvsuuPWiu+67YumrL7z/AmyvvPsuDHDF CBuc
L8AfQzzxzBDzTLLFRVvtM8khn5w11EZD7ZPXauO8c89t6zw40EX3jXThjkMd Oeek
o44515OrjjvZY5edO/LKgy4989bDnTzd2+udd/uEJ16//owHkD/0kk/ev/qk YD76
6Bt0sEHrI6z+ww01vL7CEQucMEXxM8wjBRRBNFEeGWV0scYXY8yDfSB5BLL+ IXs0
Mn8ckfTRSf79T9L+oDTAKj1pSlOikpW8tEAsiaBLYkpTBMOUJjG16UtnchOb 4KRB
/w3WyYN8+uCfQEgoQBmqhIhilKEaZcJEOYpSPliUpl7Ywkp5SoaY4gCnagip S3Gg
VqUiVajIwANYrMpWQOTBEENVRE3VylWxctUQmcgBXz1DDCf4hBh+kAYz7GFZ SEiA
GFbwLG1pwVdI8JUVomXGaRnEjdoK17bi6MY5Uotc9MJjvOCoR3F1643uAte9 6Jgt
df2RX4KMl7QONsh1FYxeepSYvgYpSDcmko4Ea1gmMVnJih1kkZjMmMU6WUmK fYyR
pgQYKteVMomobCIOmRkjNxJLN3LkZrR0IxA+UsuKDPJnPvtZ0HxJk5QMsyY6 I5rS
sAG1pkFtalJ7GtWulrWjNP9Fmkt5SjW7pjWweW0qY/Mm2sKpNnLCBS5veVvb zkmW
dOplbnaDZ9360jfBDcaehxEcYxRTuMMozjKL6cziGAdQxlzGcZRTQmkmd7nI rcah
qmkoQxkKm4l+jjal6w1uLno6jppOo6kDqepUFzuSvq52yzHpSVUandu1tHbn AQ9M
eRe84R0vP/I5Hk6Xp1ObKs+nyJNeUAFkoPogqKj/oZ6Brmc97i3oQOPD3ogs JD4O
daiqJYof+qw6o/OtSH5c9RH9bDS/G+lvSEwSEv+UpCQnQamtTEqgArWkwALW dUsM
xKsEJ3jBC77JghmcUwfZxMEQFlaELAThCRWLQsYi9lH/jGqhoiBLw8nusIad mlSm
NmXDGzbRVZ8VoqsMYItaKTGJoJUVBjLlxCiilldV3AECxJAAJCABD3gA4woS sAIr
mOGM5gIuGoE7XOJC647FNddxH+krPvYLj8uFJHPzCN1HOte67YpXdK9r3YF1 N7vY
ra53xTte8WbMu+a9WL82hjH1nsBkCjHveuXr3pOt12QEEQjKMpZf/qLMlf5l JUZg
xhCWsaxnIsuISVhmkp5J5JcP/tlMJDw0CkeTmU1rZoWdaeGoDe2Z2Lwm1rS5 TapQ
k8Tb7KY4xynOsbWYnO00Z9vUKWMax/Od8eQb3QSTTx4npp/79GeQEWfQfyLm E4+j
/1xAN7PQ1FjuoU+GqEWlPGXPISejH7VyllO3uuO0DnbM+XJ1xOw669BupbbD jktZ
Srzd7W54xdspfWiK05v+Zz77obOdhbpnpB51egtyUKCdyqCnEhqq2htfij7E IRip
L9HjWxH5uno+rtrI0mW13/3MKsC0rjWAA+yfAdFKVwTeNa5cMnVeVQ1BNO2V gmp6
EwblNNg5GbawezIsCXVdqEEhNoWO+rUKJQVZYT/WssdGdg97KENsGAAWzoa2 AaQd
7VVNW9rPjvazp9hsbU+729DGwKF8ZYZnlJvc5HZDuZ9xbjJCS41p/MC7441c eiP3
jvee7nLptQM7GrffzaUuvv+1C11Iftfg2OVuwcNLXu8inOEMRy9608te9sZ3 YAOh
r333e7H7EuRhG/O4x1OWEQBnxOQrc3BIElyRhdBE5S8/SYMhPHOa15zmPMHw hDPM
4aI805oWvpqIhX5Napr4xF3jiovDRjazvdjpM4ZbjN3pNqm3E8d2+xs9s05P Hvf4
cD4ujJCDbNAlN06gi6nMQdVeOc1M1O0UjQ2T4b45KnMOoxr1jWzunncsZ7Q4 HA3p
mFvHZeiYmXXYMXx0En/mNmfnOyc9D+4kHzw22wc+cO7p8i7fvJ52ns98Jiqg A6Sg
oy41e6bnXuqfStVHb1WqJKI0+1x0oh1deqxizVFYM73/abOq1fedHnUAASgl /9l1
+AjMa6q5BMHlT9CvFGw1rWFN6w/K2tZ2itOi4oRr7heK17xeIQ2NbcIYzvDY mLWs
ZjvL2Uf1cA1TwED85T9/+tff/vK/lP3hb/9LTUve8C6X/wNAd6u3AjTA5PI3 fxu4
6KoufSO4BlzA7cquCSw4CuwuCBQYhHO4h+PA9uqu9RIYi1MvkMO49ZqIikMI N7gv
BKCI9/o4ikjBAHsI/oIlhzCwFDQ5B4ulBNNBmLO5H5w5nZuwIawwDeM5aSI6 n4Mm
ocOmoZOabNIaozu6Kfwmbyqnp8PCszGLdHqnG7u6L/zCHSucfDIcsDNDsVOc IzMy
/7QbsoSSDM2RqCRLss+Awyd7jYrinCiruz3cjb47neAojsMzji4bPC8bPNox s5J6
jpIqM8ZzxMnLnTarqTlbD8urKcujqZ+yKc3DM+PRvOhxns8Txew5vUH7HtQr NNUT
EVRsqteDtBRZH7ByERVZH7ICKyPBH97TxVALteMDNeLbEreaqyxJPmI0xmPM K+Z7
oGVEEzqhvlnboOuTxlzbPjlBoWq8kxgKtsYCNhcaNmN7LPRrofJLv/WTFMzq FHHU
oUNZRxxyxxsSx3R0R3mclHmjliAgQHx8NzXiR/8rFwegFgEMwAOkFoAkSOBS LuVK
QD3it3yLroYMOAh0OPBSuP/x2sAOxMiJ60CJcwMzgLgP9MB+MRmNfBiPvC/6 6riM
gUGVcS8EMEmTxMEWVMGZFAgDq0kVfDmcFAmdPDAGizkg/BldorkiEAmiFAkh PEoE
IEogmAkMK0oKY8qeiEqdQ8IS6IOhkAqr4bmoMLqu5JpuokKmq0KpcDGomzEa Yye2
ibq4sTowhCcx9Ju4zDHEGMPA6afH+ISvu0s0LDLHWQw1lJyF8ssmi0PMcai5 W406
9BzN4cPGBLw+/Du++8OQGikwuw5GVLxH1MzNfLxIvB1IlMRIlDw5iyn22LxK vA/k
yTPpWc1R9LM+g01BU5BUNEUEScXWgyrc1E3Z6yqvmkX/2qO02SsrHhmrIMnF GFGr
4zyr5fyRthI+Tnur4zu16VS16my1CgoTZcTO7Iy+DoqTZ5zGOpEDXPMgErLG xNJG
xkoUEVqhGEpPTNETeqQUcoQU9FM/+6zP9UvH++ws9ZMh/1wD/gTQ/1wDV8GV U0Gt
BAWtAw0VBkVQMniAcTDQ04qD00pQJWJQB+WBCjUt1DItDUXQKOLQEP0sDT1Q BoUi
HsjQUEnRBUWtWMGVIYqVFg0tFW1QV5FQGD0tKAJRG7XQA51RGx2iE7VQHx1S Fk1Q
B61QBX0iJqXREkUtFGXSKS1SH4XSK/0sJcJQ0OrQIgXScdDS1kJQUxiiJbVQ VAnT
/wlV0SNF0iYl0SlN0S5V0wjV0dCKUSGlUjWdU9BCUy4dUwzd0iwV1DdF0kAV Uxx9
0yCt0TE9LVyBIjkNrXF4UkJ10UX1UBtV1APt0A4lUtPi0VBZUtNSoied1A0l VEh1
UDq90SpVUAaF1DmV1DZd0DTV0AhNUjZl00qtUQgF0wmV0TzF0gRFFSAFViu1 0if9
0Cbt0RqtVWG10zx91DVNUkqtU1wh1jud0Ajt0klN0RG9VTyl1M+KViYVVSga Vz6d
Ugft0D5FUjKt1GE9VGkN0RYlAzO9UlVtLQ0dol6V1VS9UXz9VTHdVF2d1nO9 VGxt
U1GNg3W90S5dVk7NVT3V0/96ZVJsNVc31VNiXVV09dRFrdMQTdZXbVQS3dZV 5VE5
PdFA5VRZPRUiRdcf/dNpddYsXViMjVZ+ddEWbVEHBVFH3diGNVZjFdmCfdkk 0lQh
0tiOtdRQkVBKFdV8LdpCNdlnPdZWJVd1lVUy4NlLxVgTZdWKhVk/BVkFjZV6 ZdhB
JQMJHdqtFVg1PdKVNdSRHdt/jVdsLVmq/VlMLVJ8ndqurVR7DVpUdRXAlVuv jVex
ldNknVdx3ViN/dqPfde+ddxD1VqJDdoUnVE2hde9pdJY8VanDa0lrVkFTVa+ ZVlw
lVvI7VSMXdpVrdygxdIuVdrPRdgmfdqMRVquVdo7rd3/snXcMh1UVn3dYDXW IEVZ
vyVRlwXWt11Vx93cZVXRna3SUf0sSWVTn21dY9XX0RXXla3RFD1a2KXTDv0H 7H1V
hg1f0Bpd6rXRHP3evOVaUxUi7iVSNKXfjQ1TKfVTtn1ThOXe2OXSlBVbZo1f 2WVZ
zUXSplXUdGVcRj0VSY3VFw3e3N3QgN1c1l1RYMXezO3b/eXToQ1Rw13aHPVU A27T
BxgiY+DbkGVd+LXXiL3XApbgcLXSNIXdJ1Jh4q1UdSXWpoXhXe1gS23a/01e MX1U
tW3gYqXbFpZTg4Vfy2Xc3w1h3D1hqE1i+N1XQF1UJeJQM4Uiwp3hgHVXHlDg hPXV
/xLF1QZmV/Bt09rN1jf20SAd4yZu41l10jo+XR3+2QV2VRGt4geNUq4dV22N Y0vV
YsulUUIuVjZe3CnGXzN92l59WA+e4Lgl3cMtWzBG4wR13+zFWe3d5AkeYxZV Xu/N
28Qt3iT61Dt+VYRlZMxV49DyXaC90FBG3SWOX9t14M59YhxNY9XN1Ytt5Aom Y8UF
5KhlX3RdUUtO39bd0oCNWuwNXxodWNcV5mEGVbm9YXUd3fR9UneN00KG2Bne 0Svt
XYJ15Go9Uz0m50DGYx/VWIPtVuLNVGCt07I91K215FI9YFq24a89XGgu3Oyl 0gxV
2ig+LVS2YzLO47l1X5X11/88XlI+jubjVd9ebtC7LeeXHWWqVeddrtKOblxb 9lQf
NmPdJV1qVlPlxdI7Bd+IZV9NdV4+jeBhFeP+zeKaxVpaRVJF/VgeVWkobuRJ 7dlB
5dZ+vdJX1QNTVlVj/mBLdVxwvmN3JuggrmoGPpUcFqKmjaKI7ucJDtWZVVzT 6mRG
bltcbi3Pddg8lemGvuDo9VgWjWACvuIBfqKIzWB6LWJtxmNhxufw7VHeTeJr 3ljp
zWhZxWcWZd9VFtplbeZrntykddajRdhYPeigddW5Rtwbzll4lth6XmuzLWy2 Xmeh
lVcSXeC4ntKhvezTDWcsZezDtVkMvmorBuFbDuwm5er/3D1fcmXd4QUtzSZo yLVq
mSVoyzZQUXXjCc7eUf1ngcXama1lUwXuxL5ihW5jVNlticXecP3UI8Xn9R1c qmbb
og5bvu5rL91bEE5mxQVsJ9XoQL3nSy7SNHbmkVZfpa3c293coIbdPm5gdd1u +u5u
2J5gxgZuzzZdyeZfnxXZ101tgk7wYhVt2b5qnRVujLbrfx7lnr1t5s1aXaXe ZS3V
yFZtHc7t047aABdU8wZxUv0sb6VeBE7U3Y5tNg5UAA/rB+bbO/Xi5KbUUc5x q01X
hxVoGlZW7L7hD7Vviz1sAeblmW3WB8ZYSLVVgF7whq5lwF3gI0/k3eZfo27h LZ7Y
/0XtUetm6YJe2StXbiBeaOid6LqubaomW3cGUQTH6lv27O8t4z0fWeAV8YON Ir0W
oke9WCGvZY2tUJt+crEt8COPc2X1UBi16O4e4w4H6FiWXCRXYnd17KFG5ECG ULlG
Xv3N4JhN5Z9N04DNVRNm8l1dUieH3r+eYfftc+YO1tVF7a+mWY1W9UXOdVXe YfRu
4LB2bObtURM27Mtt3B/mXHRecbsGcE8P0R2f2ZN932x+2SOXUeE+8wz39Sd+ 0k5O
5qW9dB4nclXWbGrn7nf+UToedkEFolEhg1bRlRjX09dO0Xk3lVy1d6qdcPn9 VSTq
6tM95IRFYlYVZk0+oiBy0f8OHZUaZlmvTdsYr/j9bl6JbZXPapXXTdN9L1bK bt1J
fVWC1+FyR1ODFhU5P+MmnXc//eF+F+oxB2FUeXkU9uDQlm4bvXeer1FTAYDl ftN+
b+u4LXe+VqKNP62OB9GOL/gDt97JpWgLZeHVNlIo/XDopdsE11HJ5moT7t4H PfVC
nVx/zl2cp+TKJeyd11UUTni8HVSpHu89XVYO5V/tTuKafWuqh9aapmQcTWxW f6IM
r9S1bmcgH9/oDugI5uFTEfwCP+Zk321I9XuxfW3Grfgozfy6bnwftVevRuqq fWJ9
Td9W123ELt0OBntHB1uxd1O8N1oz5/GDBvDmhvxrT6L/tz97DY5pXb19ic9e RfVW
3ZfrCIfkPZfj1Y7VPkZ72dbnp4ffZBfUUk1m/Y37TP9U2H/lgl7cH+Znkp3s Yl/9
wYfRVnFZXOn4z4V3J9945Y0VU4FXpc9aIl75MYaVBB5SZmbcC2bXavbplQcI MjwG
AhhoSuADgzzIFBw4MCEPUwsfUmzoMCGZOAJ5QHTI0SPIjQAaknkwzuLHiCAX aoy4
UWLHkhQJOpSYcqNAiTIVpix4kGZKiBsV5px4EWRBoTOPDoyD1CiPhhBtfswo cFxC
nTU3JoSYlCfVlTSpNvyp0qNWtFvXAhVZM2pKlSXHXd2JsqNLgy/Xhj3L0aLN uywF
/wKO67ev2MRhw3ZkbBNvyp+NP04dSpHxUpB4h+Jkihhm3nGJuSYeWNQoYrWG FTsk
3bT1zJgeIc9mK7Yux9RnQd/2KBqv6LCiTZcOGrL3Y71K/daGmpwj1t5MIWct PpGq
Weaw87Ke+FssZDLPMac+3dcmVctxd2Ye+H0l7evqaw/XzZOpZpC8PRtdbrt7 UNG1
19lZEMUHX2L+yaWXWlNVhRhnTn2UHX4mAZfRShLONhxa8w3lH2T2bVfggqWZ tRdU
pcmWokca3reUgXSVph6BZqF33UUCFrWiQzI+F9lC1bGYGYZQhUecdcS5tpRl 6SG4
XVrcIekRAAauhNJ0Tc3n1/9XceGFpVT6hUQWUogduJ52q914FoEOleVmcRbR JiCV
S6q4klVvwQUAmasB+SRxuoU5Ymo2WQZmoX7mVxuWaRnaGlZucQkofouKhWVz OvU5
FJYdUddcnFTC5VWloMK12plDLhWYcYM+FR9tCIkZkYMEWjnlQrpFaelAxuBF m5B3
8sChavdNdiBELjqZloPtGYfna4s2uZCOZ7WUYqIWejRfiKtxNuNRfWH07Id7 BZua
U+K1+KKJrBG77WigPSqWmXTquRJVFp5WampH5pvmh0iOy657D1gWo8Fsphno TI8m
NNyt+Dqk0XeWuVbulMDOOtrG285bLLT3+tWmqVFG7Cz/vYm9eyy8qtl3q7rL xdrS
r87pyfJluaI208GR8qBHUZZJ+Gt0+6p348ADs6mRk/DR6SBGayY5oro9Thxk bFPf
3PK+92pKrrHRSZ1W1WGVDeBbtDXd6alfjTSSYlsCdSncDRX0tp52VpRlVHj/ tfee
dvvdN9wt63ljlwm5jfcDeBM2OOF3Fx75Q5K3NvSijZ8699t293e3m3WHDnfj k3dO
Yrt/Z0356G73TZDfkmPaLF4SJb7n66yPyrrieA++Ire3ez6R536feFnAu4MO VPGk
w748664rzpzSh17ZeuU0DS6rdt/iap/Ux1H4Y8smpTzlvk1D3THJKa54a1gu Jmiv
/2lOHRnsi5sZHj6DVblcKfmmpS2ZoEhtHHOW2nBCtg0ljzRbqsy1rPQTqbGH XkYT
GLy0xSu5tYdCRwJYc8xnM5Cki2e146B1PIUkoVUqeUdx4XiGIr/d7IxqItPO vyok
Ntc8R0PialjHBkMwgmHHS0+KD7feJT7ooBBJNkpSfY4zIq1l5z1oMxuu7qSV +HzG
OkU8WnEidiv8mYlJw8oiioaiE38RjEYrIdbHmnjDkzFMPWfi4vNiN71T7XFX CvtI
55zHJ9gpjjD9EdboYIOS4TFvkFFJGO4AaRgNtgxMcJIkXGxHpT1qjwdOWSTs QGaq
RyqPk5GEEyMLB8qoSMqUPP+52HC2x0dSrhJutruW5WhSHTc+RVS521zbgLJH AOCS
ldcSiA95BkzlvUZwmLyadSxyN68MU5qcY+QprUkR9UhIJIFUJeCcOZYpmmtW BhyS
larWnGlVzUVCUlreWkNB8MiTJwnjXxylozN1qVMtiVpUDvmTJL0ZLjNYPJx1 rmU4
2UgkfPZx4Q2V+SLyqUqOqRpQEbHVMp3QiXywqqfOosXQLEbUNH6k4sRklRxD SQRi
IoWKGvM3FHuhcFf/VCdmTOrE7XQNXIZroIjS87UnLfA5qcqTRkUmVDShiig/ Kk8H
V9cstTRQUQYFIj0lNpN0iehAWOzWFFeIMlEejFeQUiH/egr4wu6caT85NGCy cKVB
JJ7xWUCyGG9+GBSfKJJ5vlRIzSY1QdOQJA7D4yu20oc80+XFcz/xHKkmBSeu yAgt
eqDSNy/p19YVhCFA6ixcrDK8Dy6LJobcXCB1GUzNkap3scueZokTV1AdhLGa TS0w
36TaZWqmPt483R6n91jV1fI+hZGrnr6pzdOCcqTIayxqo3sq5kI3tBop3ik3 FlPd
BvOSjj3tRNsDGZeOUFVjfUhltxnWrU3yNhrMSROVeCD5YUSFYSTpRq5VwrD2 FL1Z
4YqvoqXULGZnqqZC0RJLtDAz9hCBQSxSRM1jqQAW678LXhWRRumhkbVERDcJ Yl4C
/+phqnRTJelUCrFwY9Y2xdVih5kW6nSjvzPZiXvGYc9i9mJjBduofV2jo4aH aJQa
2Tg9+lMvxw460Ertsn9ohFcX6wcykxAUNhGT2gen1Jf+TiZjmdHWmsqpK6Ks pbKD
1Zpzs0rPg3yQtNIBs/dki7r1lpRFJCOJQuxmu0BCMj8uxpKkmKfJBvm0TLk1 ZZVY
qdnfGk+rh0Ss4lz72rl1l1OxTfQgyeAzHPZSk9hM5Wap613OJqWf20kalfZ8 utwS
RCsWcUugwVKhqNDsr7llLp83F2t7lgZTn0Y0fnsdXWkKd7MEATbuQFc7nTIF tICU
9EgizWojns9WMA4QJKMM5v9SDUtICjxvCM+nUzEy+JAIrmu/lDmvhOwXfTGG snm7
XT4AFnQiLoYkZXmEvw0+5IHUIumW/ccuklF02Skqm4vZqjUTW/mlzDH1kigp F6MO
KEv9nOtEZninst4nv/8bTvIeGmyOLMnjpxalh0FmR/fQO3UTIqeaGVabKK0p qPDW
GFbRekiBPoxd9tq3vFenML0eNS5Ng6kU/fJOc0r0aApKuSdvMzQ52rXfZF44 wxco
RJcjCXOKqilPUoxQKUUNq0Y37qX8qjF/G+QrDurSYe/rkqkkDrKmhTulu/S3 O+Kn
T77kq6ykNxbE7n133bUaj24CyqTgfXpScazadclXV7n/7NyzXO2rJN8TL72p sxFM
OqWv4xNDRpbxq9E7a+38GtJ8hVWpD2ZO3jRAr3dE2ZHUnOFNX/rNaw50r1ao nn7T
JdGM9u+AU71Wz2PjLT0qnwUFX8jg20YhH3DlxJrh+mR+TmhqX8gQfQv3TvhK DP6p
pBk9KEyUqGOBhtg3Z29Ns3LccOUXtL8UZVBAY4TgWjnLRVTXbshIB3lFXftY 2JOl
GRh9imHsmGl0mZrtm4EBoKw1YMPsn4CkG3R8ytEF1tTsygNoBV1IiF6B2FUZ BvTJ
XLzFU+J9GMoczbU1XPQRR7pY2FdNYAxdnVjQhQHC25yJzEuUHE8FoGQoB/1w W/at
/4lQlNj//AeMUFXIfOAQKSD8xJsIFZqw3QqmLQQoLYZCIAamXNMwCZwnoZAl TZs0
6dml3VpyiEb7hJar5R3nGB8qpeHl6dx8JJo3wWEnGRs4jZoW1olZqQWYgBct ySEc
LpLGmdzmqcYqtZqiFdccaomYIBhKiFruDJIrdeB0mZaxHV4fxuGxhZS3zIRg fFoj
ucnZSFgbelEKBRESIpl9iVLZnc2sqZuAOQySlUibNM1JwRPoMUeiMCCdLSG1 IIxW
0Zj3pR9etJuwKMgFUQr1oExGwWDmWEcBDlmHTCKzqZcppNN+kEh/4YjVbRT1 OVWC
TSBIVAsJLhnJRZSCOCE0Pf/dQB3d6qgf8LGLQtUas5RgIFIEG/IN9+jNLvpX SbkT
r0FLRrlQTHkMU7iY2TzV+KUOCn3fKFmVqW0LyDnacUicvlhVkvDPgh1ZmhSh xmjd
wjgKPamTOqZg1d3EvIygTDTEP4ZWWZzOucEYtJGOMfiOMOnW+sEHbpXEqqla d2XF
qunOzqWVXjSKZ5UOYwUGT+rOGRYO7g1jXnySIBIWTw5abbkET0pad5nCUIph Bbbd
UbLO44gOmLyWVzTJD95LWViPUBzlVIYJXerHVYCKZ10P4Rye4bnR0RVG5/0h YSVS
XZ4FAOwa0xlFJZ6KYQ1O83yhhjhguEiMUlCYs2yJQCz/JF72IDsy0WGIz01m Yzmy
hmZK3FtpGSuCRVn93/yxnXjBX/XtxmjuFLh9BIecCXmZhUhqSDhmzZlxmwgy HwdB
Xb2BCtARhcbNEdqw4HON0Fu238v1z9i4T+X1nQ1JFHNKzEbM5E5oJtZEVbu4 IHXW
n9mVFxY9UZCRpjgOiYQB1KzwJjQmU46I2zpa3hAmiA/aj36yF0SGHz+KzEx+ o5Rk
GGq0ia28CAxxi9WMHX5wpnnVl49cp4KB36LwZ8eFZvktjP+ZkepRhYBkGUV+ EVUV
UVeRVBG2iGtaZAbKzUVlFPAN1fhIEcUtTBNxEgdyW4OeFEjlTFy4SG6amNiQ lEdy
/5x94RGc5CMYpRTfGFDM8MeTJt149Og24okyxuPEfZ0yqhFFes1ahSaOGujO sdvB
RCl8aJooNs2OTET8bcs9KtyH8R/WpWNH0BdyVuaSmGggdgZj7Ni/MN9iMhz7 YRia
XhxsjOCF7ZzIjMs0cpREkemXSkfTyE/Q0CPIfI3c1EvEINMIUaZDNaefBYUw BlZf
LCe7ECjXjKLcCdmbrt59wNHJwSqgFBEl7Zv0wRxYFR1M0CJDJioG8sh+xWJI pYXX
9WOBHqqf7OOT8FMGcSf1bJqYRCCjmgYbMg1u1kbCfV1dAUwZsUkUaWNSRSs6 EgqR
Ksx7xArNEQmJup+lZOqpiv/pOlKhhSLLBbanigjIDJ3r6vBoZ4rnydToQT6L wUXg
ghzZGEljCtYXhpWrxEmVL53b/cXEFLoGZdqQlaTX+QSnw/LrFFFcYaiVky3n acwJ
es2HvuLKALpjkKQoDr5RS/LKFrGXwQEkb7Unwbbs99zp/1wUt+VnZRQHYtCe nP2I
0sSsy51HzD2hgFXkmqoGxb4Zsk5kS05jb3jK09hiQB2R0AXjQdJOhvGsdjQG Bx3p
WJ3GT8KgAqKtEQ4UM86FQvqowDbjq2Kb0P3kuAxsCR7s2QHo+5WmbtgpYC2c 3oZR
gGWVggDZyIqSjlbozgSNosRIoDYrhdDWWpzMeC0g17T/amZOJ3tpxivCa0Bq rV3l
322S1BTaVbGuHDyayrIprJ+I0MlUWX9upH9iLp3WmX7ebA0dyI2upD8OY7bi SvD+
4sJxJoISb45+ZA3Nx8dgDwixyEPOqe3ekEBaJQFqotkpWWhZ4wElaqhWI4jB E9k2
aPfOm0dS5vZh5MGNDFL0U9bq03ii2WqCW6wI4foG4cBFWDo67ZNRSkzxqm1q ZNJJ
3P/i4Jjh7nE6YBGuaDzRGXhaIdCe43YyrI1mlXF6H9L55v5Ar2oKcAAPL9cl iNSW
Zr3F2S+OcFWVcLUdhRINHbK2YssssJSmiKwGIA/N6QWHJOjprnG0cAwjiyvC qdYU
/2e8DaR4wiuokh/jyosVxlkBV+QY0ke5dkz9StETe6APmudwOlmPUedbYix3 qCef
lmf3wQaGUqAL09DPIo1y4p95RCebhfF7vqdSepv/KQuZHQ//Nl8acYdMZId6 jkzZ
aRXCPdz6dPFnKJaiwhgvfvFbDsyZgcaTFrIXP0hVdJjA3Z/0sRQZa69cLMdP 7BAZ
B8p7BnB7bibGoepbulWcGVn7ld22TYhKrXJ2yvGwvHGaVKeUnB+KAHJtAiPW WMVU
xTHD5UkIcmq8iTENRqflxSeE0uhO+Ad5pFFLHDMXq5SsrYgeK6Ut27Ik51WG dvNg
TSsBEYc1P8aQ8uCNMOuBEv8kDfKFDcpcJM9yGFdyPU9nLyOYVuTJEPJzskLJ P3Cz
N2toIdtPvdJQXliYCPbPI7MJN/eznWZHOZktg+wXF+4gp77zuwXztSBy+cHx rU6Q
rIA0OGLykHU0RR/rD3VxGw0nlV0zQR6rLgo0Q4/ykmyxCWoZSbP0GCO0bVbN kp7f
KJMIhHDxtjRLPnczLWt0wQoqheCVasip9ModUhluRPIgtTbuC9dQ+R7nVCOS EhNv
hqXHMaUM3zkL0kJjmo1JFrHRnFZ1yYAUUKNg0pYUA4NtCDtuDqMPJ3Pw4qIJ VFXp
KWexBZUjWNE197IkjU7nR/nJ2Srqqs4ulKyORYm17cL/zJvidYlIdPPiUTPb K44w
KBQXB8lc5F6PNricNlqfF4GktKqIXAA68FfP9l2b8pKl5+IKq5fpkxMntn2i dpL5
9QOSYzES8QgjNtaFI16LiBydtkQzrgj/0SiB7VwvmGn3p6HMpLMq3Wx7ck8h kUIt
34w079aJnF6R92+D9Wx7ZC1SW3tRBBB3xXrDN3snNgODcBNSxlcz8Hznd9Li tWb3
N2zSk3z/NQzr92gHuINNzYDXtXwrOIIkb2TXdXKvd9pC41QHeIFbNs+OL3DX d38f
eCtelJVAuKXgXO4SuIiDOIU/OIWz9uzqtvSaeJIAGZNJtgofuIfLLX2vuI9L eI33
/zfPuuh9ybiKG/hXb7ix6jiIA7F7L7lXo4yCuziNFylq67aL+3d+VHmQK3mH v/eM
WziCh7mUt3hs8wAsGIABpDmbr7mauzmcpzmcz7mc07mat/mdv7mey3md63mc /3mb
B/qc+zmf57mhCzqgH7qbF/qfJ7qiE/qjM3qjFzqjIzqeJ/ql13mfP/qi7zmn b7qk
U3qnW3qea7qi93ml+/mbp/qkf7qq27mkd3qr2zmtp7qoD7qp1/qrj3qpH/om XPqq
ezqr5zqe57qsF/usizqpJ3uw43qkPzuq9zqnN/uwC7ur63qvG7uyP7ujM3uj G/qs
Q/q3vzqy33qoZ7unj/u0U/87uCN7sv96u8s6pGf6tJv7tWM7sR+7tbf6siN6 use6
qZ87qVc7vYN7sJe7qm/6qTu7t497tMe7uvf7wrM7v8v7uad7uCs8q+O7xRs8 xUv7
xRs7uwv8vfM6ule8vH+7xHv8vns7qOv7yxd8yjf7oKu7owv6tuP8rue7zQf8 wY/8
z1e7tIv7res7tP87zfN8oWMD0ze90z891Ee91E891Ve91V891me91m8913e9 1389
2Ie92I892Ze92Z892qe92q8927e927893Me93M893de93d893ue93u893/e9 3/89
4Ae+4Du9T1sxBKvTTI1In4VtlKc3x8FtW92HAWBDeC3/oVTzW/SyNXd/q2pM PuVy
N7j2LfGSNZNQ3AlS6Z+UEZclMEV4Ppgr/tZRiuebWnIY94DNz6bC4zt2K4ui /oJJ
hOvHRIhi7/3dS1kf0Dt9W0jFBBPLWVOZ7wtWXVFLEaX6GYeM2H0s9D4dcIlo EBvW
YGinJnsftpJU7QRHowx2nPp1bd3qZVZ3zzy9a/ecF6ZG1PEXay5X5pnqCeCm TFBv
DECY4jFQ4ECCBskYHPhAYcGDCQUmRNhQYcWEcQ4+uGixIg+GCh+M0wjyYEeP PMZ1
/GgQY0WGEgt+/OjQZEmZAyVStLkQp8mIE3eSNFhQ4koeDo0GPelQYsKPOWny yAlU
/2FLqSan8jw6VKtCqBOjMiQq8GnXrT1PEkyaNmvUtCbXas1KMmdRnW45Ri2Y 0mBc
pzxjyq3ItKPbuEYhmj3Z1O3Pwlg5LkUY+KvOmloLMh3bcGrnmYWbDoUJk6fd s1xL
mpobOfDbirCwXQ4Z93FdhLT7nnaZO61b2F4Vcz761fTKymmThoYMt2NWxMvn vvT6
Ga3C36hxxiF9tabVxDyui/Y5ECMZo4aBRwy5uqTZnDfZovTId7FDvI2lrh8Y nvdU
1QQZu2wxqrDrjT3LBDSIPt0go26u44ADSSSu9BsOswJdS8oxoQ7Mjajqmntr Jbwi
XM0UPZaaSrqSvOONqv96gv8PJ+OEei7BjlpEUMPVPiqvPd7IsshH2kjcjjuh bgzR
xez80+o82cyy8UjvtGNuNx7Km626p2haLbTMXNuQq/cAFMu0Dy28KsiqQKyJ xiOb
fMs0EFubsqQHLXoyRqqMxBDMu7KyKkOgNMSuSwGpkxFJAXNcEqsW/3Rwz77G +S4v
8XSLyi7bInzsyi+TbE7QOJFrL7S1kotQr+rWjE9NodAUcEOkFMIGGwPIiDVU 15RC
UKVd3eJxvFwBg9NNkQyIjQdbYTnyyDdr2oy8yeTsKlVnuWMo2YFsNSDEKq0k 8DtF
VZQvo54IMyUpLevs09P7pNL0tJ+SZahbYq2kaU1LB9r/dllsmh0sMisZoo9E 6uQt
lkGdVkIVSUU/WpAHf5mtqCXcOtWX1zjn0vXKRGukiFixojUUuQBPU+5KoEZj iUzi
sJPuQ6PK4okvjd0tOUyRCfMUyaIm9LStgTX2qCn6niQN30N/HPHZj80VljsT w7Vx
ZBxxgndFGoP8U2UQo+MtrpRqLnDFVakm8FzmaJ1XQFKDfXvSRb1yLGjHDg2y pT/T
u3Rhfv/aqlCzfd1qO045DZUokSQK+tUj21YsJsZZapO7OtFqOGiY5SN5QGkt WpC6
MS1akya/3h2WrAnBjVDmoLR8iHRa27ZaYAXbmxXDUmsik0ESs/6cudViC/gz 8wwy
/waOgeDgZ/nme1g5ZnRNMkZupjtzFqoOUfup5m3JiM3brqJangctDtGCBxRg QaHI
4OIeKJVD6McANQe3NUX8yA1KRVbZ/4eQISUJbQlyizEQiEA3LQxKDaHYxFxE GynN
aD/KEp9ggLIZ5D3NLAlz0o8ElpisgGpgkTFPpT4IHgtCsGdJMpOj9qO+HviP YeTz
yPxSMT+M+e5rCkFhysLlMyAJx1lOWw7eFoUx+1imOCkUklQEtRK+nMc5SlHR D3WW
JgZ+x0eXoUxIzjK6Fy3Je0pyzZyCNDSskSpsDIQWgCzHFEGNR3AeutzUxGU4 xXSR
V4pxGkTeczO1kaF1AyvXVf9ep8XEAW93ayIb9VbmO8+VcIi3y5cQPXWTA0EI hJJZ
m3Qm2TCfkAqEK5oIbjY0x4QREjvZ+x2evCg2ta2qj9naDWnE+CsDvoWRs9ze ZRLX
PSK2R1FYelh1Ajm4lYGMgbyZ42fsBUEBKe8Q5rPeQIwxMt95rGa7gMM3pfBN OIRT
nLtI2Dd7IE5xpvN+NYGDAeAJCxpmETYCKd5WJGYQOMDCfA2sFgZ7c5BDROAB cMDA
BA3ywGZNpXX84A4NxRQUNElkjvE6iQH4kQrMYYtl5yzGIYoRUvNBC19JMyPF HrAJ
Pd2yL83aqEJ70pKE9DNB4FKZKWPSQxMu8G9oiwjfgjP/MWzYEzzUwkkPwpnU cX5z
fJTcCixkOE/2TOUQ2DAoHLABUYtuVXdnOSQkj4e1X0nNbboMaqdY1k6ntpCj FkWV
bcqGOstNMndoCdwHIcSxyyxohHC561k9WTSPiSQl+ApoEYPnNjL1yKgySmOX 2rYp
AvXyLKq8EOdwppt19U5yCOpZpCyZT95djHTzoZnajPizTipnLcqJ07W+tlHE WdJw
/OPVTZAWKljGBUZR4s4jgcieCQVokYtqzaFE+bgwcuhKp7tRLuv6qUrKkqNq 5G1b
b2fY1KB1UANC7JwYyqKObomSbdRjBi9zz+gm5AxSSMX4mkfTH5GyWM/ryQ+X Fz1W
//HAvgp5njEOUxoDaKFbWa0OH4XKLWkiD0Y5gYMtvEUGFKRPe3exGHd5cIiC GtQW
HbYFAAVyHfUimL/O618SzegQPuKFHwAAQL5atjDPGQMA1+QBjW2sXQXF+Lx1 FLE0
e6u0McHiAS+2zI+byh04FPQMy0ubeLd4u//AiMqFs3IzQ8svJGNLIFi11Zdt 9QBc
2dFwT4EqD6RwiIVMaMpCSQVWYQMH/3GvlGsD7GG3lkWMXU6NHRSO6eB4yW3W xphZ
tNASOfoAoEKRksmlbB3VdtjaXQivDllQ3pRrSJ1U8ZJaBI1J+JIQOvP0W1dG 5J10
wy8vcpqzQp5ez07b3OCo+v+uuEkICm+yoT7jMYCWRHR+2FygEbJL2HkKdnQH 89X8
kFd6kDxNWDMDExTZGr0Fi1PXTj0tRxUNw5SmLVqAu10r/WWDgBMPFpeU1zdS yNmp
qlOrWrPZPm4QsEbCS5/72kg+e/WwbeRjTmRqkP3ZUiUtDtg1W7tcozHQvnUS 53Y+
AgflyUR534QVVZJlACkYAIeofs0KA4Y1+q3PFgBoqlUQFiIxUSbD3jTAQQdi C3k/
cHxU5cfNUwEP/5mYoZzSQ7yZbRJY3PyObYSPKfmLw0PkkOny7S3vGJLahILc 0DSB
DTaKvFWJwDQqTYZDD86gz0nCcqsBezTUUzhR/oYM6jf/rVuCl0UGA4SFeWAG 8xlc
Gqozz/BGNDmELWADCwzYb5mOsxwyl+uxxkEusa+14e1GV0ZeiRYsRdwcJrNt KmBq
u5NkfgzSDwloopVWlmQorBkbyDW57U5zuDWqTlvTsW2HkLQwPCxifySQ0++Z WPg6
EGKCBi6gbtRivpvUJs2qwbsFPYCBObZXyQLIJSnRrJW7PQxrj55xAxbRVe69 UceL
3dAN0d7LbNDAVroiTkYU/G/PjemrC8BYPj65rl9aaTL1ELdEEf4Qlwrl5+1G DMuD
eglC2Orx6MYkKsq0yMOVgkK71MsrlC6HDOAMWizJ7CxB+EXinAw4+mst/su/ 1g6t
/8Dk6r7MGNTM2wRiWx7ggk4rIQaqoFCg5GoOyzrk6RQiFQZv8D5C5roiIX4j fIpK
3JrnASzwEPhBzZDQ18Sv0E5t6FwsCnNwd3ZpIIrhDAygGOApCw3gHwwAAEIO oEgt
J4KweAAMklYDqrAOFoyMIn5MpVDjDNIJDs7Aer7pH9ACc5LCAMIQ0oppOZyF Jixu
tnSrK7asj7CKH7CBH+JJCsQsoAInxGBhEmOjB+hn5FjtP3Qw8DAgFaTOP34p EPtu
IrJv2QiNT9hOZbgHYhRmJtLmKXINOnxF9f7JSzTvLPiGPpQDB48u0Kgi5aJL SjKx
cbSEvjgicFaqlrKDbvoE6f8YT4DyDbpYcSCAy/8+j4HaJd3Or026xLJs5oRI hkZ4
z09exXOuZVdKRpIOjySebhU9zR3b8ZleZdR0xNQU7YOIj5nSqtmwg8R4RVNk Aosc
I9aaSNborbfaTCDurRDvzKlcRGpwsBbHqI7aTBkrEiF5J9qUwj44Dad2x1Ly jdu6
LQId4hCSBRbg6ZsewOBmaSCi8CVd7CH7CzVmsjpqcu2koBk7IuP48AGMQapq hGJM
Ycyc0CA07JtsYQZNTkleIp6ckg+D4xAmUSpl7gFkLiGuUieShagw0CgO4Qze zAjj
6wHmxwFh8iXLgia+0ADgIAodahz4oQ9J5iylMCoAoBj/AEAK8LIYpAAA/kEK /9El
6dLIGEuouDLWqOIQACDM2ND4hCoh1Gsq6HAy106+ME/MbuUknuL0KmIwASAq Ckmf
RjD/sETuDGATUDI1x+d0kgUyh/AiHMzuvswIe2dBYEMLtAAFmOcQgEb9FKKa AAYb
duEYTAMkVwZeGK0o2AhR3AMXH1KIjmurKo8e68NnRCsxGALlbM9vWgU7YciV RgJD
oGt4Fs05OCXckMJxlM0PRebKkstaiAkkxmWPqoJTcOZgPI6sIK36XOQASYTl 0gX/
nI39lFE3wo2XUgj5IK9JHKtYmsQ2NCas+obdeszZIC2iVO3X3q8/ftCSRIlp zKVv
/+DR+gpJQ7mM19hRlwqTjoZlV2jD9OCjFKEPhAJnPonvcXRMZyxFUMSE7Lrt Pbut
UxQlVphGkyDLmQxJ9JIiNjYhTHJo6ZZufojsAm/xJOiylj6wIvqLb5bH65Yq 7Mzn
cHpifpIFzFAwh9BK7lbIWyRPfpgK5mhwMSrKFFSTD8vUzSIgN7VA5lBAC6wy 5nLp
x1yqLlLBoaAnzArqzdbG0q6Uo/6DDb8QAFpMUgOGkObiSlUmFVCyGFLzHzyV DdtQ
4Y6iUSPkEOnOIWDhDLABAB6ADUdJhY7iglgJOcxneeJAncQpc9qjTLdwC/0H 2qSC
VBkEVy3OFJwug+zUKW3FJP9g6nawSgrSSamYKg8FVIVykwf4jkH2Jget6s2w IQUT
TVRTdE4YTbWma2H+s0C0T1ZMRIR8kRr5sdwWIm7U7tnWUT7iZ3r8Kaiq7Ego T7vo
7UKkDgcdKWBVJRTFA0Qdo4dULU0HyGSarWf6TFI6dFoQdk4kVF/njz+zi0CH ht5m
tUA5MpOGxRkPj2Bl8YduNDRUNqhY1hp3ikX9DGIDMLFuYzoujeDa6kE35h8r o1XQ
C16n017zb3T0sTlQJE3T6kVplrNeiG0spWw4NBvnz3MiMmPKVZSM5PfyCUQT kFCe
b2AeKZrC8CMMwAiNcB3QFsBYsvEUAiZDqMtG8JokYnn/cvKW5Csh8HB50pUH UuFW
sM4I6/C9tKq24A4bjKEPS0IHIYEHsXIpC+cpl7U9DgEFUIDpUgEYtCACMBcY wi5C
mhU7bu4rv+wMCsqhCIYH4NY5eQWjXAwl49JpBRMw2e29erUCX9IgjGw1YJJk tAum
6sItSBcbtCAmJWMqQtdfmcdyzMcfy1Q2DSxBVhegwhQo+gk3UNJOJ5d6RGwo Owmr
vMzusLCZHOM2LdEk9KAjNdUSUyHslihiSHY7fSYWOdOwSgoQ76hmk7OzasLw YMeu
+ojudAZ0gEpGYqd11mJ1xEi7Ag5JgM6PMA9bdu058axG/NdCLUwbA00kf5Gl WCpS
/xzHY1bOu+YU8aTHlBzv4m6G3GbvaoCItoJX/lpPSW4QQ/5qZptmYzVLh52r 6o6J
VC6YgjHY826LCYHIYyLEKuqE2m7xD9etrcJzsha1K7ZVOnkKaL0iNJFzz9SV syxj
cqQ21t5NgvfLZ6KvL8xLXNOiPJAYPnpY4IrKNkxQNo3hDHYAcqVMdWNyVrOi S4k1
nRiierWUedDJ4kYKiixlfm5ukXUOStE0DWOjBeO4QnmgKn3wKOK0jPeDD7c3 NGDj
cj2iLR9AC2joCyvPI97QVfTpK1uwAgtqCcENKKTQR/ejxZKwqWJnYaLwhqUi C0Pq
l9uyLV8XAOBQ4RiCdpMNVv+XhYUWCAMmUVWx4QxC9UcEFfL463ORSZAdw1tt JYEQ
iHM3mE0A800KwjINosl01RDhaVkrspep7malogewQQoWcRFTslWpyyXWd+lG 5Dtc
6ZPPt03uqq+4zTub0BQF0Ew8J2TxKJRyloKIGGomsmgmaE3GkbmClDAmKGey xX/J
biCZSP7CmR8pJUhDBJV0qqyw7Ol+AiCNePNApPY6DzgadIfhVZkwNNX4lWNv es1w
YwF35YR+VgNjcVFeppig5SWQuoM3SN6epqmTmVJ4LHhCL0NdtpWak2ORiAFF 7bkE
yInaBH4h0ZNO1EBcFN12o52VV5UzkGqBTZPiSmDjUwz/Sa+WHNPU0hhnTOqU W9Ku
UfEjLoiN+wV6u7kC+SHsEFN3VTripmp5o9PJarUycWc3/hZx6xhtvwkl54kk aG45
LvlPDcIWPveBGWITllW7Qux8PBGeWPVyxUyUFyZ5GdBvnQdtv7IHnAdNLZor ppnx
RsZ1C5UR882oevv6yNDF3gkMaVg+ACClMVPBQs44HEI34YCVXbWDhSqaxqdR +Is2
rtclflLiKm4O5UxFe6ING3Y0K6LJYAbRro7tOtuK0cyqoHd8o7F/rAo4PbGB CuI2
dTNbL7RjNw9efA/LZCS9u0vYaIW+Dml0Qg3L+A1BEgcZFUZ4DBeF20/2CEXr 2rOO
/yiKtkAnrSVaaX7qXCny28xxFiMNGauojWjC8GKYd6zviTuUi1+vc/oPL54W 0+51
PA88uwbk50ojrEjLsEJpIYxcOiWmRH9kya/Nh4ovg4XWZaQ8RBuQtq7LpyNN RCBj
0dDVhGV8yyGltLQrn46nhzsklxbPINLXu0ocPDtPjGoGeILJ1Fbr8IQrPAuw qwpn
XwRnuAS6Ii4vtEYCqKWYQmtlkvvieel4Nb+ag7qtVon168jAMut2efnrH2by jf4W
gUz3DLwunsD1Hg2imtkEc42scx0leyTZUaDqcjlOB2W9EzsREvqGBe9JxxLC eapJ
cPmBLC0dNfyPkWKSDR1qq/91zGq5DBx1F7lHDwGf9nCHkG6IFwWkABYUE0En oprP
RMnAVJzIiY4Y4s1+kumiVBZVOmU2DFdDufM4JZIvw9QF5lnrmRFhwRHN7jvw xlvj
LBXAK0duExsiYCACWnatubvYI0DnS351WPz8M0Z+iNU2LYAv7tuos/lY1ICD 2OM6
qU27rV9tzykAcJHYIzlGJYIUSY0FBlVgHGfJVUnSSIqhhZbmM37P6F77qGCu z1hW
6YX7JCtEB+dRb4tm3qxAlvXg+Rl/pugjiemHqVoSWANPOZfnBkVZV8dHVlU2 nEHu
ipEwkq/LejiSkX9Hp7GND+hoBCPE6H0aQ9/bD9Z62qz/kfN/516sgJbqwZgZ Kzw1
OC0l1CPuMHCwCfsnd6n/fGsrIhubIpumyufrJt0jfxNxH2Dy5fCd7HS/QXdN Pdxv
PcIAgGHc+4VV7QpMkv1KKpeUUwHs5HD1mwzzzTG+a2Ln3gyQM4pObB/3Sn0L iW5i
ULfZztGkX7JSc2/ZhQ4bXDMM3YLAiDcCMGB3C81pQreNKLM0L2wzjbK8006Y 8ois
Q2P6sVs7Bbog6mWZwzBkwbe+Az/2nRlgBo80S2ISJ1GG6Kcsw0+DUaaGaim5 7i9E
CRhbBpb5AMIUj4E8BBIcaJDHAzIHEw58cJAHQ4UDyRicKNFhQ4ICMSLM+DBk RIgE
/0lS/EhwoseCD8eRNHkyZsSKIROafJlS4kGGBm2KJNlTZE6QKlnq3DgTaU6B JjVy
nMmz5kGI4z42RRkxocWdRk1NNAh0Z9WtUJN2nbkw60geVV9GffrwrVOfcFHi REnW
aEmsXPeqnXqUjMuZGiGqHPx372GYfCkuJrz2KEeMTiV3ZMrX4crGKAsnvWyW s8yk
ELXSvGgWY2nAehmzhrs59NKIiGmGfrtyImPQQ0f7/R3Ub2yQrItKLrkS59bY mm/b
rqv45k6HaQ9i4wFrr0AD2Lp7924slcSwR+9Sr3oUzkD1BNmrZ380YUfX/yKz TMUv
v35+qfofSnUIQpRhdx0P1/9lN1MqD8BhAAAQpXKGAQYAc4ZoznVEECxaRJBK D2d4
eEaIPcChoGsScSfRgZGZIt5A+L2YigFUjVaZRlEZsB8/AWLHD3RlzeUjDwzC AgCD
AABAEVifmWUSigbysElBm6GAgnco8IBBRB5hBEuB10VJXV9wwMdDHM+pdlB/ tqFJ
WmbP1TVmTA/U9uZZZJh5UJcDfakQYhPBgQ2DEkoIC6GshfUgBl3CgkGLb245 kIZC
7qiXRk6RRxdZsa3WW1l3wTQgGSbpNhKdMjXF0KiTnUTSV0pFhKd2X7n6lKip KQVp
p2W+KltSA35Eq1mVsUTeccb2elJlrmE222vFrioltF7/IWufrsfqVaevaAll GEmx
0sUqVhj+luq1vrUplJYCdjrcSXca15JJsdqlGK9KhuSRpdwep6+c/P4lXb6y kcfp
rdEm6yywh0rW7TixkRrutIDd21dC6M1Z2q8G7+XwuRAbdVdUqQ5GV78SB1sS ehuV
a6tfwb1msKq2jQsTxmwF21O5DbUrXF/ErnvWcTKj55GJSV1nALY8GGBM004/ 7ahM
wxJH9S48GCMFRu4JyZfOA1UVZ9jqYYQRP2c8cLYUghoAyyGeDcSdQNg8EKVh 9w0K
zIOC5q1tTKY8a9QhKGDwYeEejqigUBjF/SSCqFVkED9wxCpYTF6X53Ka0imE 408c
/z27OaiRHnkk3EjeKjNKKncpN3ZTYaSFd1qgUCHC0DmpYq2drcfV45qR5DZK Zhbt
nLAzjT2WWnlNvRfursPKEKDffZc0tpVLdgigXUoBSUhxlOuQQZL20OKn6RrF s6ks
vbskVuRVvhmziYkEqU08iwa/ZqaF+zG1jMEkn5QERV5wsRt1WGa7Si1sY+Pa iNGk
Ez6JfA9fvPkNS1R2LvSFJHnqkk27tEKz9Q0FTwasC/EGMsHNoaZVoSEacrJl rgYO
614Qe9tzXta+4IQMMlTTGftgCLK4WIteCiGb8VhlxPa5ZYhBLOLKfOaXq/RK ZiuZ
IW1KVR0bGQ9eTfTccK5Cqv+gsElceCkLEbclmLQYZoI81Mm8EhiaGXVwNyB5 n1L6
JZPLGS0+6gJLbSbCxuZQS4YT+5ocIcJGbOVOJw/6D4D688j/aNByQfrMmC45 pl1g
Ugr72haDhJSdT/qRJP6BpCkl6RsyOA9BEUkFAIBxpAe9MpZr0WK1IpUKTOrS UYBE
iZ6eVD04uoiRQrmU0jYDQMngKBWw6Ji1kpkco5xOa6cTiTEXaArnySgpsfMO Dyp0
TZH8Mnd7JEjHTHQvQVYsMCJMUkXM5zdrXktevxrVKs8HSraxrVCFMoDOKEaQ VAQK
A4CKGpNCIikpUMqD8TyfiZZFTNJgMHO+SZ3o3rgkr5n/Qg9KuUufamahAnqx eDe5
WGgwlDoLmtFzWDEiswCKUrMMLzUzpdaxINjHy8VUaUmCGKfgSUek2OyL8mwo ruqi
Q6tAp2RENM8d29ebcXWEhKwB1/26uC0oBvAtJ9Ud8xTI1SOK8Ktb5WligMLR XbnL
jB49zp0a0y2gidQ3L6UV4BRmzlTG6iUqkyJU+9Q/IopReeea6AK5IjOnKm1z Y72W
wM7lmosZ1qItlcoRwwTZTobFVSeka7qQ1hh4GWaiQKpovf6qk+GM67EGY8i8 2Jib
7XhpabBRyANu2y3ceku1UJQM+UwJXBOKBHfGQNBwyGBQayVyfrmZyXJf1Vzo iZUM
/3A4knGdy1p24k6VbdwMF4/iEu4wBLT/Mk4yM8gro6UTZrq6asx8Jtvx0pYm 7nVK
FQdyhkNAolGJg+FKxrcj1ODJtUzETSVJKhmN9VbBPqJVXg7yR/baFL4d7Ko7 K9te
JtopMfal8IFtY6Jf3XeQFl6th7N6q68ii2ftQgxAHzZhhq70L8eVseiMxdVy 9rac
1WnnQRJJx8og8zR9K45Zh6wTIWc1rM8k8owTLN2QRpA07k1pjOdoqv51uMgV jm4H
vczlrEI0q6WFMjvPXGX3xbHCdjPqhzdmri1W+MrsYvM+4yMXvrBQS6hxWMZu 9q2a
sGyCwREjwWY2q90l+VfTcv+InsgAi0L9sFJySXQQJ52zrlhaSZjuyy/5aSeb UVrT
QON0IjOd6YOZmtGVLjW+Tr2uVEts1Vj59Cay0+heRiuAuwYaikwRaX/Kh9VA Y4jD
AkmZZLPlZ2a9bKxLDT7cXOSNQOHSdYAt6ZfNOtFrdLCuUP1RbPVZVM5Ejbmh rRdu
E+XPvVZ1vBCtVsyketfqfhy64e3kbeO71VLCFE8M7Exi/7lgFyn4m6a6aVtl esBy
jS2G9b1GYBkGM1sZeB1/prFpWZxXLKHYoRv96jwTy0+7mvh4+pJoTmc6YyZn t74P
5m2JCZU4IC8Kw2ftaq0mvNi7czkfF43UJEaL4E6ud23/fQe+o8Ob6EleugKb jucL
k9rHQyfOv6tdbF4LliHKns/BLLPpsuDp5Vw1uMIrksKfTfutPY035NbVcvTN S5Aa
l2BYU85oNym67vq291By/Wx3r5PZ0/Izyd7tlZ/OLPB/RrVx+J7osRPY5HSe TbAe
rNK1Vv7MFl7z5iHipCnGmGc6njOKB4Mi15B+9ANjvedtuvoJ3+8BoZfxQWXz S3RJ
+JYwY+yasv72OCOrrZZPSu5vv/kuEn8omtr9hB/6/Moz5ru8R345Mev3+WGr nFf1
q3vRi+LK88zgHVQxEF2/+eZb/YZmNn1v6nf+sid//sri8/lp/Po+Bt+mj/u+ aePs
/xp7pns9g3wEOID0k38IWIAKiFptRGc+JFbIAlApdn/pUnoJWGQXSC4wh1Xa wjwC
+Bsa2CugcYEhNknfdWPC9xYmyH+iVyf+p3p0BhEiWIH+Z4EUMYMoJh0BmCEF coD+
ooE8GBJBiGLH54IJQ4T2kYP+o4PgJ2E7aFOMwR04kYRICDc+iIE6loMXaIOt 10nz
lxS154VOiE8LeGVL6C/OR4MJ8yjh54Y3yIRreEv/AxgiKISfh4fpsinVp4Vg 6Hy6
J4d+KIhn+IfDh4OHeIeCuIalh4ZbCHsYyIQyKH2TKImVGH0gNYaHRS17CIlp 2IeZ
OIBXRVSDOH+BuC089oY/WP+InSh+hFh9n0cosSiL/USLg1KL/KRPg5KLuViL +tSL
tziLvCiM/SSLumiLxUiMxBiMxoiLwriMuxiMv3iMu6iMw/iMvQiN1uiM21iN wMiN
yMiMsSiN1xiOvkiO1FiOzYiN65iOzpiM4NiO7HiO6miMujiO0kiP5oiLzYiO 0eiP
/IiPx3iP02iO2liQ47iM+yiOxQiPBTmN3ZiQ5+iOzziRD2mPF9mPEKmQ/4iO 76iM
1ViRAAmOA3mQAqmP1viOFsmPDrmRHBmRITmPL5mREQmM3kiSN0mTMLmQBImT 21iP
4eiRJpmPNXmRCpmPJ4mNDCmU2kiUGJmSLRmTK/mNJ+n/lCqZjfIIlVOZlViZ jRMJ
lUm5kCLplVXZkQ1plTMJlghZkTr5kSWplS+5kQh5lN7Yj1b5lDwZk/AYlxTJ lP44
lgPZlneJli85PYVpmIeJmImpmIvJmI3pmI8JmZEpmZNJmZVpmZeJmZmpmZvJ mZ3p
mZ8JmqEpmqNJmqVpmqeJmqmpmqvJmq3pmq8Jm7Epm7NJm7Vpm7fZmGBUSEQk ht9G
NWTUTryGR4MFZczBeWtidlPWEWPRf2einBLBnL+XYM+ZP9JJNtQZnWgmQEix nOvH
eQ8mRtlpHNfJndDpnfACnsAintL5m+F5ns5Zntejfj+XF0mkKb4jZbJhYtMp XIqW
/0fpdlTZJzBkkX1NBz+OYUXqaTndyVnbSWQEGnxSxZ6FhmGVVUEnFCyrQX14 xUPe
1WVrFUGYV6DBGaFnViOWUWdmZUcGoxHOtD46lJ3kFxg4JG3meZ+cgUc0ATjL 0yx6
hxQQ+iZglJ0v2qMj9V0QOopASnVwoRHPZVUapn04dG5UN2V5ll1T2kDilm// onRU
+qMbtlRbml1tZqJmpH7nBZw4ZKMyqiVDqhL9Up0n6GSbFVroo20nRkhUg0ca c3lP
JWKgsRwzWqHdeT6YF3zwF6Vcqjol9HCvwRsn8yO6g1S1kqNMMVGb8Us4ZXdP Fhmo
OILleS3DJnULuHxTxl6lyv9xdOhZQaKqY8YZreqA4cRSryKr4TI/tYqqrNqp seqG
ufqqwOmKS4iGf2VDIaWoehYkL2WrkMFXK+KADjVPDSg/mbes2+eF06qfPjJu T+FX
ALMkOMEsnKJ1ZWgs4GKsZoWtMqel8+OizHYVVDiE5DqrHEdRqhgunrpszwqu 1Tqv
YsZs7XoqqFV4rIWtarF8ZViwFaZilqJwUaGqLBqBfxexi9eAP/esFHuxFqt9 GLux
GktWHfoZluavmDgnDnuDb4OJbTQsCpZ46rMwX2UmD8uvzNoSpnewFQsdHrWH IJcy
G7RAKtQyqjpZ6FJfUvOymbV705c5W1F7mFWH7kqt8GT/q22lquH6h1KLT1Qb Rbyn
tf0qhClLfF/LhjI7r6HDtXDIr2IbgtC6q2s7GmqrWWcbsP3qiVs7s7fXtSpF svKE
tXtLhnbrr+girNVitYAbtnAIfRaEtU+LGVobVjcbrzoLuGC4t417qm3rt3M4 tnsx
uPZqiAcLVJm3uJB7iAFrPqRrtyeEup2LuIZrSKJLt5p4uP4STogSuwMIrzZ0 uotl
tzmou55TMHF7iL97r7zLUr6rhMDLU5W7rHQEub4nt7hbhrDqupj1QLdbt9EU tVDb
JqsBur37s0+oVBkEtvJagk87t857vOH3iWTrVvTag1Lyk/NLv/Vrv/eLkfir v/vL
/7/967//C8ABLMADTMAFbMAHjMAJ/JMgqcAN7MAPDMEOzMBdGcESkhK018AT XMEb
zMEd7MEfrMEfvMAiXI8hTL8mPL8oPML+q8Il/L8tXI4EjMIwTMIsXMM3jMM5 rMP9
+6MvA3qFMhO5xx24ScRFbMRHjMRJrMRLzMRIbMEEMcRNLMVTTMVVbMVXjMVZ rMVb
zMWJaQBRwraMxB0GUCEvsQnXAXpoXK9otJtCt64gdq5QBDoZtcZtIWEN9Cx2 nHl4
zBd6jE98jC1+7Fls4hCCDFGEDGFz+0RF9TWKLKlwZMiQgch5lbKPnMeOTC+B 9XQi
UVML98jMA6nqdD865aHwZP9gp1Uj/TNiDMaktzSBgSxMFsN2B0eGqjtFhtWi 2mtv
AIQmLfPFPbArTsJkyMezYTZ9hGYvmNM7N8XI5iF/omGpdJoYIvscwWvHdWc9 B5al
QYNj5vRW0sytrcEVVeEQNQW7m2g0LaOmlMRSKvFAHTOiyqxYvyl82SKKnMqp 9+x+
+bxi+Ox++txb0LJSe6R1/QK9bNrKHMdbwre479RF35WuKeeCpMt2cGqwclyv 6LRm
6DlJODe14xpwT/fKxmJHvjfLO/FGEgLMyKJP2KBPRxF6vRljQLJZArrOWDQb 17sl
FGMjPG1/bkYc3RrUDebT01FMPy3UZJHURe2gS33URg3/1EpN1E/d1FMd1Uwd fE59
1enyRob6ZWW4oT6KQhk9GHO3qrbafyaVLgEkgCzIG93aY/ahToCIL2e1L+aK MI91
ouT7E3kBE07aUniNHiqtE7+mh6bKzEbld7bEJneFUZfThjCEqvczNddkX0py qX9h
P0vKVpT6GoaFtEFqgGVUqz1xXpRnRvg5SdA1vRYiRweIQ5tTcS7GhrM9x/QT zciK
2+Fmrbstak7bKrnd2+4i3MD9dr/NhhkUQpqnUrbkoOiC14r1N6sIgoTl3Hfq rQf1
T5GNY/uD1yQ9Egfafln9Qq6K1cUD1XcV0BSBHnstFsHLqMO1CSsdUP7xH9kT xd2R
/zTi44Oht1HUQs7UnK2ixmX2JWrtvcdzNsyICkULvswKzlMMXmdb5mQNHuEP buEU
DnUZPmMOXqRtqOEeXuET3uEX/uG2ymS7rK1T286p3RdBVc9zJciOtS6CnLDV HBF6
koLRErNox1Vc5LQFJhnn9MgC3RucwmKOCmeiwyyEXRAyHeQ8SxIAm4ZLqt7H 8kOA
M671x84ItNo8KDENjT9pG+OqlmO8V6wDu1z/ZkH35cZ3d7fZei4Jiq7ZTRiP uztH
usi2x9kzts0FHuMD2s9FDmd/7ueBvueJ3HjIwnBFoUJod1gxqBOPNkQy57Cm UqUL
21n/idMek6ZW4bKKszQFsv9l2MdhWDY/iasYMoQiLSPHXj4nKTFBfhZyWTHM Qg43
BkDfAhEjLl0ocPAA/YQNsHBrBzGF4YUNCUEK4AAO/MDszw7tzC6BPvWhRtVj hqoc
P/ZgaEq4BTgs3A4z3w6/4G5B4n5g5L7W3q7uA2jurj3u737u8O7u8V4RQ6qi t+eh
YpGK4LUQHDSnwILQgYXkwiTUCrskrc5Bz0XZwqMa1JdItILN4acaLoERz8Xw sELP
dluwlfHLUDw3b/cxXHetcgVEry3SvHI9BEE53V7naiVRPRbPifx1aagHCWps LDXS
IVYYJCfUpScQtE3PiB3fZrZ2L/alVWefO5XJ0dk/qWP/nOxdJ8NzL3K0ElLv OS70
Y0MN9cZi9eGC9Sqv9VSP8VK99VUf9vlq9mQv9lmv1O3iLQYKF/MSP68B2Rt+ hazd
gIHKoadeekWxXl0lou6VNATuETpeVONaF9Xt3g/WT6r0xFtfFzJ9SFAF36B4 WjQH
1duh6yJRSpGkIF1CxrZB6VP4EODQHQDwHfwwPeCA85uBQUOGIVS1iqEyZ1NP yyg+
c8zdRCBo+1y6Q3PF+y0O/Lf/+01F/Ay4+8ev+73/WMWf/L6P/Myf+8GP+3PV tloh
+10DbjHBcD1u3GM+8sUHv0fO94J2MJmq2xEBHza4/aBO0HUfvGHq6iiq88fJ Q4zF
/xBOPupumFSAdSZaAhBxeAzk8YCHKYJkCg40yINMQ4UJGzKkWHBcxIYIIyas 6PCg
R44ICU4kqJGgQJEZPT4kOFDkwI0gD0Y0RbOjzJYMx5Fc+DEnSZsYb7pU+DIn zJ8d
J/LMaZSHwJ5Hx0V9CpKpy5JNW0LcqvWoQ6gTbSrF2jLmUZVmv44sy3FtT6dn k/p0
uzZt3a93kb7VixNt271/qQaei7Qm1rMKUx1anOpYqlQYFjPG0BWhAWwzW4pE aNCA
AVh7z4qMSXKpV4NkSHM+GtE14rxrY0aEhXnzQKimbKt16zrOxtS3F46Navoi 5tqw
sNW2Wlg53dNn4EynfianXP+CAKzzqGz26keeqgfzMLCpR07M2LClV78e9MmB u8ln
JghOPYD22Pjlxwau5dSeJurMo5Tokg1Ap3wSD7CjSFMLQAUfzAonhSB0kCML Catw
wtl4yJBCDzmUsKwOPyxRRAxRRMrEESNMkcQWL1xRRY9YfNHFGWG8UcYaadSq QxVN
YrC1nQiECULsjLFMuLeU9Co2jx6oriwBK/ruK/m+cvIfgv6ZDjeGgHOSsMLe wssn
Idni7SvsVlqLNTJ+YzOwBT87z7PMrkoFgFTYBNCgAhsClMmFXmpTzaH8Kg0x o4oS
LKQ1u3ptL54ENbKtKwODUyM5f2Tzt6mIOxNRQYssyNH/m8gw1a2XCsRtUrkU Cu6j
Qx99KzEzKzLqw8GEGs6otHxNDVgdLV1QV0opOhauZH/tykVjiYVWWWkvjPZZ a6nF
9rqnUF2w0lx/SgUbDPjDBgXuyD2Ky+fUFIsHY2qTz9W3uBStt3ARNVBGqIY8 TEGR
DOBBuVgJmvfVfG0VbNKjPpvPPfqAc2u3ZSOCA4X2UDgjtJsMOuOMBz7GAIAH HqiM
NQ6dujI4O/dijz31jBGYq4Hpe8A2haYAYGd+ANgPP/78gynTXJfVyNIJkaZK JaXp
bZqsqJzuSOqooa6yuKmtTtrdra3sOsCvn8a66rGvPo3ss83mmsq1fUo77KzL hhvt
/7UPM7SpRf1K+CbqeiCDOjgI48mUXXoAHHBSy4JjzIECVyhwbvGN9Kh2RZPi 8MP/
xuklzGftydeIzjC8bzjeJdSwlhZP6yXPU6L3qwH/Rbml8vyOLzMEyQOAh0Pm OYQH
AAwwbW+G23S1wKkuNOqwjGpl6q4HVr10wFxfSj7cq72OSvo3h0rz7G01s1vv UU83
cHKZnDqawZjGLytB8NWnclXxYlV6tFyBGrJMUaHcK0H+7e9Z/8sfbwA4QJAc UF/9
sxUDEQgTqGDEVIO6VCq0MK788CAzkenOQ4qkG/qEiEwDA00ICTIVpIFGhclx mGYM
pJDPMEdeAiPQWa4iq8jpy/9gJPzMe+CikHbJhYU8FFj9zqeo9/0PiCuMoQ/b YpTK
oY4HIMvgGYo4oYHsTIta5AEkGDaUjVzkfBAijwHOMxL2KCc/xuhTWypnG5HY BwAc
4IDPfKYfoAntJVvc2edctDv01eWLAwmVhgborUPiKCqIRBQjO+LIRSryXTya pOAg
hZNKYvKSebsUJyGZSU9KcpOJpOQoGylKKYaylKk0E+vM1BDqSIEMhttOcOi1 EcgF
LpcGKSSI4PAxkAFTSkhEypewAjkeOI5DPWSmvDhGr8tkZnbIfAsNEyQFgijp l1Xx
lEiksx2CfDOHyCrImL4kF17uT2K1SljLDmIbSwFgHj3/mwcAdnAJQN4NeHzk IiDp
cqFlkY8kAFhNuIQkFh6N6juOEk/0nsctjQD0SN9x1bdupS8FjidfXOmLjGYV lKxE
pF/aewtCJjgXYykIVFFyWw4DypYDRtQrL3VIggraGpvCBIAvvel1clpTNv2U pjzV
aVAbVFScHhWoSZ3pTs/nVPC4xILj0oJ6NDiQVEjhZJQL4bAG4sweWnVgaooJ C2dY
GxNOCCEzXE9y0jqhFfJwTA+wSUMAlBwSnlWFctnNTVWImRW+lVY8DI0KYTcY wLb1
M4olkylullajYLM9EZAOMvUJTJEBsjIcg82TkHat2iEmPTL7a21+1zBsBMyE 9uEH
/wf4EQw6BgNo/OCH0Frizyw2p1DAWwgFFzS+1WkPgBnFYivzRVwBPsm4Bj1u c5n7
3Oo5N7rQXe50rVtd7JbUueGZCArNl8tk8mAXv2TcRlDmOF02jpxtKV1HpAOb aYYX
JsiE3L8+AgvMhky/bawRDmt2E1PA4XLTsU5lA7cJknTqbwImcHgZuhbRyYo6 sAQn
9UASk8peLryuvAjRTghTpNwCkAYRMUsPE9rb1YUf81jCPObhCH6oCYCAjMju wGWg
1jkkehViCW8R+Lp9HdW8602UbPyo4yOC6XyoIuZflncvZvW4VUXxL9KeDDsc xgk1
q5Kff1vDtiLrb6Mi5FZfEv+sNyDPiimzG06i2KxmpRLLV8KRs5sBA2ev1Hk8 b9Yt
nSVlZxz3GYtxiZwrOTLV9mgQXWfAQA8wgB04CpGJzCFhZsZymBn+tYTa20hg /5rW
FIa1iaFxksq+utjMwGITLDSsU55zFWe6B627bUoTZb0JAwySIsoBbAxlTR/7 pvgq
H6uiAcBJQLpoZyC2GBhnVeKrEhOkxHw1I3oCu8Y+qXk3j11Iz+4TDPXEdj/q sa14
cKuQ3R0Qt0U2k65lGhjf6pPWx5JYT+uNVJnEuy76hjfA9u3vftsbxEvNN8AL LnCK
IHze8ub3wfF9b4JDnN4Dn3jCH05xhht8UdY71Z85B6//9CKkwSFVC3jBi7+o bBPD
1EwUeAciupEnxYyik46UzrCLQ6z6lDhLFUHSaww4cJYHeoiJQBaU3idxzjoE /pgx
2/thNG0Fcp3u90CeAQ/aZr1nBiiQgwwip2hHO0Hu5PaCIAOAJUgBAHDAJ2Ms +ZF0
LwS3nvMeX24L4PKNcMnRVRVdGXQXNnPNhiT6aUI6pSylhouddCI08y5qlwci VUgJ
2ohI29fZBQXUdAcEV+UfuRajP8vvXwm9u9pUeiudXpMdJ/3qR38U1AdI9Xl7 fU5i
L6jZiz73ps/Lqhyav3EdQj1lyIweesBoR5cEh1G8TTObmB4F9hCss7YVC92z acdy
/yteKlyOpoV+nbCGUF7db2FFsiQo0qL103OKz/inT8MnIUfWmFl1ltocRLAF LmOV
deEL14IuWNCC7ysuHgg7f3IVFCMINVoP/jCG0xKtEMoScOAZDqgqbIitPOoI G/sg
f9oiudunDqSIDuwjG0ui8SAJzjMfvPOfJKOKFCRAjII8GFxBW3lBAUJBGbxB FXTB
HGxBHGRBG/TBHfzBGuzBIEwTszC5nIi5ocgloFMv6KiLbXKh92KywAgcA2OI +hoK
WCCdwoGDHkiFM+AvNxKssUA6joGer0C6wSAJNhyJxUGmOSu5KQLDwLmiIyKD q+OH
HaCt4KGZXBGxErsxd5qPnP+QJxfDDwCwBEtYhHV7ACepsQ/bHS7KrT4CwRHD xJ7o
p+y4xGBBQvsaHgcpvR7TCqUhHrvTu9cZnPRJCENDsggZKbEYKVNrQSaZvIjw LqTo
i+JSiNwgjoQSQu+QnkYxQSVDwoGbwSXZwWRMLotjxmdUxma0xWh0RlqTxmqk xmu0
RgrqxYpAlQewoAd8OZGBAwwwBpKYCnj6u9LyNRMKtrzCNVXzNfFJivpDDu7b DCaL
NekrrYSjjU2DvxKKq0lhvpHgR7eSCKwwCFVTP7AyrP7zEF5rK1zjvswQHtQi uSnC
rKbDr7ZRQFgISZEUSR4QwIJLCkFcN2s7o4h4mQbsE6P/iAOK6SsesA/9oCNs UAVx
ww9wOAuVBKRMBMoQ9LEsMgiSySKVJBOgkKilvJemvDCqyLxdNAumpEqntEqo fMrX
0MqpdMWr9MqsxMqtFMuuRKqxBMuzNMuyXKq0ZMu1lEqWQsu3rEq5jEu1jEua GDyg
UsKjKB1WhEKkk0O3MJUplLov6wxtIgwvIZO+M4DJgAzITAVYCEMfEgo4kqKE iMOi
aZbAsR062Quk24jFhAMu6QxVIQyRk6+gA4w5e4asCx4k0qeGiDYdQjEysL/F kCc4
WERL4JM2EokPyg62uETgQQjiDMrcEk6i3Bl0+8BDATKhMJHgjLzTrM67/D04 YRAb
/zyLkeINivoK32uqx4uzZoESK1wnskBGvau6b6SVRglPungNZOwUZJSLyWsy jaxP
IeusUblPXPGUwUIf/xynztJPADXQ2wApAU0g/DyJIcuJcTkDW4hMDhIdZvuJ eHmr
WRk19iAVU3lI6ys0BfQ1ZrK02Pg0s3o+7vwrEoIJzNg++HuJywzQT7O1togJ FH0+
ZxK9XkvR5KC0slAOALoYPUCXKepC9vOJAcyJMDyiNCkxTslL8jCPrIAFY7hS A7hS
LXXAdbpMnqtJPAoGH6Cj1pIt/Ygx1qEx4XwA3AJKWrGxdGtO3iqKOJWxzTks FZSf
xNsfPVWuJOvT0xkuP9VOPP+dQUAlQEHN00F9qkLl00U9VELd0z99VEpV1DVU L2Vq
nOPzRtVMJmPQHHJyQ6Z4L/jICQPbDuqQL/PpQjs0nNE5hDP4HVcLIdYpklSd jlwj
Cjm5MgP4klSNqlZJpi/hDFYVVmoSEP8KORoSG594hmMAgGdiFiuTNgCIth2j i5aJ
JkzhB0e4BEY0hBjTjIc6tzbNrYYoV6SsxDp101DVF13MFo3SR32xlGqpFeq5 1mo0
Lw+SGDCrCNQzCdOhstjAoXqNPEzpz+4pIKxxlG7UIcV7ux6MqgAdLBx8NpKr WP4E
2NuwWNjA2InV2KzgWIrd2Iy1S4lNE5BdyJL1spNtRZb/pR6UNVk9gwRs+JiQ 4Ujp
6I7fK4i+Go3b1KtI4hYdtVEjIw/3y8cx+qr6mz8mkiaz8LTlcIlUc6KSwD/4 sDW2
yhWEHFqbcRkQ1bSeNZiu/YiPMVKNgQNjYxbRg4XGYIxDeNs+CUMIwVeVSEkz KUSe
hQzGoFDI4J5tk0BswI/XoqM6ci1yc4t8Uk5+Ss7kRFd0pQgyqgrsmIjYQ5TK 7YjL
jYrMpVyBgo/J9Vz/2VzQfRTRBZPPNd3Q7VzUJV3VldzUPV3XZV3YLd3YLQza pV1D
ay84AFVhPQOPKgtZCi+XS9Jkso7KG6YjgyWfSx1VdRWIcMy9bQzI6FUyFNvy XN6v
/8qoNLlNj2C5oj0L+PPelkumOcwfEFjScDHAOSlE+TjXS+iZ3uSH3nSpNRVO kWDX
dNUio7w7ouQt4yTOveiXU9SRpChfjeAeh+UN7OAkxEsyW0KzNfnOI7qSsRg8 iDvF
3IgbMTsoagSgYPma4yGkq+CoEFk8S+mlV4Jc8kGpEsYeFTbhF3bhhUDhVEwn GJ7h
FRa9FlZYG5bhHs4hqLAgRsMAIi5iIu6BCw0M+wuoxRo/EySJdly/sYEKfqRH sOmJ
HNW0RFMT5xMYzgorQ7M/lhm/wFJbn7A1rhUrfeTQTFtAvsIGuQicMoiAMjhS wRSO
03yLQ2jSNhsP9eUastNIHf9akDdaLf0I3NcKBti6o/4o1RL8QN46DeSM5Mbd xOsI
2LAAi97IZC0TDU7uF99QFlCGIFHe5FL25FO+sE825eEYZU1uZVZODVfuZFmO 5VdW
5VQOZVhG5V3G5V7W5Vrm5WD25WEG5ls25k4m5mMm5V/Gt2TiEl0Cuiks5iXE VPWy
qKhLJv0KppC5Y6NQpqkTOcjxHOLowtGxQzDkrwcQiVcjpDUJHKFbPJcIDWoC koaV
CXpGR6IwEzb0PCGJE3+WCYCGFIWA0oLeHQ/KiNDCk0UygN1JhUX4HWhFjTdN IH9i
09wyt8F4ZDi15Kw4QKTwvEvBm30mOQVynxBJC6b5oPb/mY3uBLJUFGjWVKQi G59E
/cv/AJIFZpXwUYvAa7KfjtfsCVY7NZ2IlNa6gEemSWq9tDB9nQunVj6oDtqj XmpN
aWqqVmqVveqpNmqtltj0wersqZByYbQVSgU9KANISD7hwAzsmL6pFSzUeb98 FJWW
JGMnNiTCUqwSUuOzYDWwyiuxeo11pBwSDauT9IitRSurIur2YyYmcphknokZ dYiy
DSe0rbDrvK3tqIzFUK5Ops0HgNKGoVLQM6qWKGSsAIdxw6OeoS0LONy9WLej 7F+h
VNxO3F+kNOOXSgzK86kvw8rJ6W3gJlDiFu4zOW6wHO7fRm7GbO7lTm7odubn Du7o
/65u455ugpNu66ZuRdHuoTJWXSpM3y456lgwY8IL18AcxAkoi8He1ClvtXBM voWM
0PA82/iTx7FDBfQ5/u44WPpv8pCT6TCcagxwA4+PK+4WYTVw9NZUMCQWCV/G Aw80
AGJfOA4VQ9mTVBApdvOx+w2Oo3xcH3PcTmTco+TOJ15U7NmJgjmyvWlU7Phn k7gy
LBIVmHZPuwvvL+OK2Rk9G49Kn7buQflgtnjQgR4huqJh9fRwHnzxTBZkt4hy /pxy
vIPyKw9uKp9YK39yLc/yyNnyJlcyHMRyLx+npRBiDGChVIgA7jDHiPsvBGzH uIag
y4MXViut1GKqvMJH6mOUEf91yA61OIatP1azqkQr5xA6PN3gvsCKCxnF60EP ExT2
0X6sHJKoHPGYwkVD0hQuCMwaGeuojN9hCkgCkrLA26Alrr4qbJu8D3ORbRHk o0Os
RN6qRKMkwU6kRA9xHmfkxZ6GkowCdjtNxWH/dWSnRmInMsE4dmVPdmeP9k+X dmOf
dmuvdmyXQWrX9mvn9lMN9mbvdlNoZ3dGHDITbwiBEHP/D3OPXBEy912RinZP nV+F
uv+QCnzPCXeP3E6rNp7Nk0X9z5Ogbf59ZE08V04EQUq2dbJqt44B7at4xVQ6 PB1e
HpG2rztPJIntrnh9MPPEdtlhsu7UFIzakOhJYHrVmwf/DWvULBSBZbeUECMu 3zIF
xVN8Vc+kkXmcn5+aV6qbz+GY73mar/Khn3nh+Pnn1AmhP3qd1xvhM2t56RO1 Zmuq
2LZerxlzKSNsGBx+jfUtPmqCyKAMgseWEPvGXrz2cEcafKeI6SyzV+NQDPtE +/q4
z4m0tz6IIST/sr/iBSZctY5avC1+2h1IyCQouWeccCcklBOvKipIbBduqw9w mHzW
pnzLn3yfiNwr03zhcHeg2l8izHzlAs7Rd2dCIf3TN/3iQv3VV33AYP3Xd/0g O/fZ
5/wJsf2ywH3RT33a3/zS7/3O/33dh/3aF37j5/3hl33fR/7jb33gv/3mj/3n z/2M
/9RhklIa7Nea69f+Bc9+udn+7+9+7g8Y0zZEg9UfzvDxBkaumJzxBlYqLmtP C8Ph
KCS0pOCViGe9MglUFh5yvPgTgOBBhgePBwMJmiL4AKHChgwLEnR4MKJDigQP LoyY
MOJEgRYzQuSYEKRHixQ3ZgS58aPJliZXmiRpESZLlzQpyjzpMmTLmxFzatwJ 9GHL
oTx8VnwpdCdSnkpdGm06dCUGSBiuYrVl1RYGkOMywsKGM6JYkwZgGTAw1uZS tlCZ
tu3pEi22sjsVGhDbVCrct24jps1blwfdhuMihv1J8AwcWI7Rwil45gGcxpuI mjqj
WTMGAGd4YPCIsqJRMiOPlv80sKnHzJIxY+YFXPbgwDj8Fg5M6VF37oa9If7G HVL4
wpsASvIevtu38uDLgTePnnw6c+rQrROvrv369uzcv3sP/1y88/LSu49Pbx67 +vPg
27Nfj17+e/rk3d+Pjx/+/P30Y9dWUoC08RCHgAUeaCCBCl6E4IIJQvighA0y 6FGF
A1IYYYYTWhhSWqyZQkZsJR0GEUwJ+dSRaw4JR1SDQamoE08hOiUXRRP9lhRq Oz6Q
0EQg5QSSiiv9uJZuIfl0k0xHFnUXR3/tSOOSillERkpfYebUkFXuKKNRLAW5 lIHK
1ajYmEcOtdCZLL61JpmvuckkS3HqaCabZTZEJ54Q6Zn/JoJk+tlnm3cGSuhd Jco0
4pxs1jXYooAOCmmTgk5qqGxiZaSnQIryaSmcnj6KJkGNIpYWLFTywKmdkgLp kmcF
hWbSRCe+CNeHqDq5EEgApqrXQ7PWuhGwrgkbFLHB1gqAssf9auywzzobbbPT 7ggt
tcVei+yx21pbrbTeZsvtt9iCWy6552rbLbrihqtuuuO+2y687Jobb730rusu vvbm
Oy+0YfUrr8D36luwvwcPHDBBqrG2sK8KxRhjTjeR+1CL4BYHnZNPMrdiazjh WKtL
HXUUR0enVbuRjzAaK6uxRw7LcZcwmSbRjiaL7PFTNzJU811RCYSzQ7SWOVCx K9to
/7TRAtH8Im0m+9j0gUHX7LPTTkPNNM9Tk5G11Vxf5LXUBFId9dZkd1312Fir fTbb
ZnOMtthuCzh33G9rfXfdbdtcUlh2X7033IE/zTfhYRsOdtl5H77412gzlNjj hAOu
eNqDWw54RmT/nTjkHhe5dZcuXoTtaDXduulZprK+emCBPTBOYgTNvrHtt+Oe u+67
8967778DH7zwwxNfvPHHI5+88ssz37zzz6fea8s+ZoTtQTQefdT1DRJpccsv qny9
0juPPuP2s26PkPgPYS8z0jL3FCPHNIK7pfbqR7n+/fO737NGZFcJZypjSshc 1hSX
8ax930MN+kiHwAGWj0tRcv/g1iB4wPRBcGTsoyD/JrgTDHIQfBv84AgvWMK7 gDCC
FRyhBj1oQhei8IQkhOEMLRhDGrbQhjVkYUtS+EId5pCHDxSiBHWoQBqNY2nl 81kD
P/ak96VqNWRpFBWraEWHIWREukFZxraoHC6ixotibAgYy/jFM47RRGgk4xrV mMYu
svGNYYwjHd1YRzjaMY943OMc9dhHPppRjoG84x8LOUg/HhKQbVSkIBdpSEcm 8pGN
nCQhI2lJSGKSkojMZCU5uUlNMrKTGWEYXjDlkhKd8TV9Ed6XMnaRw1TPIIf5 2u38
ZKO7jGYheqBJ9UpyQCcO75delBEDc8dLBo7EZxNDnBv/lbgxkggzlc9ko+2G OU01
VpOa13TlNlXYJGx285dU4mautFlOcJ6TnD8z5zrR2U51tgWefpHnN+mpSnvW BJ9G
8uY9+ZlPf+5TnPOUIPlw5T0eYClVBmgYTRqalIEoSlXPmyhFK2rRi2I0oxrd KEc7
6tGPdhQtPTiIokRlFDmJapyFhBTKQHWnmrBUUm9iU6vsOBSMqJJVeXwTk3qK qzTW
k01ghJScuvmlf0LEp6gqaj9f2tSZIhWq+3RqVJmqUqpOVapX1epLrdrVOm3V qzwF
61f3NFazKvWkpCHrWdXKE7GmNZ5bfSpc14pWu7q1pnm9qlXHmFKSMJUk0fMf UUI2
/5K8jPJ1il0sYxvr2MdCNrKSnSxlK2vZy2I2s5rdLGc769nPgja0oh0taUtr 2tOi
NrWYhQOIFKra18I2trKdLW1ra9vb4ja3ut0tb3vr298Ct7FSHCgFtSgYKyI3 ucpd
LnOb69znQje60p0udatr3etiN7va3S53u+vd74I3vOIdL3nLq93oHde86rUu Btbr
3uq2973yha4t5mvf++I3v/rdL3/769//Ajh13hGd1sCCDZICOMEKXjCDG+zg B0M4
whL2LikLMqLuPeV0vlwn/QhazJH5hDfkKios2is/goxpWgdJMUsSSuD0yUSg UumI
TETU3ojs0qBHTentMFxAnf+eTmJ3MsCN9Za+gpx4w1YjW8WcyWSROVmEK4ry hqfc
pSdb2cfUEo3emnxlKZPsy1UOs5bLxeXAebnMae4ylMWcPjKzOctxhjOa26xm O885
gXl+4p651+czT23NdZbzoCN2UIHeKIPpoQgsWGsTJTZlE75K74QrbelLYzrT mt40
p/8bPUkziX5JrmcSD9jLP31rLR3WGQI9dOPTVWypogEgyRy6xC6pBH+33h+v KwKL
+hIkiUUhEK1+LGU3FXAlyobfB2MHv1lqxADAPvWu8bcSaitGSTyE56lhwu1t R7Db
Y9G2B9mJJBd9u9zuPPfo0q1od6M73OAm97vlrW54t9v/3vWmd7z5nW9/e1vf /Vbl
vgk+8JoUHOEHV/XCqVTvnFkn1lXmUkJSd2SZQXMgtaO0dS0AAAt0OuQiHznJ S27y
k1N4uA/glP0OBLfN6exkMTfoSFx8y4qYApqMBnabcW67wR2zRtSWJVZ7c0Gh oYbI
Zell2ogJQKLhWmRDBZrDh5boQ+OlyGuxepPIgEqc/tPrHAsTcL5eJ96YvUxo H3s/
xf4isuMm7XAXiNzbXvew332fbkeO3dmOd7/rPe8q3TvYAw/4wQueTYQ/u28S 3xzH
r/3tfZf83ylveMsj/vCKd7yGT5ybhGaKImNyZhQb5i1b9DApEd0uAAQAAJTD Pvay
/5897Wsf4IXK5n65rOPWg87NU1vJRUoc0oljtxBYOpGkkLDL6FKco3zv6aZ9 yymN
g5bTJPmtyPLT9rWJWaPzOUl/MVNR9bVUJWnPxsPe33oAI4JKsnbN/TBtf7Dn f6MU
v39P8a8/++8v//5zBP7ZXwD+n0ERIP8ZYNgUIPwJIAAqIAIy4ALqXwMmoPVB 4ARK
4E1RYAReoAZm4MhsIAZ2IAh+YA+FoAeOoAmWoKywmIwo2g0JR8AplOnxBLMQ BOo5
UGIsBMdVVzIAQDLo1+uNlxBCFxFOlxFS0bIoi3YhoRUp4RJG1xIKYRM617Jg wxNS
4XJJYV1kYRVy4RN6VxcWYf8VIaEYJqETfhcVEqEV2l4b5lejsQZEMR/xIEWM 3IQS
1ZRDwZxiiB0TPUSJmdJYkN5yDOJahM6ykY4fzkwLTVWMKF3UAZOOEVjorRKP 5BS4
IGKVwFqqvJoMmVTeLA226Qoo9lHA4Ub2iCJwoGK8naKfpWIrctkrkiLKmOIs sltD
wGIosqItyqIf0uJY5GIpAiMv7qIv3mJSEWO+BeMvKsYyHuMoGmMvrqIyJmMt RmMx
TqM1ZuMwXiM1dqM2uiLp4AbSCchQZcjGQBTumQQcAEBk8AAcYACOwMSIiAgV uQ7r
hAVzAYAZ7KMZkiEX4pc/nuEVPpdAJpca/iN2mWEZjmH/QkrXGjpkczWhQaIh QA7k
dVGkF16kRUpkRXZXFhphRrrhSHbXrVQc8z0AFi4LDzCLhtHPqkGdazDLqAmb Ae7f
AFoE+gXg9l3ck2AhQxzH5xRUQeRfSRzHsoXZ9NCO1t3IHkYQ0gxLTRaeiejP /G1f
UxLESqYeYTDlzOXMDX0lI7LaVoYlWY5lq52lh43ai91OUqIjgYFlWrKl7bhl +MHl
DJUlWq4l/Oxlz70ls+GlXPJlW96lWPalldFlYZrlYdZlTBQln0nZ/syjFG2E LSyL
ZaJeO/ZQQsyOKaQXD/IgFfHDPgoAP/JDFULkfWXkGi4kQVLXRCKXSHrkQc6m FtZm
/0E2Cmxq5EZGYW7e5kN+5BmGJG5GJOvRpm+SZHKul2q4o/QAxVFGBLMQHS39 RPnB
4kJAp/H5GVQZxJVhzlshRpHZWpK9JEvWoAu+DN8how32BnQ+Sa7BGJcYwBQc GNdF
XdNJmZRwHfhtTCYijVNGZ3RmBADQxCOqZ4yh2Jm50qmpiYJaoiUyyGhsYqfg 4YOO
RoRSE4M6iCVOaINWaIduqIRynYdy6IiGaIZ6D4Zik4aq6IKmqIOCaItaaJ7A qInK
aIzWKLuRqIjq6Imu6It+qI3mKIsOKZCWaI/eqJAGKZIWKYTmaCqB6LAlnTpy hBQA
wAOkpGViABxYZnPmnsM0Cv9oLlcqvJ7rCcAVpoIWhiQUXiEbEuQWQiGbTmGb rmmc
yqmb0qlr5mYXvt5wummfyulv+qadBuqf5ult9mmbfiGhWiRrFipDcuSgKiqd TmGc
cqQSDiqkRmqjDiSgqqGlvmmlJiGeIuebliqmAuQWciqeomqo1umckmpqKues jpcB
sJaBpad5/oQNgqeOQJGr3JxrFKJdEkXsAOLPgN7WDSjf8eoA/qquOltWgpXO 5dNX
GMDyiZn6AVRels8W0Zp9/sRKHAd2SqtCYIlORtAgJtm6Bqa2Aua75iW7iqW7 xmu7
KuZZyqtZ0iu+2iu88uu83mu+ouW+CizB9mu9Aqy/Fmz/wB7sv+orwyYswm6l VVkc
RdjCA9gCLGApLABAD2CDLeAgroJpXYipclnpGZhBaZ4BAEiBciFkpIrqF8qs a8Ys
zXZqqdrszBbnpe4pcgaqnuKsE8oqzabmz/JmzQ6nns4p0NbsRUKq0eZsziYt m26k
pk7t0J7qzIJq0jqt0sKszi7tpEYt0fqscA4t1tJq2nIXeokFALEkzB2HVpqn smSl
3LKkVmIn3UpnrTwfhv0nS9DEQJCUiUFMSPAksHbJlb7t3DKLElKE4y4LTmml 4sZt
4/Kq47oGuuZNcfQkzNiIdv6qkPgFX5iEDcYtklkELGAr1xXLiuma6+4P7Ipa gsYu
/+3O7p/c7pjk7uvaLtnoru/yLu4Cb+0K74v8rvEG7/GWhPLK7vDuLvEyb+8i L/Qm
b/VS7/U+b/Y67/ZOr/Z2L/cur/V6b/hiL/g27/eiL/mO7/mqr/lKb/umL/vC 7qhV
2FF0aQ8AgGBMhrQ1JyrFxg7aI6W+Xl4QMDZQWkoCgAcoywPoo9XebNZyKtPu KRue
7deO6nF6bdlqcNVSMBmi6tTypgBX8AYvLQjH5gQbKs6GbQk/8GyqpAp/7QeT 8AYD
raSmKgxLMNeObdiOrQXzrNoC8dpSaWysxOi1ZN16hOUG6LKm5ONKa0LQ7frF G/kA
RSYeK8WAKzE1q3mSgRJL6/+y6mrXnG6VmC4S361AjOu4PnF4zuE3edNprJpc iC4E
XcnH6M/KDKjensREHOvAYljLtFwgJ98gOx0hA7IhFxYiZ2siF3IjH7IjM/Ij S3Ik
U/IiW/IfVzImXzKzaXInc/In54wnhzIoe4wolzIpCzIkb/Ios/Ipt3IqT/Iq u/KZ
HVE60uA7KsvFakFdbKwNCsfGBbAVhSYVSYEA8IMAtCxqnioYSvAP8/AzXyoz cy3V
erA0t3AP13AEW7AJb2o2+3DUlrA1n3A3f/MKN6o4u3BFcrM3Fy0EY+EJQ+QI 12nV
LmoH03A5B20Q6zN1fYiBrFwbH0SzumfjGqUT1+3kNkT/UJ5OjbVG304Nnqxc V96h
5ElJQJdOuRI0RFwuuRYLdC6NGhM0FFu0rpYrYNwYtQIFE5mQ6OrZwAaJzckx 426x
0rF0VM0VVgUW46mdTs+dTeM0Tz/VTUtVTu90Ufd0Vgk1UR91UgO1Tw91UyP1 Txt1
UEv1Ulc1VT/1VDu1UmM1V281VPvFDKIKl2KpFqQClkpbx54EPX4mcg1zozwA P8g1
Azck2jZzBkNzM9v1Oo8zDee1biakDv91CIMkPeM1ORc2Od81OGtzCH9zY+e1 Q5pz
Y9NmPOMwN/P1NqczBO9zZ0+XrY4UFnEuUA7H3qYxUD5hSZunKVwuLu1xSyCf zMUu
/0nYmF0cYu40axPr6uWmNkkjxBab52Fk9Grvdm8Hn+raxe1aoJ/g1EYgylfA 9P8Y
C81czExU5dwusUf0MR2jmgOylVu58SXi5HfHhXh7912FtXlXIHqH93izt3qT d3q7
N3jD93vPd3nft3yfN33nd3vvN37/t36vN38HeEVMRP1abP5iKcaegQG0I8ge +KRR
UT5W0Vs3Cj9YwGm+5mV3bQSv82RrMzVjsNn6bDvXJqhus4l3c2Jrtodfc4dv dohD
tmLrcIhHdofL6o0frWFPM9i2+IwLdj579pAvV4XV406wp29nNLkqh2l/cUlP hPPJ
YIotE/lsxLG6kh0uUEIfCf+BLq7ilitJgDkYJ65GMzlJL7nq8dxfhA6CssRV Cp0B
RUtLtQRBn3nF3VjoyAzS8XmU+3lE9Dmg/zmKDXqBFHqgE7qgK3qiM7qhL7qj Nzqi
Q/qkS3qlH/qlP7qlZzqmRzqnU7qna3qnb/qoi3qpfzqpn7qph3qqs/qquzqo wzqq
v7qsx7qq17r3RM9Hc6kBLPiV4uAcAXOYNpZzeQA2nGl1OeoIH/ZdY+oKs6qq 6iM8
H6qrCrkA93CzU/tje3MNt6qKdzsGs3g9uzMKV3uNn3OiLvYD5zi5jzi3p3AM Tzul
4rC8L7ZdE/m9V/gQo2RCl3mAKrlBtzaa7+3f6ghGCJv/DAbfXWjutNQUpPn7 wy/5
OLS2bkvr3mq0v4P0Egf8lRcZj225CrXIQmMclxxVUzUxFD/8Uj4Ml/En0ri8 khHW
y7c8zH+YzMc8zdt8zeP8zs98z9+8z+s80Of80PP8zxt90B890Qt90SN90yt9 0jP9
0zt91FP90ls91F/91Ge91HN91RMWRVTYSnApDxyCLcAOAFysWSydhT+XlV5h Mnv2
y5aXbPIX3Q8hvgdnteM9vjNnFvmKigj0ygz3QQPAREDuQKykl6Ml8pkZvS7N QSD3
nm/oitA24Ucx4mdlR2Au4T+84WM+ml88GtstRGkfflOZWQXOpH88gurBsJbu AivG
/8KD1OzTfu3b/u3jfu7r/u73RfRkBOoNBGaifcaKTLBjpBSKOBDLPXnZfRD+ V/Pv
fURCf/STJGiPUiASSSvy6OZo5wOGD1WO9sfo50DU5IMG3wAhYi/1cffbT9B1 X82M
9vGOdvuE2vqMtotetO4RhU4OUNuMz58ABJkHPHiYIsNjHJk4BAvyGEjGFMGI DSVK
PPgwIkQeBw063DjxYEGOFhlOTBgnJCxI2DxqxNgy4kuZH2HWnOmS5s2YOXni 9Lnz
p82eQIkKDarTaFGkS4cmdcr0aFOoSqVWjXqVKtanVrN23ap16levYclyFXu2 LFiz
aQka2NSDYVyGAOBsJDhyYP9EAyzbYvP7F3BgwYMJFzZ8GHFixYsZYwMw+HFj yX4j
T7Z8WTAAzZg5Q+78GXRo0YEra648GnVq1atZtzZgAG5fuSPl2p1N8S7ukLV5 07TN
eyDB4HYnMtwdcnhcAxj48j64MPfdjHGL997dG/t17LzHJb8dHBbz7daxB1eo 3bnx
8es9xtU+3Pvy5uzp17d/H39+/fv59/f/H8AABRyQwAINPBDBBAF8LTaR2oPD lpKw
g4WvB/ZqDcMMNdyQww49/BDEEEUckcQSR2Twrr0UrC847wbU7qDwmkPvt/Fo 3O9G
9kLKkTcDbJlxxRqDjE5IGYc8EskklVySySadfBLKKJ3/RLG3CKurzq69QrrQ xC69
/BLMMMUck8wyzTzTMLfg0gsbWF5z0803DYBTzjntlDPOPPGsk844X/vTTj0F DfTP
Qeks9M7XmEu0T0QP3ZPPSO9stFFGIz0UU0ApJdTORQ2dFFRCKxW1TlJJ1RPU TUN9
1M9DmdsU1lNljZXWWW2tFddbdc2V11197RXYX4UNlthhjS0W2WOVTZbZZZ1t Ftpn
dX1LOLk6aq9abClsiMvOuv0s2+uu5JG62VBSjyH45AoOS3SLy+uuB7rLtt0d oStu
IXF3a5ei4MbBbd1/sy23pfT4vbbcfSX87caJ+PVuOtxazDY46Cpa92KCB7Z2 YBo9
/67tyoVDQhg4jnubmKSOy0tIZCLjGu46ct2lLeONYebN4nBf1tm4c5M7Lrvc 0OSQ
Sh6Ww8AWDJRGmumllU66aaahjhrqqat2+mmpo956aqeTthprrb3W+uqwu866 67Sz
brpsrLueYm22zVYakqvVDlvuuOeOG+q63d6aarzP5lvvvdsGe2zA8V6c8cYd fxzy
yCWfnPLKLb8c88w135zzzj3/HPTQRR+d9NKVLtqheWu7uSIV+xJT4928Q7m4 6gbS
ozqNiNxx44vo3Tjd2mBcGEvedQR454GTY531hA/uHcudOE5uIpSlay9mgofP TWDf
MQZ59d+kBx95kBZOXnngq/+t/bfZKYoYYBczkv5d1eOyGLncQnbve37D55g2 Eake
cWqUM7nkzEV4Sde8puMwggxtQ7CAQ2wsBEEM8cCCrMFgBlWzQQ5+EIQhFOEI SVjC
xaiJf+gjoIN4sK3XfeZbgTnDo85wGBZeTGHCU+FBWNYb873PNv7LXrsG2JB9 fQxg
RUwZUPSHrorQZmQXY1cKz3cj683GRSlDVxaL6D/2Scw6DayR7/RlLqBFh2Q/ 9IgB
eZTF4BnxjVR0mYRyZLzomOd9Nyqjw3h4neWxMIr6yV3K+lgzQx4SOyYMTdEM 4MSS
0IhkDOnh7pAns5HRbI53MaDJuEgSdnmPRvJ6yBPJF53/mJ3rXU5E2HD8F8c5 OlCU
FCkjtoSExuS50SPXyt1CWFc8jf1SSsEU5jCJWUxjHhOZyfRP0b4YyN6oaCAx VA2F
4hAHYxgDFpGxAAAsIBgdAgxGxZFdvyryx4Z08jZJrNYZa0nL4NlOOGT4F06w 0658
tRN57UylQ2jDyvTU5I7GkJ8jnSMwflIMkrbUHc7OZ8gH0CyLEXWlJnWXEdV9 0S4P
xdn2hGM/3bhyijU713hQQj+Q3nJn6NmnFO/SHUwGB3cDKyL1jPMvPO5OnB5R JGhQ
GE2/gOR5uKTYUE02U4JlUXc0jaeDWBdFofImJi4tWTrdhciMwROROY3YvJKq Ppcp
/9E9YJ3pGR14HoOWcoUYc+DvdrNTt74VrnGV61wvg7o46tJ7DHGh0RaZJmyo Qx1+
MUBkACCA0/hFY/5cn8lkls/vJU+NA81YzrCUF/S4SKKPVSlVbSMuom5nRyGV JUM7
ir4vWpYH0IEYyOzIEAMqdpSlfCoQd7bKlp0MXZ6lI/gUSD7Rou+yR1WdUN2X vHmq
0512yattMMtZ9Y2zPYot5xuLQ1fJMGhLiKVubuk1EpndtKN+nKRNr7e68daG vLT9
X0ekC0B/nU+Nz6PkbW1Z30dyp7WNhRdwzttQ9V2RltrpyCTVM8mJWRfBCVbw ghks
JgNMkLv0YVN2M2QAY8ABDv/XzKZfkgGAZHjTnK5smCkHSAYAEMmf8tyIVE2W whNP
NH88MM2L43Li4MxYM9YCmnyHh9G1ugzHOQbAQE6cs83KeLdI9o3x1KieE4eE xjNm
bJMJQuP3VLl5Um7PPrVc47nYhsbtCbNrZTycMcMPvaQk6BRz2DsqXifKprne i7tM
5CrLuTZDzhiUcSNlFWskyHPB80h3M2Y9y4XOcmnwYahkigvhdstTJWUzL6YH z0JX
qPADcHJViU+vxkVgKKPdG6GL3ECKNsbqweUUY2mxUVYse0mOLmn92Gne7ZeW P5t1
LRfda1//GtjBVgyVcM0DDKAPEqlokYrYxNM0+ek1jwH/gBmmfVjjmHkjYR4g e4HZ
ZviVGsnXYqUCbUzj2E4nzDa+y5Or/JsXrxZbCinYtkndu5GC5MVA/TImxS2c dyMa
sj7cWL6rRXB1F5e9cv5ttl8cxXTPV8ntJnKOs10RdV+bZUxktxbHnTHr4VWS l76v
g0xKx3dv/OFPjgjKI67kjFC8XHhud0MuLvGLnbgjNC5rvg9i5S/b3IPCxsaD G/To
YieU0//Lp1i/idVDOtO7rI301Duby+Sx87GyBjBxbYY8XNcxtVV0KDCDuEU4 alKt
Qcu1Y78odLe/He5xVyQK5XIIWBwCA3c/xIodkgpI5MZ1FaxwYLLJj2kLgNr8 AAzN
/zQzkX+PJ8ROl5A5xzzRmctY5wBHbeZx7vK51Jp/D8t6c795aBdVPuktv/F/ cwNe
MfPv4UrnDeppHm5sqVzG0bPLkPnsZcf/PK1u7PzWv3dl3KZXhdvxDgCgvJMo 2xn4
dMY2n9/tUSVDH/pe3lns89zyHDtf3WGGO4Mm8ujZSB7OS/5hcOUovs9y1Khn Pafa
1UPpgxIP8zO+scLvDPP8x1nKBsKguuz/3smJOOqQmodIjGqOOq//0g3P1ooA A3Bj
5M4CLxADM7BLXqMu6i4CzmDvHmDv2gMDlI0gxmGvpMkyVFCwUOCarmmwHsOw BMAx
UuEvagwCG44CT0zIMO/O/P+t3WSuAPPPI7Rs4ngwOvxv9WYv+mYNCSluAnsQ yaAQ
zx6AB+ms5lYOY8qtCKuQCCsOYUwBABONIrCQ4sSwCLcwCM3w4nqOJvIKCdGK 57AF
DWvP4tIl/L5Qya7w5KIPz9TNDYcwD7FP0KCw4B4QyLTI5jZu9bTw+pBs9WhP C3uv
4iDx/6Ls9cALCfcP0R7uIMYPNoTD/DYC3kiRJKQH3kqsvsYHzXKIFcfI8kzL v2JR
ETUm0c6DDAMR53TRI/xFINrt9ywRyQRMeS7K7Nxv/tRsATuR+/awJRruy4Lx 4sKs
rTTQGq8RG7MRhiAstULiEB5gF74RDkaQIfwuXVyHryr/DFDmZDPMAPEcQwpu 8PI0
yvb+DQsdDwtnLh+xzPsuzx79cfjmIrZkjBi1r+VyzwftDMqIjBMxbwn1EQuz rxD/
UB8P0RIBwBERTSLj8MtiL8rmZxExMQ3LMD30TNtq5NB6I92SYxoFzQ730Rkr siMB
LuWiL/1GUvoeUecksv+0rzg80iBNct7A7CfB7KaKTCYxz6kucibtzOAmYvwm KDjM
r7KaiEW248dk72JaSbLMByhGyvoMsNb8ZyCb8OemMSPL7CBpaSX78Y0E0Kq6 sjzI
|
|
|
Re: Need HELP! Performance problem [message #120098 is a reply to message #120085] |
Tue, 02 March 2004 19:51 |
Eclipse User |
|
|
|
Originally posted by: none.us.ibm.com
How large is the graph you are laying out?
Perhaps you would benefit from implementing the following algorithm for
horizontal placement.
http://www.inf.uni-konstanz.de/algo/publications/bk-fshca-01 .ps.gz
The results are very similar, and it runs in O(N) time. We would like to
implement it when we get a chance, but we haven't had time. This would be
agreat opportunity to get involved in GEF.
"Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
news:opr38whvu7lhlh26@localhost...
Hi
Creation of a hierarchical graph spends 78% of its time in
org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters
method. When I build large graphs it amounts to most of the time counted
in tens of seconds.
I wander, if anybody knows how to speed this up? Is there way around?
At this point we are pressed to make a decision not to use GEF any more
for performance reasons. I would hate to see it go... If there is a way to
make this stuff to run faster, it would save the day for us and we will
stay with GEF.
Thank you
Serge
|
|
|
Re: Need HELP! Performance problem [message #120137 is a reply to message #120085] |
Tue, 02 March 2004 20:06 |
Eclipse User |
|
|
|
Originally posted by: none.us.ibm.com
This is off topic, but what are you using to generate the profiling
information?
"Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
news:opr38whvu7lhlh26@localhost...
Hi
Creation of a hierarchical graph spends 78% of its time in
org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters
method. When I build large graphs it amounts to most of the time counted
in tens of seconds.
I wander, if anybody knows how to speed this up? Is there way around?
At this point we are pressed to make a decision not to use GEF any more
for performance reasons. I would hate to see it go... If there is a way to
make this stuff to run faster, it would save the day for us and we will
stay with GEF.
Thank you
Serge
|
|
|
Re: Need HELP! Performance problem [message #120294 is a reply to message #120098] |
Wed, 03 March 2004 13:06 |
Eclipse User |
|
|
|
Originally posted by: smankovski-NO-SPAM-.cybermation.com
------------avhA83uV6Q8YthqkhBnqnq
Content-Type: text/plain; format=flowed; charset=iso-8859-15
Content-Transfer-Encoding: Quoted-Printable
Hi Randy,
it is not really that many. It is 21 clusters of 12 nodes in each. (take=
a =
look at the screen dump) It makes it 252 nodes. I run on 1.3Ghz machine.=
=
CPU utilization is 100%.
For 250 nodes performance is surprising.... It seems that performance is=
=
sensitive to the shape of the graph. I could run simpler and larger grap=
hs =
faster.
Serge
On Tue, 2 Mar 2004 14:51:59 -0500, Randy Hudson <none@us.ibm.com> wrote:=
> How large is the graph you are laying out?
>
> Perhaps you would benefit from implementing the following algorithm fo=
r
> horizontal placement.
> http://www.inf.uni-konstanz.de/algo/publications/bk-fshca-01 .ps.gz
> The results are very similar, and it runs in O(N) time. We would like =
to
> implement it when we get a chance, but we haven't had time. This woul=
d =
> be
> agreat opportunity to get involved in GEF.
>
> "Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in messa=
ge
> news:opr38whvu7lhlh26@localhost...
> Hi
>
> Creation of a hierarchical graph spends 78% of its time in
> org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters
> method. When I build large graphs it amounts to most of the time count=
ed
> in tens of seconds.
>
> I wander, if anybody knows how to speed this up? Is there way around?
>
> At this point we are pressed to make a decision not to use GEF any mor=
e
> for performance reasons. I would hate to see it go... If there is a wa=
y =
> to
> make this stuff to run faster, it would save the day for us and we wil=
l
> stay with GEF.
>
>
> Thank you
> Serge
>
>
-- =
Using M2, Opera's revolutionary e-mail client: http://www.opera.com/m2/
------------avhA83uV6Q8YthqkhBnqnq
Content-Disposition: attachment; filename=Clipboard01.gif
Content-Type: image/gif; name=Clipboard01.gif
Content-Transfer-Encoding: Base64
R0lGODlhlAUVAvcAAAQCBHSKxAT+/NTW5Pz+9KSuxDQ6lOTq9PT6/KzC7BxW nJSW
tMza9LzC1Pz+/GRqnACIWgAGHAATcgAAcQBo2ADn1gASEwAAAACRAACBAAD5 AAB3
wAugAQCZBAD4AAB3AAD/mAD/DwD/ZgD/AAh4TObn6BISEgAAAACCAADIAAD8 AAB3
AGTokZkGgfgT+XcAdwDYoADWTBMTAgAAAHjY/3HW/xMT/wAA/wABAAAAgAAA UAAA
AOTYnOXW5xITEgAAAIjNnAar+RO6EgDcAJgUVObn6BISEgAAAJEwkYFHgfnh +Xd3
d6BBmJkUavhy+Hdxd//S//8G//8F//8A/6gPZOYA6BIAEgAAAIIAjMgAJfwA +XcA
d8gAABoAABMAQAAAAIA8WHHnlhMSUAAAADSKSABV6ADhEsB3ANOYAMcPAPxm AHcA
AAAPpwEADwAAWQAAfAEAAAEAAAEAQAEAAKCaWOZVlhLhUAB3AJEASIEA6PkA EncA
AFAAIJYAAPgAlXcAAv8AIP8AAP8Alf8AAnQAIOYAABIAlQAAAoyU0DrnolgS 43wA
dwDvAAAVABP6lQB3AgAAAAAAAAATAAAAABgCB/QAABUAAAAAABYAGAAP6QBm EsAA
AIAPAHEAABMAAAAAAACIAADnAAASAAAAAH6MAAAUAABYAMB8AAAAAAAAAAAA AAAA
AP8AoP8A6P8AEv8AAP+APP9xAP8TAP8AAADh/wAb/wBX/wB8/wDHPAAUAABY AAB8
AACo+ADn8gASEgAAAADgAAAbABNXAAB8AGwAsAAA6AAAEgAAAAAg/nEAWBOV SwAC
AIj3kDQT6FhYEnx8ABb/WwD/YgD/TsD/AAGsxOfo6BISEgAAAAAg9wEUEwBY WAB8
fBhsaOZv6RJOEgAAAJwowvmW/xJO/wAAf5zgLPkb6RJXEgB8AJGoIIHnAPkS lXcA
AlAA95YAE/gAWHcAfP/AIP/cAP9Plf8AAlQAAecwABIAAAAAAIQBABsBAFgB AHx4
AACcbgD5/RMSRgAAACH5BAAAAAAALAAAAACUBRUCBwj/AB0IHEiwoMGDCBMq XMiw
ocOHECNKnEixosWLGDNq3Mixo8ePIEOKHEmypMmTKFOqXMmypcuXMGPKnEmz ps2b
OHPq3Mmzp8+fQIMKHUq0qNGjSJMqXcq0qdOnUKNKnUq1qtWrWLNq3cq1q9ev YMOK
HUu2rNmzaNOqXcu2rdu3cOPKnUu3rt27ePPq3cu3r9+/gAMLHky4sOHDiBMr Xsy4
sePHkCNLnky5suXLmDNr3sy5s+fPoEOLHk26tOnTqFOrXs26tevXsGPLnk27 tu3b
uHPr3s27t+/fwIMLH068uPHjyJMrX868ufPn0KNLn069uvXr2LNr384dpoDv 4MOL
/x9Pvvx30ebTqy+Pfr379e3fyycff77986Hv6xdQf/973/7Z11+A6g1IoHkG Hkhf
fgrCx2CD6SUIIXgATojggxaOJ6GFG07YIYQfNhiighXyhwACBKRIgAMEIMAi iigi
5KJBFD7owIkqrtjiiy2ueNCMBdUIGoU4qvgijzH+eJCQnxGJopE79pikQUAS xKRn
TuZ4pJQ+UrkkfkOeV2SKW8LYZUFVDnRlZ1lC6SKXMn7JX2/gkdniiQLhqWWe ZN6Y
pgNrclanjifOqKeRfPqIZ5BgNvmdnYXm+SaiN/a5qJWNYvkooYse2meliv4Z 6GaD
vtjppJ8+KSmNmbK5qamGov/apap+sjpnmAJAeiqLlNJ6qZqt4lZnnn7GWmiK T+6Y
0KiaDXtjsZIe2yOyCjGbmbMuRlpskcn+iemtjuZKrLaFcquit8CCq6m4z5Jb LrLn
VhssqY+Oe6q03cqrrqvsZnuvudQuO69tQsIbKgIJMNDtp3LGN5DB0Sa88Jm2 OiwQ
xMVKfC7DFdt48bQRK7wxxYzuKyiYGBeqMcYIWYtZwSBnLDLLDXvMq68nrhxz ywPX
Bh6OTxbKQAEBKGBAAzlSi67Ll/1s5p0IDF300UnvuHTPL38HNLInSm000kln y7PJ
9AqwNdReUx32szXjerbQRH9dtdhth/t213GrnSPdHbv//TTcU4O9N9t971Zn jCc2
UIACjDc+884DJcm0ZYevmPjijTP+OK0ESY51048ijoDimWs+MZU+Tl5Z5X6S Xvrm
HFcqkOqUsX556QrATrLnZDcbuuWjY5657qjP/jnlv7cuvOOno5n68bFReGcD CzyA
ewAH8Loqr2Q+Sftk0ide/fXZWzqjlt5DX/t5049fOvba18q95Sl+L1n4o7uf Ofzm
f9x9/eoDH/vEZ733lS9U/qMfAewXGfxRr4D7O+D20AfA3l1rgPmDYOP4h8D5 gYqB
rHEaAx6AvQNYLwFFU8ADBjCAAxDgAOXCkf8AFcD7aS1qJDyACRWAQsatsIUv jGGS
/4wEwseIMIc77KEKWehCGMbQR0SsYQNvOMISnjCFP2yiEKFIpiI65ohW5CEW mRjE
J87Qi40Bow6v6EMyOvFdZ5QiZNSYxDEC8Y3HiqMFaUMhzDHgAAMoQAFOtIDG GcAA
JFxAAwawtvTtEXT88SMgBUlIQyIyAIpk5OAc6TBJBnKQCCgk4w6ZyEU2soKd 1Nwk
QSlKo10yk6dcoByNeB5PUjKUliylJuPFSRvZkpW5xKQpN4lKX6ryk5Uc5SuH ycti
8gY8DWjcARZZgGkOIJqHzKY2H6DI8qkKjYyBpjSpaU1sanOb3eTRisC5GHEy zprV
XKQ5z0nKdIKMnYpxpwLgWf9OV9ITkfb85iy/+J1ovpOc8vQnPbnZAG92caBp LOg4
A9nPf9azoeqk4SORJwCD7hOh11ToORnq0HVCFDXgadwDDlDNBYwuAFOzaDa5 OS1Z
bnR131EpSw/g0gbAVKT/pGmy8JmYlPpwpz39qUxnuoCaEhUxRlUhUl8a06UK VUVP
PUxUV9pSqgJ1oU0d6knbmdOjdtWnVZXpVZ0ZLp2eValLBahTx2qaqGJvkAEg wAAK
GNeZBi2rhrErSxGQ170qs68P+Ctdi1pWBdyVsHrla18Rqdibrk8AGxxsYSWL 2MrG
J7N4jexh45pYZAG2MIINrWG/GlTPPgi0kF3tZClr2sX/kiaqBQgkArg5Oh8W IAEL
OKRjqzfTBzwAaQg4LWFwq1veGvQBvw2uAYb7gOIet0XKHQxzB+lc3wJXuJis LimN
i9zsCma7u+2pd6VLXeuW17ZabWxuuateFUYXvMQd73WTC9/Ayre59YXud6cb Xvdi
t7+o/S99e2vfAbdXv++17GvAk8IE7NS4OjRaAhzAyAKobbcGSECKqsdI8waG woyz
cDUxfAANc5gAHgYbiEVMABLbND4VvvBKWxziF8cYWdWlsY1NDBgU81DHGe5x hz8c
5BGv8MYPyvGKd+ziJcu4yTV+MpH/YmQVm5DKSoYxk0Ps5BIjeLnfkfKXk7xh KwOZ
/8xZNrOEXQOeHTLgmglIAEWri7QFABJ7A/BzAR5AAFMaF8q4sjOe9bxiqvl5 AIAW
NKENTegt+6XO1rtzA/K8Z0f/GZCSLjQjD23pvmA6d4vudJ8/HWiWTnrUlT6z dr+j
6E0z2oSehjSoXS1qApBa1ueldaZT3ehV67rVg+71r+c8RQHUmtPFrjGrQ01p RBtO
awxQANJYyugBHHLFCDj2pJu6AJcGwAALKDVffpbtbf82kN42ALjFXWhymxvd 6t4L
u7X9wnfn9tsmDDegx13je6cb2CfGNr+5DW+AJ5be1Cs4YfGN8CIr3N3ddrjA AUnw
ck/84Mye48X7nXF5Bxzi9v/+eL71sm+MN9zkDx94vSV+bpCX6EbX5HheEbC4 bJJ7
s/UOZQEIcG4DrDwvRMr5Xnfe80P+PLJBX8DQi350vCS9oUtvUdPRXWOgU0/o RD9k
1e9ydZ1r3Z9P32vUpy72inNZTEon4dl93nWof13qYTe62y8Nd6zLnedor7va 7852
vYecliaKO9MDvwCvuxTvVN/7BXNVqAYUMAHzbKoJ/Wx5GA+9m5E/PEEpn7jL Z/6F
3JwmoQVZ44aGPj5Qs3yKT7951Xu+9Qd4/YNib/rA177zrAd920UfUdKPrvd0 //3q
P+/64cO+8sh3Ouo5v3zc6x5XvJ+971MPfObn3vl0ElP/tiCdOW0OnWgu7LNL n3z9
cNVK4OXP5vmxV2iJsx/8uHo/+S35bRjTX/27xUjtty76l0KjNX/pZ38CiH/u hyfw
x3/y5n8J6HH3Z3gO44D7d4ASWH8UuIAWaCMYaIAKhYAcuH4eOHY2ZDbdEjXn ZjQr
lACTZgAtxEjl5msNMHEf6DfnwoLThUgDAIOFJoOAVHA2iIMoWBdOs4MM0II+ CIQN
IIQ02FTHZYSSt243pIRM+IIxOINEOIUDyC9j0jVZ+INbOIQ16IUMuC5hyIMu SIZB
yIVneINfeDIqiIU9qIVvaIZSKIdpmBtEoiPIcgAjdEgEMELHZ1yPhzQVeIR0 8Yfc
/4MAgihehZhYloeIoaSIJ1iF+iYmgNgikUiIhliJvKVIvpaJxBdOnPiIn2gA k3iI
o4iJeceIc+GI57KKrSiKiViKsaiJLJeKtTiIrBiKxvWKujiHZSM7vyiJwmiJ pLiI
vIhT4FJTT4hIetVUrFcA5KaIDRVksigXTCKNpFSNt4eNrWeDuJYA3RgX35gs 00ho
gTaO2WiO3PiMVtco4EiN73iN8Xhc55iOcLGOKtKO4qiP5ciP83iKZBWN7BiO +Xh+
+7iNIeaPbwGQKSKQDQljD9mP9ChAcyItLTKNVMMAWQZIo9ZUi3QAlCWRblEj Hjk6
2YQ0Ilk9JOlrJtlCKbmRdv/BkmEIkjA5kixEk6KGkomlkm2hk93Ck4XokyUZ lDeJ
kPmEHy2JlDG5Uj9JUyfZlBYTlS+ZlDJZlTUplPzllIzVkTu5lVM5k1Zpk0OJ k83W
LqhSdIhETf0nZiuEItVjUmIJVWJSKyoCl8cVSHPpYXWZZXh5gXyZIn4plxFI lwNg
l4SmUYbpKYkJmIspmI1JmJAJgoeZd3FJmUPHmI5ZmJopmTOlmJ9pmaGZmfnn L9wz
mR5WmT6YmkSpl3MCLyeCa7OFSDTFVgR4M3eCm7OFiFjFlo2IH7YJieIVnLtp bb15
nMA5WcLJm/zyMTCCnLmpm00lnXRInb+ZnNC5nLO5FjX/4pzeiVjgSZyIN0R+ Em/X
2QAXo5p2A0XreZ2H5J4sAp9qKJ8nwp65aZ+i6Tb6GW70eTTvGZ5q8TMByp+z 5Z/4
CYYJOqAMaqBpgaDvuZ8QWqDoOXrvSRB7ZVyIREoW5Wd2wpzTeZ8cOowfmqL0 JKKA
KKFoMZ4F0aHVJV7l6XMu1KIZqo7GGaMoSqMheqO84qJnAaMn6qE++k8sGqQ5 +o87
WqQzCqJICqTaeYwmOhAymqI16nRSSqLCgjKWAkM6FKY6NAB3xgBmCkN84iJC ahYw
oyhgKqZjWqZnaig7sqZl0aZ58qZwSqZkOqdp2qDbOUM3oqdiyqdm+kd0qqZL OpFe
/+qmkAingCSniPqndkoWeDqoj7qnkoqmlaKoeRlft4IokJiphbqpiQqot7Em /0Mx
hnKfllMyFkMQq4omxKIjhGM8n+pf+zKrnVOr95kmlToWqqpAtPostgqsi7qS rcKr
keOrr/otsfowxNqrxvqrsGoz0goqxfom1gqt4ReNIxo7DhGsYvGN4Uoy45qs RWmP
50oR5BoW5tqJ6NoQ7woW8epBE1GvX3GveyIR+uoV/EopEfGvSJcpgFilD6MQ fUKw
XHElB0sy8/oxuBqtrmqrBRGx8cOwW+Gw2gOxCvs8uZpg6vKwBoGxC6uubMGx dlKy
Hzux2FqxCLuhCHGyIYt9Mf/rJc2asLeqsVoxLBh7q1WiKN5qsz9bJUFLLOkC ezdb
rEi7oVXCs1nhswthtLLatKjqO+JStNTqtEMbLhabEFSrs0+LsqCaIeIxIgeC tgSi
tgHCtv7htvsBt/pRImYbHnJ7H3crIBhSt2R7oHxrt3vLt3k7H3T7t4MrH4f7 H4Fb
t4nrHo3rILjytzXbHZRbuZZ7uZibuZq7uZzbuZ77uaAbuqI7uqRbuqZ7uqib uqq7
uqzbuq77urAbu7I7u7Rbu7Z7u7ibu7q7u7zrEQAwHL97EMHLG8M7EABwvMWb G8nr
AMi7vLfhvAIBvbWRvM17vMRrEM3bHdKrG8uLvL5BvQT/sb2yAb7Ge73CK77j WxDo
O73qG77b8bvrSxvwK7y9Mb/le7/Ky7zui7+4Yb/uG7+u4b/6+xsCXLwAzBwC XL8D
3L7XK70HvBoJvL/5270LPMHhm727UcCVO7wPHMD8G73mW8EfbBscrL7Wy738 G7wd
nBolDMIjLL/4C78nnB0trMAuLMH5e8MvzL46jMMkHMM7PBs1zMD9G8NDXB3V O8Pc
m8RE3L9MHMRC/MRNPL1PLMUkbMVQ/BpJrMI+TB3km8FTvMKo8cVizMIMbMA5 PMJl
XBrki8ZFvL9ubB3Ou8ZsTL9ZrMX0S8emMccVrMegwcddLMR5HMixwcdxjMR2 nMY4
/+zHoWHI1fvGZ+y9kOzDjPwZgIzBz2vHmNy7nNzJnvzJoBzKojzKpFzKpnzK qJzK
qrzKrNzKrvzKsBzLsjzLtFzLtnzLuJzLurzLvNzLvvzLwBzMwjzMxFzMxnzM qyvJ
wKvEwaHMwuHMzczMwAHN0yzN1/HIj0y82ZvNGbzNm6y83kzNzxvO1nzF3svN S3zO
3wwdGDzDJ7zOWizJ7qzC4hzA8szB9FzOrdHO+By99bzP92y8+VzJmsHPAu3P +swa
Bu3PCE3QhQzNgCzQCT0a3xzRDQ3QzGzRzPvPpFHRiXzRCg3RH73REy0aHo29 JlzS
jSzSKH3BKg3O0OvACMHRnf9RzzJ9vg6tGDadEDH90pmx0zM90z6NGUA90hJ9 GkXd
0tg71JeR1FN81N/L0eK7vfBM1FK9EFRN05RR1T2s1Did04HB1SLs1UvN1I4h 1lOt
EGJdGWiN1Wqt1ZPR1mr91mbNxlqt0iW91oyh13iNvnq9GHy9vnkN1zp914Lt 14Sd
GIHdEINd14Sx2AzR2GCNF5CN1Yjt2Jvx113t1g6h2WGd2A8MwJ4NGJ4d2g8x 2n9R
2hEh2olN2qC92qfd2qn92hDB2pitF6pd27F925Ih22PN2BLh23fh2yvcwcJt F8Q9
EcbN23KR3MEd3MwdF84N26sd3XAx3bpd3ZOdFth92tD/vd2u7dhlLMaofd3H Pd4U
Ud5vod6/3dnpfdxtwd7ordzwzRbyXRHkXd9rcd/p/d7WfRb8rdz+Dd7DXd+8 fdvs
XRYJvtEXgeD6LRYLfuBrvOBjEeF07OD/7RUW3uAT/uBhseEWgeEEbhUgjt8d nuF1
QeGb3d8YoeJZ4eKV7McujhUwvhEy7uE07uExnhEzfhU1rhE3juJU8eM8zuM4 7uM6
buNGLuT2neEOTdBHDhVR/uQcEeVPMeUdAeVMzhRYXuVVvuVL0eVKbuNgrhRi DuRf
PuJHceZFTuZqruFJfscCLueRbeVGQeTt3eCErN1v3hN4DtaHbOJlHhR//hGB PuAV
/x7nK67ndG7Zgw4Uhe67e17bdl4UkZ7lk77bfT7kU269YO7pTl7pPNHjJM3g IAHq
Wv7oN0Hq6hwSqJ7mmz4TrA7qri7DqR7rMjHrMlzrpe7muB4Tum7qhm7rsL4V wf7p
xO7raJHVW07qPC3qcr0TzD7Zzi7UzX7Vo07X1C7qKb3tCf3rz/3s167q1Q7S QZ3t
4u7tal7uJE3Vfq7tp87tLq3uc43u1k7vJMHu0V4V1izv7b7u7A7VJiztczzo 6Fzr
/i7Oqh7iBU/gBx/vCd/v4B7bOD0SDz/sEV/wBF/xInHxvhvwCH2+G1/WFg/y Em3w
Ej/yKV3y/t7QDp/ynH7PC//v8Vlu8ifv8qvOzzNv8/9uEjq/8Hw+0D7P8zRf 8+/M
89999Dvf8j1fEj8/8dou9E5P9Ej/9Dkv829e9L6e9VgP9eku9flO9Uzf7jgf FVsc
61vM8kh/8mvf2WmPEm+P8G3/72Ov6XMf9xB/93gP7Hsf9lrf4ljs93+fEmdP +IFv
9Hp/+C5R+HCv+FsP9C5f927v+Hmf8Yk/+EPR91Nf95iP+JLv6HNf9psP+WxP +lFv
+k0/+r+u+SzB+mrf550P659/+qu/9rH/+F4/77Of+oJf+7ff8ZQv97Af+nSf +y+s
H2cPABGyEMiv/ITL/PZxvHgL/eaR/NOvL/Nh/ReC/fL/If3Pz/3u4f3fLzDV f/bX
T/7Zb/7bj/7d7/yIS/3tf/5jUx7aP/7z3/5bvPzgH/7ur7j7rx4AAQCAAIIF DR4s
6EDhQoYKER4UGFHiQ4oJG16smFHixowXMWakKBAkQo8NRyIUedJgSYYgN05U aZGl
g5gGX0bsOJNmTYIpY+rcWdPnT50ubw7kCZRnz6M5Zy4VMPSkUp5SpxbV2DQp 1qoA
PEKFiLMiVbA1yZZVefYhzLJqobJ96BatU5ZziT7NanUrXrRwSXK1C1Ju4L98 Q4pt
Cxis34ODCa9U/Lhw3bxIExtejDhuZMmQMXf2TLki472iy5KWaRp06JKrN38O q9cs
/+eusgk67oxbsm7Ud1XPNum6MW3Quh8bJ4w8sHK7zOc6Rwv98m/X0sFah4p9 qfbS
rYWz/vo9tXfxArgDp776vG/y4tenJZ47/u75x+snv788f/P9kxcmRAABAgYk wAEC
EDBQQAFLQvAj87hyIEACCzwwwQML9KjB4B7kK0IBCUzQwgUzDI9D0TycMMQL R7xI
w5Zug1BCECtcEcMWSyQLxRkRrJFBHGP8cEAVFbSxIRf/g7FDGYWkkUgfHcxx SQp5
dJJEKIFMsckLn9wwyiCnFLFIho50KMkTpRxySyu7xHLHMLl80UTydGSSSjVv vFLJ
L9Nk0cgf9czSzj7H/PPMPf+1HHQhMoPyMtA314yzUTd7hBRJOXFEE1ExFS10 zkwF
3VShRcfD9FBQ4bRU0jofxZNNQCetstVI21yVUllTpRVMW/3M01BHdyW0V09N ZZVX
V32ddMBELa0zQFF5BFFUIT0UtsRmG3Q2RWkxdPZY8q591sBoI5y221n5Apda bcnl
lkxSHUw323E/DNdba6fsVt5p2a33XNHihXZfeqm1F158sQ3YxoHNxRXdg8Nd d2F3
zfz2YXXnLXfiSw1OMN+EFc24Wo4P9FhcgUMueEOATVYYZX8r7hhhlkFuV2SV Lda3
5ZpTjnPliF1u+F+cP96236BhJlnmn3d++d6YIcaY6aP/nU4a6pOlLnPjm5++ +Gqj
sybL56i/ZpQrsb0muOmRA1R67LSnXrvkpcl+d+uqu9aZboqpZtvqvN8G2+yh Zy4a
8LIdNpDgbMX9V1QPEWZbWQIXhVtlx/t+XMYgKQ8c3cs9jvxCZTs0+3PINZ+c dM8j
fPzZ0DdXvXHWMWcb9dFPLH120G2vEPfVEaS9dslvnzN34Hf/EHbfZT/+9ORT X/5b
013nnfPDmW898+eJ79Ta6bUfvvfif8++9u3F7x7e780P3/q6e15feNHRtxl+ 3Z1v
P3bp76f+fPf3Vh//wDe//2nNfs3rX/6i5z0Bso+A+mMgAgeovPFhL3ivg14F 9ydB
/wdSMH2Wa6D8PFg/ZsUPg9wjYda4VT4RZvCDB2ThCenHsxKGMHShksnwXJcA Bmxu
Xy9smA4fx0Mfhqpy5xIi24g4uR+m8HBJDNAShajBP0ERAVIUHQTzZEUsDoyK W8zi
EHvIRCN2zndcHOMUgdg5NBZRi65qIxnfiMQwKjGNYfwiHOsYxTt6cY1P3OMV +9hE
GrIxkF0kpNr0KDFBunGBYGQkIst4vfHFUY1OzOEhBznJ9wVRk47MIx0juck5 enKU
oPxjJk8px0cuMmONZGUoTflKSZbSkKu8ZCEBiUs8pjJJluwlJn/5yVj6kkPD ax4R
l1UQCSUvQAwoQAAUYIAGTP9odJTrZNaaqaxnRnOa1bQm8GSpTSIlDZrSpKY1 K4RN
AG5om+b0ZjrDyTpjvpNt5/ymOsVZz3LeM57gnNA+hSkAe3YTnQBNHTsNaKmC IgCf
8gwoPQfa0Ici9JrjDApF/6lPieqSmf00aD7nqVCyaPSgHCUpV0wq0oimlC8r hWhC
MfpR0fnzpCOdKUFgatF15pSgIHXoRnHKz5qGNKYXJaozg3rTlvp0pyh1KlAr CtWk
cnOpLJVpVeHJ1KxOVKpCbapWbYpVpHq1qFc9ak/FalSeCtSjOv0qV8v61p+e taJ+
ZNaCAtSAAijAr38lpZEwlM2gbGmvff2rXwM7psG2s2f/ekUAXxOrWFRKy4zf gqxk
J7tYkF3WWplFbGI5a1lKfrZAh52sAkZLLs/CC7SpXe2ICFsQw0Y2tICtLGtL 69rT
2ha2uZWtY/PaW82KFriNXagKX7vZ47ZWZcs1bjFJO1uC1La4uJWubqkrAOve lrLZ
DW5yCwtd7OYyvGEj73fNi1z0Ete7qm3ubp/r3t+Cl71mSy987evcx9KXufuV b389
dF31BlO7wlWuf6O7Xv4Od8Dvje190ZXfCDc4wQ+uL4MD7GDU/lfD2+1uhg18 Xvwq
uLwjlvC/8jsAvIKNZA1YwANSG4ADMI5gKfrQdjsGYxlPlsY27haOB6TjF8d4 xjVG
/5mQCUDkvRrZx0jemZKZHFknJ/bHSQZRjhHMqCL32MpQrpeUt5yQLh8ZyA0S s3jJ
3GQv//XKUc7ykMd8mzI/+cwKSXOO6vzlO89My2qmM5vNjGUh/VnPgrYzoU8r Z0Cb
Z89uBvON47zkOTsa0XxWNLumzONBw7nQjD40ldvs1zeHedKbrjKk+5xnCD2a 1JEO
8qkrveNUv3rVsm40rUetgFJL+tOUzrWreQ1rNOM61JxOtKcXDexj13rYt/41 qnfd
61hHe9bCpnaxrR3sS6s604Zudbdt/W1Qh1vUnTb1tps97QO0OKMOfQCNDyDj BEhT
AQ8YwAAOQIB2sw/PQtruM//jfYB5K6DefsW3vvltvhGBKODwlje97Z3wffdb eP8u
0MMZMPCCH/ze+a44wzHk8EoLPOIGnzjIF+5vk22YnBs/uccpvvKLt1zjHJc4 wlVu
8chh3OXvhjnBc/5xhfNcQj6/ecxTXnSRI73kEBc6ynXOdJaTvNEmj7rMd950 mz89
6B1fesirDnCv41zqRBd7za1eUqiDfepp73nXr972oc/c6A0n+9y/Xvetjz3j ZVf6
22ke97WrlO5ntzvXC//Sw2ud6mrPO9v3jvi+Q/7veje74+F+dLlLPvNhHzzn Fy8a
rLsd7aHH++U9H/jT333kkTf85DWP+terPvafF7zrnY7/edYn3u8//6jsQa/7 zt++
9/meIaMQy4ADDKAABQjQAv5qAAPEewENGMBIy92h5Tf/+dGffvUDcP3st3T7 J+q+
86GPAOn7lfrWx772mQ2h9H+f/eGHf/kTev451X/97Z8m8SM/+dMx/wM/9xPA +DO/
+eM+xfK+/8O/8VPA/WNA9HNA9TvAAMw/Apw1A7w/BNzABSzAC7Q/AHw/CdS/ a+I/
HPFAE0zAFFynFYSSFozAARTBDiRBCARBFOTAXKPBHbRBChxB1XrADDzBIFTB Cuy/
HDTCF+zBHPlBDeTBG/RBJvxAKUTCGFRCFrRCFwxBIcRBIsTAKzzCCUzCIWS+ MfTC
/ykEwyoUwxKsQTPUQjQsQjJ0QiqEwi6MQxgEHhnskigsQz7UtDBMQzgEQjns wy2c
QT08REEEtwZ8Qx3EQkQcRDcsREl8vxJpgL86AOwrgE4cgE2kvlEkxQe4PiSj l+3a
RL8CxU/EPlEkxVI8RQuxPb5YRQVoRVCExVh8v1nMIlXkRE/UxQDkxerzxVSs tFvM
xVckRl40xQZARdizxWB0vmEsxl6ERloEPoJQRmFkxms0xmz8xWSkRlcMxWaM xWeM
xloUjW6sxm+8RnXURmBkRW88R3CUx3FsNHc0x110xmOUxnYsR2uMR4BkR/Lg R4Is
xnxExn0cSHhcSIPcRgFISP+I/EdxbEiyqMh7LEiMDEiEfEiOjEiPPEhNDEl/ TEeJ
pEdctEeUlEWSnMiNdMlRZMiPNMl6fEeRvMh1jMmTRMeX5MmVXEadTEmYFMqW /Ema
VElyxMl+TEpsDEqmZMmcnEmonEepHMqqDMeodMimVMidvMqunEqnjMUS+asH OIBP
XIDICgB0AsdenJ/tOsu0PIC1bIC2fEpZjMtKm0u1ZEu3fEtT3MtG68u6/Mu8 VMrB
JIvCtEu8fEu4DBK5RDi6bEzAxMcFUEyuYMzDfExjzEy+2My7tMyC/EzRCE3H fEzB
jEy+nEy/FE3EhEwCkcx7o0zOTE3MXE3CbE3DfM3OVE3/2WRN2nRN1AxM3ARO 3RRO
3iTOyyxN8jjN0YzI5jTL3axM2PTM3FxM6rTN4pROB3lO6/xNP4yT7/RN4xRP SyHP
2+zODUlP7sROzdTO3lTP9wTN+FxO0qRP07RP6PzH9RzP/QRP81RE9gTQ8vRP 9CzQ
+TzO7EzO6jTQ/HTOBB3F6Rw26AsAAhiAHuvM90ue2aQxC8VQDd3QB+jQ4PxQ BLjQ
DEVA3yxR5DzRFBVRFlUWD01LFA3RFU3NFmXQF71R6+TQGTXRGoVRHA1MHYXP CrVR
FfXR6jPS+kTSIV1SEgVSFxXSHt1QJp3SHa1SJb1SKT0QGgVRLh3RJtXPJ7XS Mc3S
/yPlUTGV0S8N0jCN0RxNUydd0zgt0jkt0zolUnwk0wg1UzaVUzelUjjd03js UwrV
0yg9VO98NUJVVDz100Tt0kUl0D+1Uz6FVETd0ks11ExlVEst1IWk1P8E1UcV VC11
1En11EqVVDQ9VTXdVCKl0AJwPgQwxchCuAJIgAWgPl6LMZp8gAeoJgSYTVqF vltd
xQfQVV41AF99AGAV1ld1UmO1VbvM1V3t1fF71vcL1mEt1lpF1mtlVmeFVm8N TmoN
13tb1mz9VW6NVmI9V3C1VnXF1mbV1nKV1jJF13lV1nolV3c1V+TcV1yl13G9 V4DN
Vz8d2GRdV3tt1+rr1oSdVf95Jdh+NdiHDdZ3/dZj5deG/VeI1dh45diK9diD BdmA
ZdCFFVd23daTldhPVdmCZVl8hVeBpViG9VeTzViUPdKYtdiZRdiaTdmbXVmH bdmd
fdlK9dmSxdiIFdqeJVqZNVqa3dhqJdmcbdqQtdmRxdmLPVqnrdp0/dmpDdqw 7Vis
/VqtHVquLdqPRdqnndaoHVu3BVuRtdquBVqXhVt9lVumTVuejVu2lVq6VVuo Fdyf
LRF7SwC6DFaCm6YEcIDsKwB5slUDSIABibHs2y7FZVy0PIDHjVwCmFxwqtzL JYDM
HdA44dxPbNzPtdzQHV1leVbTRd3N9avFZV3PBV3Jpdz/2cVcfEtdS1ndedPd 1+Vd
0vXd0wVe2zW4znVc4xXd3rXc39XcShve1t3d6EXe6VXe6m206y1eyD1e2eXe 2rXe
23Ve1xVf7SVf2l3e823e3H3e9Y3dA0le8/1e9JVf9YVd6XVf7yUL8J3f/t3e /w3e
rBFg/h1f+y3f983f+CXeAV7g0qXeAw6KBM7e+qXg7rXggsBg6NXg+3XgANbf CFZg
9mVgA2Ze3DXhDPbfCl7h9HXhAoZh+GVh7AXhF+bgGN7fGW7fGn7gGw5fAv7h HbZh
Gc5hGjbiIEZi+tVh/CVhCMZhJ1ZiKOaKD6biIrZivsBiIk5hII5iIZZgFN7g LRYN
/yzmN9EtkYJjgFBMgASoxmetpgVoPhobADougAcggPgL1g4mCDZ2Yzhm3XSi 4wGw
YzzWYz7W4+0C5AZ44zgm5DpuPkTe4+zrY0aWsTZ2ZEGet0g25ElOy0S25EWu tEZ+
5EGeY0m+41CuZAK45FLO5ECG5FT+5FXO41Z+5UYzZU6W49NVZUpWZD8WgF2e ZV+u
ZWAeZWEmZlQ25kNm5WDGZNWSZWYuZGe+ZWiGZWne5GKuZlC+5mSOZk0+5U6m ZWsW
ZVcmZV2O5W2m5l9+ZnDOZnHmZU82Z1xOZ7JYZnJuZm8+51zG53Ue517uZlvu 53vm
inwWaHf+ZnRWZoCe53LmZ/97bmhtDmh6jmhsVmeKfuh9JmiJDudp1ueBRmaG /mh2
DmmFLuiJlmduRmmPjmeQTuhjfmeSfmmTjul6xuh/1miWlumF9ueDdmiexml4 zuiV
bueeTumSrmhaLhGHUoBqSktBHgDqY10EqOVExswFWMsAMIAFCDgGeGp+01Xn m2oD
qOqr3uOs3uqu/uqwjmqypup5s2o7xurTXWuvLjmwhuqxptW4JlG0hjG7RlG2 zmu3
5uuyPmu6TmvB5mq8vjq9Fmup9uu5br661urBduySguy37muzlmvAVmvMbuu9 lmzP
/mvFDuzLbuzRjmy4Nm3KztDFVm3CfmzDLu3ErmzZvmv/1uZsxP5s1A7t1S5s 0nZt
3I7t1N7t4W7tzjZuy07u2iZu5v7t3EZu0Vbu3p5s0GZs2tZs2y7u6T7u4OZu ldrs
w85u4N7uzCZv75bu06Zu8Vbvlyrv2wZv57Zu6F5u33bv8E5v3jbv19bu2Y5v 0pvv
795v+xZu/MZuAEdvAfdv+j5w3b7v7o5u/YZtBB9v+WZvCw/w56bw/D7v9+7v 6/7v
5pbwBP/wBT9rTAnFyr5QBOirUcxqGE1r9isAAuBqA9Axq4bGDH3xGKe+GQ/R Gl+A
G8/xHW9xHz8QIO/q06VxGLNxHKc+JO/xeFtyYhTy8I7yI581HnfxK5dxJx9y KC9y
/ynX8S5PciuHcSwXcy0vcy7PNS9X8jUP8wV48rV88ylH8yr/cTa38zHHcyPX 8zhP
8z6v8zvf8kGPkkIH8yBvc6xO9DMndD5v9Cb/czcXdElfdEqnc0e/dEjPc02P EUbv
dEtH9FCn8i8v9SwH9UxP9TlnclYnclffc1WP9UefdTN/dTW/9U/PdTjfdFv3 81On
9UkX9kMH9EjfdUP3dGLX9VqH9WFPdlSHdl6Xdkx/dmOPdmTHdmAfdU7vdWf3 diUh
9XCf9mIP9m1v9nPP9nS3dm5v9Xb/9mNf925X9HlXd0v/rL3qsQTYRcycNzpu AD1+
vtOFxnFXMX6/3X/nN1PsRP+Cv/FTRHjMUniDY/iAf3jRjfiDv/cJq3h/Z3OM H3iN
N/gDmPh9j6x+v3iHH/mCl/iOT/iUX/iQZ3mIL/mTd62PX3mBt/mXF3WPl3mL p3me
J3mfBzG2GfiZD3OR73mO//mYT3qhX/qaL3qnP3qdH/qMd3mrr7SkiXqQn3qi 33qT
h3mKD3qwd3Smr3qyf3qz//qd1/qNZ/urP3u4b3m5x/nnwvqwj/ubL3uUf/us v3u/
b3vAV3nBb/q573qkP3y+H3yjX/y9T3uqH/u8fyzJb3K1r/y/z/m6R/y1t/y8 wnyA
p3y853y993zHT/zQV67Rb3ixN/3C7/zAV33QP/3LT/3/yYd9wqd72tf9vof8 RvP6
xp/8UokQQ04sUrzxaNq3OV5L4GV9RnGWuU7+UVx+GttjwYb+20+V6Uf+8KNq 0cV+
57fV7It+AAGe78fR629+7Td/7gcb77e39Rf/9r/s7Zf9LpH/6g9/5s/++weI AQQC
GDAg4KCDhAoXJjwowAECBBAHBFBgUUHBggUIFAhwgEADAgsWIHggkKBBhAxX OoQo
EQHFixgzbuz4MeTIkicLtlzJsGXEiRUvZjRQ0yNIkSRNDuSp0qdCoC9jEqXJ ESnO
pTtTPoQaFWFQmEMtFj16U6nOply9fn0YlipZqzaT5mSKsidbqUJllr16tu5W vF71
/4rlKxcrWrtOu+YFO3XsTI1+6WpVKxgqYbiRjU7Omvbu08GO91aVPNez4rVs HWSG
3Pd04sChMY8uXJozbMCWZ/tsbdg0Yt2gGYt2+/g37uCVh69mXVvza+WfFzf3 fdss
5emqGxsnHRf43+XUV1v/njy89su9n7s+jD61epbskWNHLZs47e62zdePvRv/ evpB
J1eAERFwYEQMEISRSQk8AJIBAxwg0EgEPNAAAsyRd5CBCCKgoAEMDuAghBJS uICF
GGrIXYcEJLigAQ0+2ECEEyqVYobjsYjAgS5+CKOMJdpY4YU5bldciy+GGOOI M9Z4
Io4rIsmjhyCKSCKNJt5YpP+U+SX545JBZjkkilzqOGWPSl7ppJZEqniml1T6 aCWT
WD655ZtHxpkmmGsKCaWZehYop5p1sklmlHAOyiedYt7pppHx/cQhoX0a+iee kfIm
nwBfNtokppB2uWiVQII6JqB5SrqQQ56aamebZaq66aSdVvoprIgGumpbroZ5 6qOy
agogp776iWqmoxZ766uHpjpsdZQy2myowipbq7GXIiuqostO+2uuz17LqrSl guts
st1iy+y51SYqqLfmHhvsu7w2VO6c1G5rrbrk2vrtvLHWS6u/2T7AgIMINBAg RAQ4
kOYBDDxQEAESK/wAxiQtEBJ8BLfV8MMIRjyxARU/cHH/xghsbOF90brlMMQS U2xx
Axg/oDHHLW/4csgujjzzyTWnvHLHxNYKcswkm4zyzSrn/J/LSIssc8k024wz y1Dv
LLXPVC8tdNNE68wd1wj8XHXQVzud9bgf89iz2V5bPfTTbd/Lc9JAM4110VG/ nTfa
e6/d99Z/T6303GHX3a/bMB+uN9h8j11c2Wd/rbbYWpNteNeIp00324zfXbnc nyse
OrxHcx6354JnbrdzeD8eeOSDT54f6a3X/rrosecOOeaLp+7v77QHj7q9vq9u eeKS
a0758qW7LnzyQDneOfCgE7759axnf/r20HfPvOnOw2493ORPj7zHo0ev+/Hh 4/4+
/9AOLMzpQi72SGOMBAyAYgFqgiKiNeAAE0tA9UKjvwPx70H/44gARcKxAh4w gcRZ
IIT698AAcmSAEzSgARDYPt8pBIMN9B8AI0hAEIrQaMQroZxOuEEVfrCCIxSM CQvi
wBR2UIIpYqEF8xdDHaIQgj1coQ1d+DEY7o+IMzxiDUMYRCYy0Ik8LIAHf5jE qFEx
gzs0IhZ9eCEg3lCBQ9TgFbM4xi1urYsyTKMYKSjFMl7wjF/kYBiROEcljs6N VgSj
GuXYQi4mJIdoBGQcychHEhbSjkXEYyAVSciHOfKJeYziINvYyCYeEpKJZCPZ /NhJ
Gmpxj5M05B1JuUZTapKSnP9MJRRLmclQbrKKo4zlKmdJOVHC8pKynGItvfhI VQoS
mK60ZS8jCcpdBvONiNSjLnHHy2Hisph0FOIrqenLXBoTlSh0QAEY5hJC8c8A IWGA
SB4wIYHcDCQSihECphgRcmbknOlcp4VQ1IB3nkyeSSqnPRegzgGwU5/8jOc1 x5km
gFbsngTNpzsPAE9/0rMgAR1oQSM60YTOc6H1bKhA8dnOfUq0nxz950fRGdKH jvSg
FPWoRUGKUYiSdKOL7ElHEcRQlc60pSVF6E1VklMX7dShGa2pSYPalaEqLKVG palL
T1pRc8pUpAb96Ut16tSVHjWqSk0IU4vKVahiVaowpSr/T62q0aRyMaxb7elV bdpW
lMY0rSyNK1vb6Na6PtWnctUrXdHaV7wCda5TvahakVpYwB62qndd62JDuVfB jtWv
eZVsYBH7WMVmlahvTaxXDXtWzXa1rF9VqFb5WlnCdrapqoUrZFsrVthy1qyp pSzD
XiKRHqEkRvssgGQ4wiQeCdRhQdRtz3p7oQEAlzPCNQlxH8RI6LkkuRlZbnM3 8twB
RNe410Qub6/72+ACF7rp9O5XwXsg5Y7XueXl7nmnO7/qhleH7dXue7sr39zS d73i
ZS55hxvf4/ZXLb4FsHsFXNz94k+9BsZugM27YAIHpb4Hzu6B8jvg7xaYvQjG r4Kl
/0vh3frXvh/OcIjR67cO/xfD29XviK1rYhdreMIcrnCJLxxh+No4vSye8Y5h fGMS
P/i+KJawiIcsYx0nGMkqLtyPmQxiJzNYdVGGcJN5nGQf47jIJ37xhrlMZA/T OMVV
Jp6DyRzkMK+4y2rOspDFvGQsT1nLT97clY0M5h63ecwtXjOfoezmP8OZzYL2 M5DF
iSAfgbAojn50xno0xUVHpNGPvnSM2nmgSeuv0iTDNKQ1TQBO88jToL50pDed UEqb
7dOnvq6oSc1oV7860yhS9WlZbela21rSq+50q3kN61uP+telDrawe41rLuqa 1q9O
dbFzDexd1xrasjZ1sq1t7P9ZJ1vZ0Wb2tJ19am1L+9jUfnast41tYZMb3OYW N6jb
3cZmd1veoaR3ttNdbm7nm9jXRja79e1ufgfc3+oGOK/tvUt8F9zX+153wgU+ 73DX
W+L3pni/HT5wiFfb4gvH+KML5LCHuWQA3bZoIc/cq5E7LCImP/n97owklpf8 5OZM
uQXfRnKX2zzmKr+bzlsOk57jnI5BrznMi67Uo/M86STPOc2b3m2fQz3lUk82 1Y0e
9aE7XeZe2vrLp650lzGd62J/utatbnasj31nZQ8729G+dLATXe5kp3vXfx67 t9fd
6yJXO9yFnfW5A77vem8V3s/u92IlPu6Lx1bjBd92FkX/nteDv3vh8171na9d 8nZ3
e+VrfXnQZ17xh+dQ6F89esqXPuT4I/lCBmCzGOkQ0wv4iOMmzRDZY4z2vn/0 7Q8U
Mt3HfvYkg3fwc7/q3Ru/9pdO/vCXX/zeH9/2uI9+rplPfecD//rLnrf2J1b9 53v/
2+Cfvvi572jof//e4fc98stPfIXwPv2/X7/8pU//5t+/KOw3v/uhH/xZn/C1 38K9
3/h1XwEC4AEKYALi3wLOX0LU3wCSXwTq3wTyX/xdYPY5oPr5X/514P5tX/9l xP9J
oANQ4AOCIAcyGwJ+oAmGoAt6YAkWxAliYApqIAEqnwhmIAluIA/O4AjaHxBi nxD6
/yAR7qARnt8QVqACBiETIqETQiAUBmATrmAMtmAU5uAPGoA49QxYHYDZHAAZ luEA
MMAZMgADiCFYucjpMUaPhOEYliEZnmEarqFENIxEAFMcQoQY0qEZoqEa4mEb 7mFC
gaEfziEd2uEgsqEevmEJCV8iAmIdCqIaOmKpQWIhSaLZKGIg3iEmuiEfcuIf UiIj
XmIeZuIojlwnUuKEWCIhPuIqyqErnmIsquIh9mErmiIshqIhnhYi7iIg2qIv amIw
luIw9mIqimIukqInViIoLuMvEpIuIuMiKmMhGmM1PuMrRmM2zuIk8qI3ymIz sqI1
fmIjSqM2OmMtYiM5AuM2tv/jOOIiPLKjOKbjN5YjLd4jKuZjPZojNxKjOoKj MF7j
PDLjP+5jMh7kNGpSPPLjLSIkNdrjQuLjO04kQMqjRdIjRiqkQW6kRDokRdLh F0Zi
w4ycQqQiybXc0bTSJp4kQ6gkzEBES9KSSVJJTILVStLkC9nkS+LkQsjkztUk M92k
JKakTs5kHi6RT4YMTAZlUg5lTxblTx6lTtKkUhKlNOVPy1klT+6WVDIlVTol UCIl
VoZlHzWl8JXlVYIlS07lVholSrblTi5lWo7lWnqlUL6lWMZlVc7lV9alVpbk X+bk
WfLlXfolWeplVCKmMcqlYbolT/YlYS4mYO7lZCZmZeb/5WU2ZmY+ZmFC5WF+ pjGF
pllKpl2CpmVGpmDC5WZ2ZWeOZmqW5mqKJmoO5utx5VOeZmtSZm5Cpm32pmb+ pmnS
ZVa6JnHWJm8ep28OJmeyJnMOp3PCpmESZRz2CGA2R3NO5XX2oXbipnUuoFd+ 52N2
53h+ZzeJZ3ai5yGCIXaSJ3hyp3rCJ3KG5/Wsp3am533S53aKpXni5yTF5X/y p3TK
534SqH72DIC6ZEkOKIK2p4PyZ4K+54MCo3t6J31OKIbCp4aeZ35C6HxW6CmF qISC
6IGWqIVGaIaaqIISaHmS6IqmKIxyKItSKIqO6InGKI62aIA6DuzlD1tIYmn6 aHYu
/6iQtudKziRDGOnIDalTFmmQNimSEulKMGmB9iWVLmmUXmliZimQesWRWmiS /mgJ
bSloemmZgqmUiimappyacql8tSmZVuma9uiTVqmZOmkB4umbnumdammf6qmS filU
hKmd7imgFmqduqScWqmfIiqh+oShMuqfRiqdwullNGqeTmmlpqmiYupsaGqg ciqk
eqqkLqpPiuqnPuqgmuqlsuqcxqpuwiqUjiqbdqqbrqqgxup6OkSr+oRd2iUr 1qe/
/OpKBOuX2qUFGWt1Zuaw9ufdMKtoXqWbKisdSatZUivsWatSYau2Cqu2Lqus Tquz
huu1jmu2lmtmiuuCZia4rv/rubYrsqYpt7qMt7prshJrW9zrvFarvkYrun5r vkJr
7PAruT4rqAqAwaYrwr7hwmprw7LravTrtv5rwQYsvtKrxfoqxlJsxMbrxB6s uXZr
x4osvJKsvJpsve7Mw6rrynJHy77ryxZHzA5swtasxhIsx6Ysw46svZZsz57s z/Js
fjiE0R4t0iat0tLR0jat0x6tyzyt1DZt1E6t1ULtzlyt1jLt1l5t1Xbt1H4t 2D6t
2I4t1Wat2ZIt2qbt2XIH2zpt2b4t1rqt3Cpt3NYt1+Lt3BaH3iLt3eLt39Zt 4Mrt
4L5t4bLt4aZt4prt4o5t44Lt43Zt5G7t5AZI3+5t0V7/rgVp7uZyrlJ57ud6 7uRq
7eh67dpqbulabeqG7ele7upK7euqLd1ybuzCbev2be22Ld+K7u3qbe4u7e/a be8C
7vAKbvES7vEabvIi7vIqbvNi7t2AbvAm7fT67fM67vVCbvZK7vZSbveS7vea 7uyi
bviqbvmy7vi67vnC7vrK7u7SbvvabvribvzqbubC7/z6bv0C7/4Kb/4S7/8a bwAj
7wArbwEz7wFbr4suMAM3sAM/MARHsARPMAVXsAVfMAZnsAZvMAd3sAd/MAiH sAiP
MAmXsAmfMAqnsAqvMAu3sAu/MAzHsAzPMA3XsA3fMA7nsA7vMA/3sA//MBAH sRAP
/zERF7ERHzESJ7ESLzETN7ETPzEUR7EUTzEVV7EVXzEWZ7EWbzEXd7EXfzEY h7EY
jzEZl7EZnzEap7EarzEbt7EbvzEcx7EczzEd17Ed3zEe57Ee7zEf97Ef/zEg B7Ig
DzIhrzAAHDIikzAiA0AIL/Ihj7AjPzIHR/JKMPIkJzJDWDIGU3Ilb3Aka3JC gPIF
c3IoY7IGL/JCoPImO3Imm/Iok7Iqr3IsO8AsyzIo1zIFk3IpS7ItmzIu5zIr d7In
u7JCiDIw/zItn7Iuh7Iyx/IyW7AzBzM0SzMtU3MFf/IuE/MxuzIyb3Mqa/ME L3M3
RzA2Z3Mz+zIDi7IxT3Iqg/+wOovwOrNzO++yPDMzPWfwOxczL2+yV4BzLmey PQf0
KM/zLfPzPCdzMeMzVBS0QSc0Qgs0NBP0QV8zQAt0PJPzQk80RWv0Pg+0Q+uz Qmt0
NZ/yanT0Rjv0RUc0SndwPj+0J2c0S1c0Qzc0Qs/0SQe0Td/0RKf0A7d0Olf0 Bxsz
T/8zUHvwUHv0R0O0Su80SRe1SyM1TIf0Sie1TidzToezMF81VvuEVktwPnc1 RgM0
WPd0Vov0VguzUp+1RT91VWsyIx/1Txf1Wzd1RsN1XE91PSe0XTuwUKc1VJv1 X1vy
WJO1WAM2BPe1S+81gcbzYPO1U7uoT8d0CSN2UEOyUyv/NmSXNF1TNWYvtmZv NluH
tldrZ2eTJ2Ub9mGTtlSndWmbtmr/dWi39ncetWy/dlLP9Wp3cm03x2njNk3r NmgL
9jinNlcPt2PLtHEfdyUndwN/tVFHNWjX9HNz9XRTNWRbs2QrMlobNXb38mnD 9mMT
NUcPMy7vNml3t3l/Nlukdz9vt197NXqfc0f782j3s0mrtUXfdzhbM32TMzUL dnTj
9VJ/NIDj83+/t387M2oT9nazN3XL9ILztTQ3dnNPeDU7OHS3c38z+EpveE9b uIdL
OHPzdngHeGWXeG5XN0RjeIa7d1ujeH23d3DDeFjL+G8/NYs/uI3/9jrneISL NnGb
/7WPW7eOD7h0I3iQA/WQK3WBA3mNK/mMuzh+t3iME/mSOzmRV3lNu3WKl3KW J7k9
8/KVMzaX8ziHY7mRN7KUm/hLjzebI/mZ43ib73hg/3ic23lzN3her7l4s3aX 83mc
9/if07hyh3l3a7k+j7hnI7eiL/pyNzp/Rjac5zmJw7ag33iR63STozml67ml rzWm
J3Zum7ekz/mXp/mVU/mel3qfg/qNs/qUE/qZl7mph/meP3Sqf3mur7iro7qo f/qv
g3ewG/l3vzieZ/Zjp/pQKzuEn3qgD3urH/mk37Vcj3qvvziFLzBiZ7u2Q/eY y3ql
OztU77qbu7Nll/tqw/qTs/91rvN0uzd7dkt7lHP6uou7lm86swv4krc0tyO7 p9c5
uHc6u1s7oIN5pmv6td80vpt5wsc6tLf6wqd7w687rdN7txf5tx+7fUM6fOu3 gXP8
YT/zK5c3S2uzsse3fM83efvyoe+3mLf8h8+yyHe8Ks98gnNziMf8Lee8tvM3 z/f8
hP/8df/yrhP9x/vzyWN30uO8x7v8zje9zs+30C82LE99pP+31VP9PoO8afs8 1Ef9
y3+9iGd9IZe92Z892qe92q8927e927893Me93M893de93d893ue93u893/e9 3/89
4Ae+4A8+4Re+4R8+4ie+4i8+4ze+4z8+5Ee+5E8+5Vf/vuVfPuZnvuZvPud3 vud/
PuiHvuiPPumXvumfPuqnvuqv/nqTO53DswmLvTLH/gm7/kLb/u3Tvu4rMu4X 9+5r
92T3/nL//rnzfu0Lv8anuTsj/zcTP+wH//HTfPE/fyOT/TTLflWfePVj/yVz v8PH
e1Bb/zWLP7WrOTyTv9NPv/lvP/MXt/cjuvYv//sfvfqb+/nPPw5zfc9Xv/y3 /2yj
P0A4EDiQYEGBAAAYVLiQYcOBCB1GlGgQIcSJFzFerJgwY0eKHD2GPAhSZMeN JVFi
PJkyo0WWKkm+jLhSZk2CNG02dJlTZ0yeH3f+ZIlTaMGgRW/6ROqA6NKQTZce dSoV
/ylUp1cdWv2ptChXoRWx5tTK0+vWsEypnn0KFmtZsmfZqh0adypcuGnltqQb 1W7Y
vXnX4hXbt61gwBLHDvZ71+3hvIlfNpYpea5hx3otp6Q89CrkyzAzo9ysufPf zyI9
k+5cOvTprKYV150K2zXm0ajbsr5dW2Fq0blnt+ZdeLdevl1pD0ct3GTxllWT K/cY
XbNzldCZS+9pfWL258i9a+8dvjv37tjNi39IHnH6mejVV4Z+/Cv1+HJ9m+y6 1f59
21/3I6s//zQaUD8ABWSPQKMM/M6sBN1bcCQFGYpwIQsZpFBCtDTsLUCxGtzw whA1
+tCm/ET0i8SsBAQRwxTX6//woRZPlBHGCV9kisaaVryxwh4r3HEyG29EETEh IyMS
RiPfA9FFH3kE8kIk5YNSPCZH5DFKJa3EcUgth+SySyzHAzNJMa0k8yMzK8ux Sy+T
ZLM6NKFUk0E5RZPyzRE7lBFDO/ckzr0IB9Uz0PYoJLTNQ6MyVNE53WQ0qUQj W1TS
+ijlDNJLMR200k05hVBT1fKkM9Qtf0t1uUhPBUpV3EoytNWZ2EvPPFln3e7V p0rN
Fbtdp+vVV0yBPXDVYYmNldTAkCUQS+6cA7RZRKNVdjpcp/3RO2gDYzVbOI0N 9lpT
p33W2ubIbdZcWNH19tt1eR3X3W9Fham5/+hVUTjm9sX/Nl9a+70XtHn/jfE2 fg/2
t2BtExa4wHQLRhFhfBeGz17jBq44Rd9I8qlj0DTGb8CPjboJ5JAZ24xkk2d8 GOWU
S2yZ5YNOflm3mGkuWWZEbRYUZx11zrk8gnvmUOWZdx5N4aJ9ZpHDO4F+DWKm J22M
o70skkxaqikO8umkhN6OaK4NbhLrq6klW1+rJ4Ra66XV5pPtr9cLm+G4b3b6 bLvl
xntJvDbqeKyt/UZXbMGTI7zwmsejK3CxF1crcZwevztyfQ+vuizFLwc4c4M3 h7vz
xj/HMfSpR69RqsqN9lj01KVWinXWy4ZdctNmb4pz29MGyiXaweU97wx/1/11 4X1v
/7z4v3ZH3nLiQQLeaOeLZCvwq69vm/rHrK/8euzH3p5408Ff6Xjx+269/O7D Rx/O
7NUH332Y1Sdf/vmbhv977fH/e//vUdc/zZ0EgO0TIOgICMADiux/Clxgyh5X wAdC
MIH7m6CgIujAC4qogPDb4No6aMANhrB5HzxcB00IQhSmUDchZGELV/hC1wiA hjW0
oQBIGLgb3lCGEtnhDXO4kR/WsIcRGWINg1iRIwqgiA5ZIg6TCIAlNrEhT4yi FI9I
RYZYMYpT1KJCuJhEL35RKGHE4g+FmEUyFsSMR0zjENfIxiW+cYd03GEcCdLG IdqR
h3gUiB7RqEQ1+hGQdRQkHP/96IBCAvGQP0ykTZ4YSUnS8JGTtOQg8XhJTfaR kJv0
ZCU9uUlQhvKSoyTlJB9ZEyIiAAEEcCUBHEAABMSyla1cyCwNQsRErrKVr6Ql LWUJ
S4XgUo5M3CUlWflKWMoSmLYcJhgpeUwmJtOXzAymMw1CzDxGs5PT7KUrf3lN YWYT
msbspgOoCU5r1nKcBdHmQHR5znQuc5bivGU5UymTGqqTlbhkZSx9KZBeCvSd iuRm
JmnIz3+is54BRSc4GZrLg8Zxn/Rc6D+VOZCBRrSYo1SoPxsK0YcKc6HbNCdC BfBR
ggJUpBstKTwnusaK0vKiIR2nSwsaT5SqNKIZFShEX/r/x5jmMyT7FChDQdpP V36z
oCb16FH7SVClBnOpVRzqF42KTqRKlZpMtepJKZpQqNZ0ql7d4lW1mNVZRhWp XX1l
U2EKVpmKVats7adbq3pWuZJRrVttay/NuhCdElUk8VwqUFmZAAYwVaT4lOZA DkvS
xC72rY2V6F6xys3ISlWxjG3nZUcJWapylrKb1WtoBWLafna2sp/t6GNTO1qk sta0
gkUrFQ0r29WWVra2xSxhMVLDZAKWlQwoQAAUYIAGKLOqcB3sXAUw3KUW97jJ XS5z
1+rbUUpXltRFrnKZy0zn3raJwmVndxFg3O9eV5nZdWw3udtP9Vo3vO4FrTTj 6136
/2JXq+9FaX7TW13w8ne8vwXuRPZpS1Y2oAAKcPCDebtRgjjzuXxNqIIRwOAH Q9iz
2RRmhTObUgxreMMKiLBlHypUA5f3wrBccINLfGLXUpi8RUywizMM4w3L2MMq 9uiI
dczh1vbYoCu2cYsZSuIdd9idH67xgb9K0wYs4AElVkAADgDQlbLUxa4EcVop 2d0p
V7nEWNYyRzPayy/jNswLprKVzYzY2IJTzU+WIRHF/OYyZ1nOXB7pmlnMxDyT ecNx
luycu0wAQB9Z0G4m9IMNveU0e9nOL8Szo+HM50P7uc5GhrJei/sALB+gyglA rgIe
MIABHIAAB7hrMudc5O2mV//UByC1Akzt4FSvutWvdqYvF91D8zKg1rfONapV zWpX
v1qYwK40C4dd7FKfetfK9nWzwRnsO9Mw1KOetq6T3Wtmx1rbluY2rb2Na2qH e9l3
xTYsyw3tcxM73ceutrjdTe5nf9qpMGbAAQZQgAKwcgEPNoABRL2ABgyAwJT2 9LaZ
6G+AC5zgBkd4ABTO8Pb+ed8mJKLEAz5wBBTcwQdP+MIbruiOf/DjDv53yCte 8otn
POXxTmHLTTxxkZM8uTNH+cY7HVqQU3zkFj+5xt/K8YebO+Iu13nMe370mq+c 3zVs
wIMPsPACZH0AVz/418H+AIXzeaA29zgNr+5grm994V7/B3vYxw5MeFP9glbH uta5
7va3mzzuozU7y9F+94Dnved7R3jfy073Cdpd7Xhve+H3LvYGkD3bin8g4xWw dsIb
nu+Tl7uspZn2zDu+65B/u+QpP/el89ukD37AAba+gAwH4Luc/7rYqary1d+c hq6H
/QFk3wDam97wuP/m3zdYQ9/Hfva1t/3hc4/8uvde178P/vCfz/foW36Byq8+ 84Xv
fNsb/5XSXzz1UW395hM/8gvY/u7PLoDlA3/92Yf+8blPWO9fGfYICAABBoDM 7M/k
AMv8Lg/9sGzg/i8AZc7+HqAA80+A9i8B/Q8ABXAAH3CpDLD7ELD/FvACHRAC 4Q/w
/+TPwSjwAxsw+zJQljbwgCbQAy0wBZ9vBRGgBSWwAxUwBtmv+ESQ9Tpi/wog 4BBA
7DJM1wogARbg4K6Mym7vAR5guWowAvsHCIWQCNPuAY4wCQ1gCR+gCZ+QBaUQ f6hw
4KzQCJFQCTGuC03OCaHQBqcQ/YKQDIPPDLWQC72wDcNwfsZwCOcQ1bIQDZlw Db8w
Ckcw+eCwCvsQC89wC9PwDsGwEKevBBUgDvmwCP1wEe1QEPEQEqGshk4tAX7P CW0t
uRLAARiuAAZsCA0gAVyJyhjODcWQhj4xFF/vAEjRFAkAFa9LFVmRAFxR90Zp FrdO
FG1xFXFRF5eqC3vxF2FRD/9l0cFAcRhr8RZPMRWVsRVTDRilSRhJbRqNsRp3 8Rp9
MRub0X08ERppcRS/MRetcRWx8RXz0ByfEdfSsRhLERyT0R3HER458cBq6NYY oOsS
IAEGrwuXawEADssGACEL4AEIAOWcUBu7CSAFkiCHEbwQcgAUkiEdEiIdshzR 5x+r
LCAbYCALEiMTEuA48iEZLiJBUnxE0sQq8iQPMiUXEvY6siU/Mh5DkoYosiQt ktRQ
UiNVEidZkgBckidh0idHciYvsiaJ8iYb8iiTsh85UAB+0iSf0hdtciU9UiJ9 EMG4
jQEUYLlgzyIH4OCGEQGisiPdbwFkLwAMYAFecnuEiyz/zfIIAy4tDWAt2/Ih 3zIu
57Iuqecuy7LV9DII1ZLU2FIh3dIXBZMuldIux/Iwz3IvF/MB/3LKINP/BnMy C7My
8xItM7MxAe4x4dIzJdMqXVA0EZM0+5IxNzMwVZMwnccwRxMzY1MzHRMwO1Mu VzMs
gwuZuu40/w8BGuzr3vIDAXPkCoAA5NIAbBN5Vqk4A/A4k/PgltMCm3MBnjM6 p1N4
qnPyrlOWsnMufZE5p8w5ofPgwpN3xtM4zbPwtjMAu/M73RM0b5M4yVPU5lM5 05M7
19M721M69ZM6+VM+kZM+A9Q+BxQ/DZQ1b3CarNM/FxRAF0A9ZY9AwfNAwUzE FozM
/xJA79yP1BCyARxS4Hxx8jpUQt8QRDNMREm01cQu61L0OceuRX8sRKFxRk3U RnMR
R1k0P100FmEURXuUQX8URYN0RQ9AR6UJvZAU13y0RplURXOUSHc0RpMUQJf0 Rp0U
SrtJSmVUSa0UTLM0QoXzIngJnTRyw8DuOY+L1Q5S9rJRTFEqohoTTr9OTrHs ITvz
TrX0sf5pTy1OLXPxT+t0CBkOT8PKm9z01FLQT+k0UBt1UOVprd70UPsyUSs1 NQVV
TQlVUyUV8igVUEH1UkU1UyOVTxF1TlHVTlX1PQMtnYpLLpMr1RKgIw1g1RgO LpGy
ATxzVf+LqdILVxFuAHb1If97FeAgM1iHlVZhx7ze6li3MFmXtQGa9Vfd7wmj 1UPh
89yqlQGQVVd51Vef1VsdFbps1VpzVVnP1VmBVV0xtVjHtVzhlVnRdV6FdV0t LLqM
lVyv1Vz1VV67tV/rdU2jzJbe6gCI7eAIgNhi1Ak3dLlCVVpTZ5WWaakcVg0j 9gFR
lGJHzmJnFVxtR2NZCgE6FmIlNmSJUOGQsmSL1BmnaWNlaWUN4GMn9mVJtkAx dnRQ
tmEfNmdb1gl5NmZ91mSnFZlsVmWHVmddtmKR1l9DLMWE1mOLVmRh9mKVVtgO Kve0
FeEA0P1UtADe0mInTxl/tnN0CmxNbmyb1GxXNFiFMgH/1vZy2vabwtYhFzJu z5Zu
1bZrgfZr9fZt+7Zs//YJ6/ZuIydvX2lv4RZx51ZxA3dm5fGk3FZsD1dOEzdt V5Fx
F8dxXQlyNzcXO3dxBZfppOqtwha8GGAcAa4l3W/hDgDhCBG1pkqWWne5XpfK Yhcp
Z3fVbBd0C0eXcjfDvo53YVfVgJcla/cBiddvjNdWdzdil1d2nXd4Uxdvo+l4 q7d3
X495cY92tddye9KYvDd5rdd3xTd4n/d2YSt9D0552Rd7yRd6t5f3pqmnXCk6 EU7r
EJUdU62VqEz1QmutQsp/nzDgAhgVB3gcDZhQ+bdA/5eBO1WAB4CAHRL05GmC FRiA
/y/YgTMYgjk4TxGYpT7Ygp8TgzU4gjsYo/r39kB4hUW4hUv4UesqgWVYhV2p hkk4
eiMxtmpJZdVwABEO9xwOtQ6LlYTSiI/Y/ZIYtpaYiJ34icsvf0M3mqa4iY2Y Yq/Y
fJfSmLa4iDEQicEShwFqiLm4jKH4jKFLiLtrjR3QjIH4/KKr2RiKL6u4AVLr htkV
j1lJj52Yj2PJj//11/K4iue3j+tYbYQLkNlSkZWLkbG4eLkNkgXZiAnZhf8L kyV5
kw05xBA5kD+ZksEYjT8rAJ0Q4UyO8xBSndz4X/uYIFS5C9WQjMHulTe2kclG l1LZ
aFk5mPdOlwGKl7nGlwuilv+DGZeVk9V2uZKlV4uTGZhv2ZWduZihGW+QmZap uZUN
j5ij+JwKmZtXuZq/+ZrDWWGjLNbQydVs7Z1tbQACkgHo2dV+apaMmWpyi6Tc GZ7j
eZ7r2Z+YKZ+ZZp8Fqp/9WZ7lOaDvOZQ/VLT4WWX9GeAA+t8EGp+zOW4Mup0l OqEr
2p4fCqNPOTTNKaBUtqPhWaHp2aIbmqCLZqNPeqIpeqFZOqQdWp3jyiDozLL8 qZBd
7LXEmSB2+rN6epn6K6dhS6gTzZ2OyqjfyaV75rmGmqm1yqmBOk8LYqonrKkL +akz
2pFjSqs1iqt/2qmSWrRGiqrrqauvGqf9q5ocKiOg2mb/2haWUUwsR3o/Mdeu XQuv
USvWfOoHv7qXv5avi2qwj7mwbbavfQix9Vmx/cwj5vp8s1rLXIuxY8vHztqn jbqy
GQKiJhtlBmtjx1moGwK0HbugJ4q0L/u0nSyvERSsWFunXVuzg7qP1Ym2P/u1 /xq3
O9u0d9u23bqcfvuexhqyjgqpx7S0jTu5Z1mbQjtkjAqznfuoxxm6U/ulxYq6 rVub
SMqsl5u7tcm7qzu6NWa6HWK8gRu7YVs8tzu9txq5rdu89fqUJMmU7PuJ8Du/ MelR
+XuMUOq/+xu6BByRuqnAHWm4fQvB70iaGJyTAvzB6XthJLzBD7zC2ztcMTy7 o3rD
/zn8cjd8vyVcxB+cxBncxBEcxQtcxQVcwV38xWE8xmV8xmm8xm38xnE8x3V8 x3m8
x338x4E8yIV8yIm8yI38yJE8yZV8yZm8yZ38yaE8yqV8yqm8yq38yrE8y7V8 y7m8
y4vGgmQczKMGxi2ohL6ozM+niMR8zF28gcycitA8gBRWhJqIK9JczT1kZxRc dpBm
z3sizPOcxvlcz5mczvHca2J80PnGrRWdzYfbKxLC0C+o0QGdIvq80HV8c2Z8 bl6c
09s8SCR9gmTnzeE80Kfcg8IceEJd1KVn1RcI1e9chjwIbRLdey6d0W091hk9 03Vi
03u90n+90wPd1Q/I0/18Tf8WXcmJ3YQ0Hdgt3dedRth9R85HqEmkPWgcfcmX /YOa
PdGnRNBNfdvnxy3EfdzD3dufPdmTvNxFPdjJ3NSdPWnQHdGvHWnYXXwa/d4f Sd+L
3d3rHYHmfXwCHt6PPXkGvna8POEVfuEZvuEd/uEhPuIlfuIpvuIt/uIxPuM1 fuM5
vuM9/uNBPuRFfuRJvuRN/uRRPuVVfuVZvuVd/uVhPuZlfuZpvuZt/uZxPud1 3kF2
nN/bvcd9/oGC/tV9fOiJKtJ5HOl7PttrXOl53ejxx+lzXOqlvHhw3OpvHOtt XOub
Pnqgfnu4XtC9/tQJ/t3THdqxPd7VveBv/d/X/tHLXtn/6d3s4x7uv13tCf3T 7/7g
857t017u/d3vz17v517w/97uCx/x957wF//ILYPaX/1t2lzy95zyH93ycb09 Jl/z
kfxgFP9Idv06Qv9n5pznS1/0cdrzjbw4vt5vWD/1xeX0TT8sX1+da1/2UV/I raP1
1Wb3cX/2+c3311T4hZP4aZ9dfrxWeP/Lb2X5e0b5fRD6WU/6g7/5o9/6i34y gl/7
P81CnB9lvH/7PwXKwr/7uX/p8SSVXuT7K2b9yf9E3j/99x3+D8z9m77tX4X9 c2Vl
2ET/Z4X/AcKBwIEECxo0CIBgwoMMGzp8CDGixIkUK1pEqPAixIUCOWr8CDKk yJEX
/z16JOnAJMqVLFu63JixpcqXNGvaBDmTZc6bPHv6dAkgaMqTK4UGJfozqVKS R4fS
NCp0qdSpOKE+TdiUqtatEZtGBYr1K9exZDtafQkVadm1S72qHZmWrVyqbq8O fTs3
r96BR/Gi7Ls38E3Ag7MKPizTcE3CiBszVXxVrOPJGhkvhkw580TLkf1q/lyQ M1rM
oEt39gxXtOnVfVGLbL06tkLViUnL/gy7sO3bmXPb9M27NPDTwVnT1nm8uPKH w0fv
Xn64Odjn0ANLry25euPryKlrz8u9aPLv4Mc/9k6ebfi/5tMXb529e3v3XOG7 /mif
vuD8l9frrw/fbwH+pxd/p//FRyBZBjo3X4JtDXjgfQ5q5h976E2oVIXnIYgh XQ2+
9mGHPGmY2oUi9kQiiCaeqBuH2EnIYn8uygdjjD8JgGOOOu6oY1A8/qgjREAO KYCP
RP5oY0NHAmnkkjkK6WSPAEQZZJIHUSkllgJAiWWTVFp5pZZFTokll1R6GSWY Bok5
ppZmRommk2oWxGacR77ppJ13zjlQnWR++ZCYehLJp0tssonnoUsWKpCibgbq KKCF
RiqpkpTKyeilmDqk6aKZdkoopKACyagDow6Z6KlbfqrqjqmeWupKrfL46qil zuqq
qLiuOumuONYK6q2+8mqpr8Iaqyuux+4KbKfLKpvsrLH/ovQkAggQgC0BDhCA wLbX
XstQt2v+KqoD1marLbfecqvtQeLSSW6vW56brbfrgutumMQyVO219arLLr4G vUvQ
k6ya6y+29gbc7sD6cokwugt/23BBBPcZL5/9SgwwxeE+XC69CnfM7sfj7qvm xv92
y7DJ8KJ8csQr31sxQRc3mvGcKo/Mssf5xhxywun2XPLPLx8rM880u1xwzg+L PPTS
RjcN87QX5ciztQJpLfHWCiMMNKc4Zi0u1/V63a7WR7NK9tYsn23u12pTzWXb YHcd
d9o3Gyyv3WZ/nbfbYRfr99uA+yv42n0PrfbfDSMOtuKEM1624Y/LvbfTYGJN ueB4
/0M+N8ZVU134tnCDnvnoNnLubeOWD4T64PyO3fndp2Mue8q0t1656YfjLvns ApT+
OfB0Wy0S1lsjXLm1/iZ88/FiD7+88247jy300x+bNvPX06t9sXVX7zr27Ga/ Pdvk
Nw9+ttGLPr653jPfPvriqy+/9fQ/737603evP+fVT13369v6vsc/+wkvft0K oACz
178CamxsB9wfBBUIsv9VUIAJJOAC8dfA8g3wfThTXQkBKMIOktBUmkNeRfh2 wesl
gAHQA1wGCxhD5s2whjULnu54lUPn7dB9Nsxd2IJorSHm8IPyGggSEaDE8/kP h1LU
IQ2J2EPpTRCIVRTiFZd4Q/8mPjGKkGPiFp3YxSR+sYpmFGMaobjGMobxh2hE HRx5
OEU32pGMRfTh5uI1xjj2UYt6xNwdsZhHF1okR+d6nrUYUIAAKMAADUAX+t7H t2I1
MnuPjOQkK2nJBrbxh5vkViclSUlLqguTLaRaKZ0HSVSCEl2inOMfBfDKU35S lbU0
4styiYBY7jKU8rOllRhJMVMG05OpJCYrTchCXCYTlsycZf+eeSxgCrOZtCym L105
TV1y85qjvKU2q8lLb/rxl+FcpizTiU1WnfOdziwnO89HTXp2M56K1AjWwGWt BhRA
AQQtqCB7iK9MCq9kAR1oQQl60IG1S6E/ZCgCBPpQiOL/0WITbaXoLIrRjEaU oyXk
HkAv6tCHjtRmHYXmP7XV0IwqYKWwa6lJYYpSmdLUayUVFUhTatCNsrSnfTtp SFUq
1JoSlXBGBapGEUnSaN4UYUcNKlSHKlWfNlWnSeVpVouK06o+FYxepejJfsrV qyr1
q/1c5K9M2YAFPECmATiA6RInMX+Z9WhwlStd7Qq8vGJrr0l6Ul/nmtG63jVy giUA
YeF32L8uVm2NfWyMDBtQvyYWsHoTSGU9WtLIbnay4vosNE+E2Ytq9qGKDWy9 9Apa
qYqWtZzF62sHG1vUvjWziKUtaT17W8fGNrVx7W1BW9tZ38EUt6cVEXFXe9za Mja4
/5aVLW8l61qFwba5HXqucQmKXNtql7kQm210f6vcvFW3rcJ75APqeoC5JkCS CnjA
AAZwAAIcgIP4qld1kcmA9x4gvgqYL0Hti1/98rdd/s2tc3HkXvjKl74Izu9+ Ochg
hf0XwsEUMIENXN/7WnjBwNXWeh8szQBLuMAUFrGCMVxitra3wysGcYVf/MAY n7i7
HFbxgCd8YBdfOMe+k7G+IvxjFgc5wUPGno4dzOMUexjIIWYyiYu8YSnXuMVW hjGW
oYwhAE9ZyVUesZcb7NIej9nGQr4ymrNJ4ySzuctEfrOokPxhLpu5zhoGM3vh 51AG
HGAABSiAtRZQUAMY4L0LaP/AAJxJ3nIFetCFPnSiFx2ARj96n5Fu4qQJbWgE IJqg
ima0oyEt3DRv6dOVFvWlTb3pa3b6jKwO9agniWlNozrLDqi1pUmd61NzOtVI 87Wr
gQ3rXQ/3V8a+dakzLWxZE/tgzX41tGN9yVkvsNrIvrayuRtmZkOU0ra2tq6H zWtu
4zrZ6Pazg56k7mefW9rpHjeof71ub7cb3H8uYQMKegBHFyDgA/i3og+O8Ac0 GrCI
y/K/CUrwgTva4AhP+MLXZWJ3JyhHD1dAxAlO8YqX+uJSdDjABQ5yXIt80SRv uMYJ
xPGTEzrlKx95AxjeZ1V3/OMTV7nIFX5zjBv5ljtHec//a87yoJd82QIo+syP XnOg
4zzj/H43jpwu8YL7vOJSF7rJIW50rSO960uv+savLvOsh/znLc85l7BO86i3 nerH
gjvUV052l+s87XHH+9yH3u/pFfQBBxj4Ai4aAFQifeTnm7bgD1z4Axy+AYnf ut8b
v+NwC2DwkZ985RfP+IRlmfOGR7ziF69wzL/8PzkiveRNb3m2q17Vrvf86ce+ gNkf
q/awBz3LdS8q3lP+9nIHvryE/3nQp170TEc+8S/PfLPDHEfOjz3Xcx99LlXf 98vP
VuYn1HrIl3741re48Yu1feVj3/ur72f4FVBXQweAAANArO9L/bzRg7fwCJh/ /YHN
/33513708X7x13/0Z3/39wACSHv7J38ICIDKx4C754AH+H/lx3UTGHwV6H8J GIDZ
831Wt3kcCIEYmHAa+Hjwx38dGIGoh4JbFF0PeIH3t2gvKDwxaIEeKIEgOIDu UYAr
WII0uIA82IAqKIM66IJESIFGmIMtOHY2qC84yIImeHBDyC0h+GfvVwCEhgAK d1EH
VgAJsACKBn9yVYUP8ACVhAD6pwBbaGhe+HAPEIZjaABl+ABnmIZX2IPpoYVc CIdg
KIZkmGl3WGpoqIZs6IZdOHmASId2iIeHuIfk0YdvuIj1NYeCaIaFmIdr2HwE lYh/
aImBWIeD+Ih6KH2sR32e6P+HlSiHouiImgiJRfiJrHiJo5iJi2aIpriEs/iF odiI
pAiLuriBbbiKvdiKv3iLaLiJWDh9I0iMlGiMtfiKuLiMnfiMihiNrgiM1BiL u1iM
cSiN26iM3TiMvAiO2piMuciJp+h+OEJfCRB5aDhgk5QADvBoBdBMXWgACYAt cvVo
WfaO8Uh4B0CP9kgA+AhK+siPBOCPjrdFATlw8kiQ+2iQCJk9d7iQDQmQBAWP ETmQ
BXmP+YiR/WhfDqkz7siRAjmPFBmSCTmSDFmSG1lgKjmR9diSF7mPJPmPkfgd OQKR
8fWRLHmQIpmTMLmTqvaTEgmSQ+mSRamRPKkdPpmSHrn/kjbJlDiZkTHJdEkZ lFZp
kdzykk/JjgSIkjNJlTVZkUSZlUfJJVxZlWnZlGtpkj/klmh5k2DplFqJlFMJ lG95
lwqpk3MZeNNDYAxQcAmQADN3h5W0AINWVwPQmAXwAARwamgomC9TmIeZmBGZ So05
AI8ZmZNZmZPJjKgoAJnZAIipmJ3pmIMWmpT5aJaZZaipmpzJmK0JmYUnmrFJ mlBZ
HTlCm5sZX6z5ma6pm7BJALLJdMG5mrdZnLkpmcipnGPpgzjCnLbJkLj5mqN5 mVRz
ncPpnKB5nNxZmvoBnHNlmKkpnIuZnc+5nbzZnaLznezpmeIZneTpm9BxnjOl mc3Z
/572uZvJ2ZuqNp/ECaDSOaDHUqDhaZz3CZ+ziZ79iZ312aABOp2DORGMxAAK UEmF
t5kDoGgRiQDPKZq5twCHFwAGsABZFkwcql9hSGggagAiSqKUaaIoqqLlSZa4 tKEd
CqNbGKLxNaKPWaIMiaMrynQt6qMfGqQLWKNxZaT9l6P5uRwa6qIeGqNNOqSD VqQn
KqVIqmpK+qJMOqNC+qQ3+qU6Wp08eqU/KqM0SqQ2GqUpCqZcIqZYCqRl6qRx CqVe
SqdqyocQ1qNjmqV6uqX1J6d+OqVhOqh4+qZmyqdo+qdUqhxWuqSFCqdcmqhH yqKN
6qZaeqZzuqjZ5KlkmqmI2v+nnJqkpYqpkKqpqZqmlHqS81JwXDp/CDBQB2ei HWij
olYABJCiBsBrI3pz9Xeruapou4qAvboAvxqsgCqJv0KstsotyKqiDMmrceWr wKpo
w1qrxlqtKqesqHp4zcqtwiqrwVEt3/pe4aqr2Lqs2mquz8p05sKuxyqu8Equ 20qv
1BmotFqs7Yqr+boA2Vquztqt9Tqt4Dqw71qw8Xqw5wqtPSmt9+quyaqvJcqv Catq
9hqw+OqwBrux6Oqv0Qqw1NqwGPuw+zqvHAsxCyuw1jquGtuyJIs0MAuyKiuy Neut
H3ux17qyNIuwNouhEfFPAYVYCRByuRdfjdkAk1loDHn/c/1aN87ztBy5tPql cAEH
tb+6cFTLNlabtFnbtFx7kF47tS6rVUiLtflatk97tlJ7AGBbVGxbYGS7tXAb tV+r
tv8jtm37rm/btXJLt1ukTFd7t26bt4PLt0Trt3artIrrtIybto5ruH+buIG7 uHHb
uFl2uGMruWa7t5U7sVE5NpgbuZo7uZxLukz3uYCLsYLLunPbt5cLuXi7uqNL u5a7
UKiLu6KLtrtbujfbQJ/5UAj3q5GUX4x5eCVZuAukNUN6vAeXvHVFmVHqvLU7 q2Aj
vZcWogdpvczbhY/2vE9TvPQVgdW7vNhLvtpLR9FrvN47o+C7vl6avbxrvvaK vj6n
/77Xa7/ti7+3xL3xm77067/NC8DDer7T+73Ke8DjK7Hpyhv9or8MPL8OLL73 q8AV
LL/9m8EJLMG3QcHdW8AYzL4R3LHwu7/Ia8AfjMLEy8ElHL4nXL4xo8IW7ME0 7L5F
e2TQE0wpOkn2lQCiaQD49WgnmpwNIKUBfE+cxABAvGgDMMSUWcSDZqRJvMTD q58c
5j4/XIdRPMUNUMVHnHtpmMVJ6sNP/MVCTMRGfMVmXMPHxMVODMVsTMVujMRw vMNN
bEpqHMRS3MZWnMdKHMeFNcd9XMeAfMeCXMaEvMfg1MV+DMaBTMZYXMirc8iP lMhh
PMZv7MhMDMl0vMaKLMZ43P/IZ1yyFCtNkbzJlOzJqGynadzKi1zJegzKmLzK ovzH
nGzKlvzIoiMymjzKvMzIvnzLPFxS4OI+BxBgikYAAXZRyliulaTBCpsu2cPM hPjM
C/i0aDjNyQnCqWy683LN3JLNzgzN3eyFjQbOLxwy5YwA52wA2xzN3ixq1BzO NwvP
8kzP6vzN1ZzC+9zM85zO0nzP7XzJlyWtAq3NBW3P7AzQL8vQ6MzNBg3R+Xww yozN
A93PFo3P7rw9Gm3OHO3Q6/zRCc0i1TLRBF3RD33Sv5zMK93RLo3QMJ3SC+07 8UzS
LW3SNX3MUiXSOt3QPP3PGI3MEtR4Yrxo9Jd7UVsAJkr/zTeHkbzmRAmj1JMJ mXH7
1FKbxMOZAFpcpRmT1KXG1FoN1V091fVa1dly1WXt1Gedhl4N1pUq1lZN1ln9 1lwd
12ndsWuNLW2N18kL11K9j3NdHJk01ksd2Ac52HKt1p5l14rd1IKt14T91SEs G4gd
2Vg92Yxd2Y7d15DN1nfd2VsN0ZZt2Opa16Mt2Wb92XwNMX5Nxa2d16cN2kgj 24Bd
2o0N2+WS26Tt2rbd20f9QebDLUqdSgwAk4MWm7nnaAdQg1Rt3Bd1cJWk3HLF 3Mnp
3PgV3ZgdGwYz3cht3ct9X9oNm9C9gNIdzOL9zOTd3Ofd3eL8m+QS3tXd3thd 3qn3
/9zxHdv1rWjjjd/vvd/p7d2rAd7rbd/XTXj5vd3ovY79jeD/fd8LLuDcTeDy vcWr
4t/J7d7mPeAP7tsbDuAU7uEWDuJNxDzuw94Knt36beLqDT0r3uEu7uCpPcH0 HeEc
HuAlXuNqLeIT3uINzt/EDb22c66LJnDfO5T2dS1yRXchY+TBiuSEpuT4yOQw +eRN
FEK+I+VpSOXzu+QD0OSTCXh0s+XZ0uVJDuZWLuZYXua4nD+Gk+Zf/qthPuZZ Lj5n
ji1zjo9rHsV3/uYKPS9RXoVqXudsDujDSuilZujYguhubuMiLK2LPuV9fuh/ DukK
S+lebumOjulOHug3Peh/w//nVf7pZK7opF7odO7pVw7qkZ7Zk67qjM7qdp7p Kbzp
jW7rr17gog5c3xLPhCiEqadtIANB1jKcNIiLuVfsAmw6wJ7sw87s8dlTxx7s yr7s
7IfhYb0q1h7tCkjs1J5V3i7s4D7tsP7d5ELu2O7N2h7b667s7d7sctztAXPt 8R7u
VA3v0u7uB/PspvTt3Jfvar3v5t7vKF7wAn/uBG/vAa98A7/tW9RfCCOj2N4A nhXq
jMRgFI/t/43x6G7gELbx1lLxyn7x25LxIo/xJN/xlPTxvV4aGr/yI9ryJ4/n 7TXy
NN/xNh/quoVLOV/yNMjzLAr0Nf/yEX/YKo/yLL/zR2//p0Xf9CgP8qYh80uv 8xbv
9HcG9Vgv9TAPGlWPU0F/f0OfpFtv8llP5EBTM/WHhotWajXXmCMj7gaz9sro 9ncv
cnF/zVMf8+peEGx/h4RY7gin96aj739v94IP9/m1917/GXSP+G2v+CtX+PN+ PHUv
+W9P+Yxv+I6vGZBPEIB/94Ovq5xv+fCD8qGf+Jqf96Yv7j6P8aqf+XhfcZU/ 934v
+4HP+rXv+nz/9bg/EKI/+a0v94ef+6O/+MXv+ZkB+sG/+rRP+L1P8JGv+9Bf +sqP
9HQUY+ayXwPm/QM2AIbJAOO/X17TLVRdZNwfz98P/uJP/mWjLr7/+IAkN93P /oPm
//6CBv/n/9hnE8/rDxAHBAocwKAgAwYHEDhwgIDAQgERGU6kWNHiRYwZNW7k 2NEj
xogCJhIgyRCBwoEpCx5MuLDhQwchOcpkSJKASZQpCRpE2NIkTJofhQ4lWtRo xaA2
cZ7UeWBlT4U/IUrcmLRkw5w6nyKM+nKqyKNhxY49avUmVqZaeXJ16fDrTKoO lKJt
6nStT68x45Ll29fvRLNL627F61YvWI2B6TYl3NVw0L+RJRdVfDKtyruOge4F GXeu
5cGZ225GPNn0adSAOcu96fDsxLZyZbtUXbqzbdYvX5vkfbM10tWphZuGXLP1 Vdi9
ZwPHbbF4btcVY/tuyHz4df/Uz0tGpzh9OcXnzldvR867OnXaDMNjZz9W+/Hd 1c9/
rw0XN/n43n+DD97ev9H3dJNOuf3qq2o8+Aacr0D1+vvvwY8C5C65BeUzMDEE BeyO
QAsbbA5CEO2zCD8FF0LPugPvS3DDCtM7LEQY/YNMKZvii9DBC1nzbS6i1ovx xxxp
5HEoH4MsqUYAcQQyxhmPHFKoIj2kSMjyoFRyyRCb3LHKGz/krzQqbfQoSixB 1FJH
MTsi80wkKbuyzAfZfLJLEUdykssx34RTxr3CTNJLI7dMs849CxWruB1lq2jQ 3F5M
cdHcbGT0KjINZQ/RSEfUiNIrMT1S04w4BdTS9jylDtL/UM9ak7NEJd1UVT1J Fc5U
Rad8VcpHbf0UVYxElZVJVjPl9SJfcx1JWFtTxfVXM4PdNdleYR3V0WOfPVZZ apmN
09lToSVWWkJrQvbaaJfV9lzxBOgWo/TSOyu9VdWtlV0Wxe2wUnQnC2ndi9pN Ft5O
I+LXIn+vBXjafPUVeN5+61X0YPsGVtA8eyFOuNSFGe3QXYqzvU1ihzm+N9aL +9qX
YYIdfvfLiFGeuMOVcyx51ow3KrhillMEmcKOYzZ35tRO1vjmh3PGUN6hVe4Y X6CX
DOlpqKOWemqo7aP6aqyrbprmrLvG2mqvw9Z66+zENvtpsM8Om+yg1T47bbez Zrvs
/7jXTrHuruc+DW+7j+b7a70V/htwvwefOnBLDSc8I8WvRlyyxqmGO3KEHyeS 8qgn
j9zyvzDP/G7PK+c8z9ADLl300TVvXHXFU+frdNNLd91p2Fk3fHb3agfdc9wP 1b1w
3nsv63fGiRf+8tNtH/z4P2XfHXPm3Uz+ecqjt/567LPXfnvuu/f+e/DDF398 8ss3
/3z001d/ffbbd/99+OOXf37667f/fvzz139//vv3/38ABlCAAyRgAQ14QAQm UIEL
ZGADHfhACEZQghOkYAUteEEMZlCDG+RgBz34QRBWEAAjHCGMAEBAEpbQIifE Dgsn
4sL/pRCGDkhhC19IwgDKsP8iNbyOC3kYwx/u0IZCBKAObxhE1LBQhjPcnxGP yMTT
+BCHH5whFNljxSYSkSFT7OERc6hFGGIxMkqkiBjrV8UXlrGLNFSj/9C4QzP+ pYpx
pN8b2egfMg7QjmFcIx87CEU6RlGAgNTicOzYP0LecYt9bCP/EulH4eRxkYi8 CB8D
yRdLxrCSk2yPJIu4SUWGMomcFGUGLznET3LklGQ5pCM/ssqwJNKVHoHlUWSZ xY2c
sJa2VOMu1ydGJ0Zyi0jUHzD/40kqlsmX7aPjMovSSlyqEpVpdKMqVWjIMl5z lhlB
5ign6Uz0GZOawgwlOM1nTC6SU5fa3GAY04nHQWaTneb/FAo0iylPewqykZR8 IijJ
Wch79lOR9KQlJwlKPneyk5TeBGj+EqpEH/Yxon/05zHjucKGMnSh0dznQQs6 zmpi
VKT/3GdAibhEiRITf7cEqUZb6lBQQjI1nvToF0eKypoitKKllMxEX2rSRuYU Iz4V
qvgeWdIxUlOmQH1pUcfJRKd276g/9ctElwpTkV5VjkpFqinhCM+N8vOGGU3q QqPq
vTmG1TRWReFXy8lQmmoymzedjE+pulK3arWqXL2r/dL6Vn3eUa8Y1OFZh6pQ IOIw
n2NUqGGlWkOIqlSO10RpYksoRcQy9qE5hCxd64pYx26vsAJNojYl69DODjOz k91s
/whd+1rYxla2s6VtbW17W9zmVre75W1vfftb4AZXuMMlbnGNe1zkJle5y2Vu c537
XOhGV7rTpW51rXtd7GZXu9vlbne9+13whle84yVvec17XvSmV73rZe/9QquR 9+o0
RPEdH313ekD7etaA+SVrW+fLQP52NYQB7utFQURgqZoQwApeIIJ5WkAHO1i0 DJZt
hBf83wZTOIEWzjCGFcjhD2sYtiDesIjxa+L9ohjCKvbvgS/s4tmSGIEyPrGH S2zj
GbNYjzo2MIQk7Fce2xTGIcZxjYd84yPnuMgpXvKAg5zKJBvZxy+ecoejzOQr r7jJ
IKQxlqtM5Cy3+MtIHrOSw/+84y0nM809ftCPs9dlLZ+ZzRa1cpml3GbawlnM eK4z
n8FsZy/7mcyCNjOgnbxmIRt6z3T+M6HvzOhBQ7rQjnatntEs50RTOs6KvjSn 5wzW
Rkv6tZb+dCeprOlFgzrSqp60qAPtag8u0b6y3m9lr2hrPeK6h7rmbDB37ete nzaK
vC4isWdqbDcie9jA5iCtO6lsR0L7s8y27DsNKe1iYluzwo42tUvrbURqm7Xc bqK4
q2ruCYL726utdpvJ3W12r9vNzFP3suMdbmv/+t7w5m+9+e3ufP/x3dPed7kD HsmB
Z/vgx154shtu73kfz98Ej7jwJt7ThKP24WvNuAgLzvH/ikv849P+8MgxHnKL m1yz
JSfwxvF9YJWvNObnRjkzZ94Xl3cb5jXHXc5JvuGbYzLodRz6WHyu8J2zPOkV frJc
MQ1lT2ca1qk2dZ+n3mlUM1BtAHgb9bDGdbOdb+tdB17XwC42sZ/t7H0rntnW 7rW0
u53sbRfb2/NmvrGH3etXs7vc8K72ud+m7oEXX97Rvneq9X1x/4PdtBofd+eV vXp/
n57kN0f5yNM9dJDfPOJvh/nOW351oA+e6FsnwMd7fnmkh57q/8b50ms+9uNL vek/
X77ay771uDfeRXJP+96nK/OMlwgCXHMkE7klTS76me+Lf3zfJP8hy3c+6q4n E+Mj
/wkm03cIvdIlouzTSPrdb9j3Kd8Q6Mtl/NQ3/9HQr/31ex9FvBdJ+JGv/unL 32ht
f7/48U/+lGk/8sG+9Ns+5dM/mam+/rs/7mO/+RvA54O//3PA/buNBYy+CUTA 5gsf
ApTABtRAj1FA+8PADyy/ByQ+dYk+4zMJE+ER7ljBE6w+5IPBFWwTDYHBCiw8 gVHB
tmhB5HhB5ouXGexBNIGNq8DBBOTAHVQ/GvTB1wBCAfwYHmTBIvyJdwlCkrm+ JXyI
JqzCG8RCx9tC4yNCG4TCGFTCFGRCMnTBIwTDiJlC9PNCM8xBNBxCKizDNoxC GYTD
GmTDK9TDOuRDJzTCPzxD5v+wwzjEw0KkQ/45meoYQxYcQ5I4PuZjxC9ZGUhE P0mc
vkl0P8rDxCbcREr0xKMBxR4URZuoxCQEH0dciEwcw/AbRf7TGd54RVicxFQk RQiU
l0cMxVjMxVksxVr0RdeQRQv8xGE8xV/sxGBsO1OMxGWEiWYEPl50RWLERWY8 RmHs
RWUsRmDUxl18Rk2MRlXcwENMRmj0xmxUQNTzDE6MxARgAErEk1U0GmyER3lM RXo0
x++xCiBEgHicR0aJFzv5x4DUx4HMQuvxxzYEyHy8x2lkR9YwyId8x4hEw4Js yIOE
SHDURogcw420yI7UQcT4SOMLyQmRyGA0SYcUSF2kxoz/vMKWRMiXlEiWRMl9 DEGM
NA6KdMmLnL+brMiUBMRGjIjsK0bjY4ACCAAFMIAGqJFOVMV4OcpJTMqlbMqn hEpX
HEk0pEouRAClZEqnhEqYkErT8coxDEusJMutVElqREurFMusrJG2JMovgUuw vMqx
1MoOsUTvCQm8VMu9pMu+rMfaCEy9nMtcNEvrW0ijVL6vFEzFjEquZA7ElEu2 LEx+
/MvH5MS0TMzMZEz7uMy15EvRpDzSHMzFrMy7hMzPxEzTZE392ZfuM74GKAAF yE3d
FEouIT8hrE0EuE3d3E2f7A5w+UTgFM7hVADetBHfNJ38s03cXM7mJJjjpL/o DM7p
/xzO6pSO63TG5NxO4qRJ79zM7qHN1tDO5WTO4jRC8zyM7FRO7mzPn3jP7UFP 9JPP
8eRI99TJQwzP9exO47RP7cFP6QxQ+nyJ9zRQ9aTOBH3OxoweBtXP3BTQ/vzN 9KRQ
9iTPAfXP/ZEJLmyABXiA9QyAA2gUGEQS1yDIEB3REj3RPCzCFVVICZWIFiXR 5TRR
FHUJFSUJFrVNF81RGC3EHiUApsEeEAVSHB1OHY3RIv3R4AxSJh1SKpRRH6VR 5knS
KF1S3WxSIlWKGQ1DkbjRF91R48CPI9XCMVXSMnVSML1SMWVCEeXS3PTSKn1S LD0e
LZ3TNv1SNDUdOZXSLqXSOP+0UiPNU+HZU0GtU0JN0Tc91DglUyE1U0NNU/kB TLB8
ABM9ABJNAKZUgAcYgAE4AAJQCFgkP6WYykzd1E791FAd1VI9VVQtCUutUQFI Sk0V
iFbNzVclVVO9xTP10MNcVV1VAE/lVVH1VVk9i1RF1N7BVAbIVU41VldN1lg9 VWal
1bMk1mk9VlC11l+VxGCt1Sx9zGhlVWpFVlgN1+wb120912L11l69VmDVEWE9 T3OV
1l391nVdVncVU1xFV3kFV3+1V3LV03wV2GrtV2z919Hk1n2dV3ad1Zs42ERN 2Hhd
WGVtWIN9V31NV37d2Hpt1giFH5mYzoQYgAIoAONbAN3/NAAD0NQFaIABME04 FRGU
dYqVbdmXjdkAmNmaJcwwjTsHyFmVZVkEcNnchFmZpVmbhVScrVCdRVqlbUqf Bdqn
tdhnlQij3dmk7dmmDdrFvNlH6VqqBdufdVqhJVv6K1qpPVqeXdqrVduxhdqy fVuv
rVqmTVuxjUq23UW3Zc6pjVurDdusBVSzJdy9xdq1tdu2TdyvlVvDbVyChFy9 ndu+
Lcu/hUnLRVvGrdvKxduzlVy+PdySfZ+QaADdPACaLQDWHQDVhVnZnd0HmFkY jY54
Ud3cfF3XpdnYnV3atV38q1hnxZ3UXd3Wfd3fBV6mFd53zF3kVVnltVrmjVnn xd3i
/52d493d5PVd6mXe2m2A29VWMdVdBeDd6a3e5hXf4b1X7tne8+1e2P1e4A3f 8SXe
8o3e3p1f9bVe9n3e7HUd+EVf7+1f+21f6OVe6S1g9T1gAD7dixUA8yVg/m3g 6yVf
+5hg+V1e8L1g/I07DV7gCq5eB8be/FXg/eXg+vVg972fkNDNBzgA112A4AwA sezf
5uVEx207GJbhA6DhBrBh+iXhBdBhrTXeiOjhGa7hG8bh2jVi01HiH2biIe5g KIbg
rRUAKQZiIcbhHD6+eNliKvZi673iuBPjIG5iAy5iMI5iXvVhLlZjCzZjykPj Lvbi
J25jMbVjOSZiOqY/Pq7iFf/+Yx5+4yVOY0EOXkKmxkAm4zy2iTA25ClGZEdm Y0gO
4PR5YUZl2QAggAHAUTJm2mKMZAUwUU72ZFAO5QcYZUweHU0uZRlGgE7+ZLl1 ZFbe
402WZVSuZTy+5TPO5VlOZVueRFI2ZV2m5USuX1+uY2De5WSm3WU+mkE9ZWQO 5ZiN
5l2c5mMW5l4mZjeGZWrmZifGZkZu5mpWZXKuPm0OZl4eZ2/GYiTWYnMWZwNO 53RZ
Z2e25lV+5wF65QJQWQSo3eDk1QJIgAWA2VIeUdl9AIZ+SgQg5X9mWYHW3Qco 6IM2
gIR+gIVu6Ic4Yu1N4tyM6IAGYoI2aIT+WY1mWo5+6G//FumJLumLzuiNfgCH 9mgB
BmkFcGmSBlWLPmmFVmma7uiWBuiX5mmTxmiUnumabmXO8Wei3umKPmqZBuql xuWc
fuqBNuqYTmqqFmp4/mh5vmqJhuqeRuqfjtmVhmispuiynmq0DmqW/uqbDmud zuqo
3uqzZmi4Vuuxtuu25uq3rupfFuuR9mupBmy9FuwU0c26ZuvDzuu0ZmrK+9QE 8GGG
FoimTAAHqNkC2MuANoAEIIkRrdl4oWzLjuEDyOzNJoDOzsrPDm0CGO0dpkbT dt3L
Tm3QXu3WnkSNhm3ZLu3crGzbRm3V5mzP7m3RDtXZJsna5lTizm3jdm3kjm3l Bm5j
/z1tzIZu1j5u0E5u0pbsxwmJ5r7t4t5u6e5u6v5uMR3v59bs6OZt9P5t8EYc 8Q5u
7MZt9zZv+Pbt6jYd9s7u/N7th5hu+Zbr1Knv6x5uANdt7uZv9baP/8ZvBj9v B19u
NIzw8hbw1/ZuC2cODNduDSfw/jZw9AmJaTWIBkiABJBejX7KBXAKEx2AFy+A ByAA
p2XoDv+SE4ddFWfxsXzxAYjxGa/xG69xmz7wiNjxFF9x2/5xGHeKIbfxmsXx eFHy
Hm9yF39yGZdhIp9yI5/vwDFxEkXxK+dUJw9yKOdyKScAKjcdK2dyM89yNN9y Gl/z
Nifxpk7yMedxOG/x2NbyKP8v8hyvjTf3cTkXcjUX9CN3ZT1nTj439D+f80D3 8kH3
kELH8khH9DpXdDDXGzF39CWHdCDX9C5n8y8X00uP80xP802n9EXPcwFIdT8f dVYv
9Tu3D1k/c1K381PvZ6NkAAV4Shlm8gGAWdtGgDkn8iJeABoOAANYgKkEdmEv aJUt
dgM49mS38WVv9md/dcsBTGkvVWr/Z2PnVGSPcWWPbW6H9rMM92Gv9nJf5WwX UXWX
5W7v9LkB92AXd2KP93N3inRndntnd4B193G3dmxHd22vd2cn+LgDy31/d3K/ dnOf
920f+GiP+IP3d4tn+HvH82//dY3vd4qXd4Wnd4Fv+Iz/n3aST3iAX/iU//iH N/iW
r/iTv3iVb/eRh/eS//dPhvl19/bwFnmW53mX/3mUD3qdL/qJP/qAV3qQb1tk F99P
7mQEwE3ZXfZg1vakLQACcHYDIMipB3irx3qY1XpU5voF8HqwF3r6Lj7YJfuH MPtn
j+2tF9Gu/3qYFfu4r/q5p160R3oaXnu9D3t8Zxvs63tN/fust/u0x3vCb3tA HXu/
v3rAd3zBz3vJj/q3rz/FL/vLX4C7H3y23/vJ/3zGP3vMV3bNN33OD3O4p/rF t/zG
F/3HJ/3C53vZB/3aH/3WN/zX9/TYl3vaV33bz/zId33wQ/3ir/vjZ/3kB36i pfzZ
/6f7wIf+0pf+R6F+3jd+349+t6fGr2wAHE2A5S1iTn1x8mdtr7fdzY+YMST/ 4D7/
Uq1d1q3xlY1t8X1/5LTN8qd/gDjwYMGBBg8IFChAYEGDAwEMGBAg0QHFihYp ShRA
AAFHgwoUJGigAKKBBQQEEjSIUCFDhxAzXowpcybNmjZv4sypE6PEjR0ffAw5 EqJJ
lAUPJlzY8GHEiTYz+kTgEaRIkkUHHl2p1GVTATu/gg0rdqwDqBylAqU6tORJ rCqT
tmQK82nPs1OFWm2bEinLpS+dkg0sePBOsz+DViWqNytcv11vGkaLeO3VvVrj /vVK
eDPnzmXrHlab1+jbvlzn1v+MfDcxW9J8t8oF7Hk27cKgJYtW7PqyY9Q0VafF q9vt
a8yPayNPrvyzV44OEAwI8PEjSQMKCwQ4QKDBwgUIHgwgEFtz6onOoUufXv16 9u3d
v4cfv3z+cpjno09fax1he+4LvIMnXmaQmYfAc/ipRxJ72vkHYHwD0hchbfYZ iF5+
6/HH4HsBykdXcxUiSJ2CGbr3H3wCHiehiptReGB6IkK0YIkOoujbTC1amGCM JDZ4
YocrAhkYjiHqJ2OPHEJY3ocuXjgidhqaiGSKQVIJ1pAvFsnjhg9OeWOBTOq4 35Mz
+phklWfmdGWTO455JJc2yqRmmEZuWaNsaOJZn0QcEdD/J0cMPDQSeAkc1IAB AxwQ
3n8EPNAAAj/+ticCffoEqAGCDkDodocm2h2jjkKap6gXZcSnnwhYiqmmhiKq qEmN
PmqmlwKYWmmgBgxaKKeufhprl6MCW+qkp6aKa6a6tuoprKHGKSmlf96a66bJ Lrqs
rMCOKuyzqEZ77LSdVgvqtTFpS2y3q+6qrLi/YptnubZeaiy61L66LpzkOmtu vNKy
Cm69vt7bLprvQruvt/3yai27pOYLr6rI+tsrswIP3HDBD3+bsL13NkvrsA7L C7HG
AHNMsclf2UeAA88ewMADEBHgMloPDIQAQ4y+WTLDzanMssswy2wQzd7dLGXA JwOZ
//LKfrb8sgExPzBzzUXnTF6kPC+9UdNARy301NwZrTPSKyrts9NQS0002FUT iLXZ
XKdt89p2Wj02lWUz/fPTQdP8Nc50t/1cz3mfzffQcv89sd0q4q213mh7rXbi 4+4s
eNYIbL13131LHnbdi5Nt3uCOF7754VQD7qHlb2seN+qKg05f45g/brjfngc+ 6eWZ
Q8454rjHHjy+Vm9EqaG4EjCASUkVYFLRDb2cwNEV+VZ8n8cfpLxWzSv1qUAG SC+2
8MlV/zH2yS9/nfNgQw/+9DwRbz5E2aeP0PreR//++BPKZv2myGuPefdr1PfC 97nh
WcR/5wug+rpHwPyJb3/8i/+f8eaHvu0NsH0GDFxFFGhBBtrPgRrUnwQ7U74K ArB+
3HteAfV3wut9UIUZbGEES2jC/skvhRgUIQ0PWLkO5pB+O2QhBH1ow9m88H9C FCAP
i8hBinhQh0wkovtqeMRgOeUszzqeAbjDgIU8IFHhGch2EIUrBLgwi7WSCkm8 CEYx
MsokDTBj1Eh4RcHMRYt+4qIbFxDGAYxRjnREYw3zuEY+xuyNgIxjGQ9wRjve kSyG
/BgbIdLHPwaykY8spBopicgv+hGOZJyjI+toxUhKspNbbGMiQ7nIUQ4yjZrR 40Y+
qchMknKTRkTlYCa5Sku2EpOMzKUpdwk/itCykl0Mpij/BVlKQhqTl6mc5SFZ CUph
wvKZskRmNYF5zWZqspjSnCA3PWnNWw4zlpykpjm9ic5s6nKcJrPPcwxEKabg ao4F
2BFCjDUpP6psmxWyZ5/w2agB7HM//QTPPw/CHHl6hp7OuSdJDppQhSx0AA0N 6Dqf
U8+sGVSf/NwnQ8HI0WhCFGXm+ShF5ydShZJUoyZ9qOoGCtKKvhSjMd0oTVNK GIkS
FEX5ROhI/TlTgbK0oDglKkyNCtCe+hSPK52oUl3KVJ061aFIpapQLVrUkj4V klGt
aVK7mtM+7fSoHbVpS4d6UbRm9aRj7eVUgxrSq8IVrFpda1nv+taM8lSsc1XO XPzk
/5PvVSexih0apba5tElxBLGKnSyuyNgnwQ4WgY89rNMou1jLEsCxho1sZz1b HcZe
9pSZnRUUi0da037WJKmNZmFdi7nSwraysg2taler2dHeNrenBa1obStZ4aKW tyj1
bcdaC9ngCnd+xO3oZl8bXd02trfMpZ5TgHvc3Ca3uM/9LmzDq93t0tS7uC3v dGnb
XeOu17TmXS56kbgnla2sngO4bhuhCNVZ6S6/HNkvf7voX8xut1T4VdmAC2zg /Moy
wAyGjoMbcODzJvi+/m1wgS0M4XVKWL8VvjB968ucEHOYvx6Wq4dQTOEOk9jE OlHw
hl+s4hi3eMEihvGHS1xfGv8L2MbXXfF/O+ZiAt+4xzJOk4aDjOQh41hJRx6x kpcc
ocJeZAB9w9X8KEuQPi1NtFnestPiWxLtDA7BzMWyRbRMMy7DWbFfTjN18VsR N7+s
zF5Gc5gxvObujvnNep7snPvsXs3YmSJ4hrOZCz1bK3Mw0Q5Y9KDlzOdHqy6/ bSZz
lwl9aeVCOtOSpnSnLQ1mTCvJv5sWdKkT62hQh/pqqr4zp+Ps6k+LedV5bnV1 Xq1m
37KZ1qy2da9xXedA75rYVjG2j2MtFtRQCpkHwNwBqm3tATAA2wxgwLSRuZEi azZr
0qa2tauNbW1z20CCM9CvVwttMD9n2uW+dra3nW5vs5v/uuKON7nLfW57d3vd 4HZ2
T6PN73mbu97bDjhkB26Rd+MXc/2mN7oZ/u12Zxbi40Z4ohR+b4E7dt8S5/i/ F67u
hmN8sBo/OMJL/nGU69vgI2+5xy2e72ZnmDwylzfNK37yi8cc3jOft8tt7vBY r3zo
/q75z2/+xJ1PPOE+x/fRCU7Xz4F5WBc5eX4Z/MNUXyTr8K4I13vm0Yf7Gdgc E7uk
yy7gr8s67AweOzLrbnZ1cxfnf8b63Ntu97ej/dAxYfvW/+71wFs93B3se+E9 ene4
s1bugvO74wGf98RDfmmTb7w9LX/MTCeQ8RZx++Evj3nTh37zozf82VEf99Rr ffWV
/y/9509fZMLLvvO0r/rtRU921uO99rZnUf9ObXAr6VvclJL0jNPu7uKPjvlM Fvzi
o/9s52cc+lmTPk5Crvzjq1Tvaiee8eluG+q31vphSflcq1d+7j/x9d83f/PF /3zy
qx/56J8//EF/evfnX/jFX7Qt3/XZ3/A1VwJpHvP1H7x5X9eZXdjVhANin8rd yeBo
mgLSBAXuHwRmYAdNIH6x31jZCAYyYAgKX+SB4KkNHgrynpWV4AK24AaKYPJ5 4AnS
YAomXgyyoATmIO/xYARq4ExwIAIG4QfOmkwUof/d4AwSYQ0eoAXWjQk6oRJC Yfw1
oQ8+oQ4i4DQJ4UwEX/BFHP/iecgXykQYamDwjWBUQQUSxgQagmDrAWFPuGHj 1V0c
qmEFth8d9p8ciuEdcuHOmOEbyp6q5WEU7qFG1GEhyuEYut6sDKIdNiIgvuCS tWEf
wqEhkqGSRCIj/qEcrqFPXaJNZKKmHWLbdOLvqaImPuIO8iEpMqIjBmLgpSIl fuIp
duFPZcQu8mIv+uIv7mLbAOMwEiMvGmExImMxCmMyMqMxDl8zQqMzKkk0QuMx UmM1
esg1MqM1amMyLmM3EiM3gmM4ZuM4DqM4muMvfmM69mIu6iI7AuM6wmMoptQ8 xmM5
2iM9QlQ++qI82iM68qM/ziNA5qNAwiNB/iM+BuQz8qP/NF5NQ+qhO0JkMCpk QTLk
RB7aRCLkQFZkQtoeRq6TRl6kSE4jRG7kQXYkR34kSBokO7rjS8JkTMrkTNJk Tdrk
TeJkTurkTvJkT/rkTwJlUArlUBJlURrlUSJlUirlUjJlUzrlU0JlVErlVFJl VVrl
VWJlVmrlVnJlV3rlV4JlWIrlWJJlWZrlWaJlWqrlWrJlW7rlW8JlXIoKAMQE XaqI
XVYEXgqlXlIEX/IlbfjlRfxlT/4lXgLAYQ5mZwRmXyLmXtZlXjZmciymAyBm Yupk
YT6mZApmZgIlZlJmZVomYSwmaIbmTXrmZx6mckxmZYrlaUaIXpbmTp5mZGpm XloE
/212ZmbCZm32pW365k965m4ih3BS5m0GpWt+pmoap2DGpk0G52suZ3EW5XP+ JmBG
J3F6JXLOh2EeJXI2p2BwJ2fm5mZKZ28OZ3ViJ2HqZnRap3m6Z3n6pGvS5XeS RXga
J33OJHVuJ3oapX7C52zYJ3ziZ1Rq53LY5YCapnj+Z3smJoLGZIE66E4caE1E aC5C
aG2GZoV2oXwuqGdM6GNq6IbqJmtiKHPiZnyuJ318aHW2JmmGqFjMZ1K66GSe p2W+
KALOqIICaIeyKGG66G2mpmY2aJB25o+a543aRIymaJGS5nsiKU0oKXs+aeLl aHGe
6I5i5pVyZYGqZpROp4JOKf+Ueil7AieYGuiY9qh6kueaAiaakilP6meYykRq rqZj
smmacgadUuhxjiieboaeAqmfYiWX8qac2p53GmiaGirBcWiivuejlumdQqpi +umi
hlpwgmahAimJRuqb8uifViqfkmd6eih/CupVEup5nqpsmqly9qilxtpsqqiU fumo
emqeXuet5qR2wqqTzqmdLiepUupvCutlLumnimaurmpVpmpt0KiokmmvPuqz oqit
zmqw9uex9upo6ipO8qqrviqw+maxgiq2LitN+ue2WuukamWztme3GuudSuuC kmu8
Bmumqup94munEquWDuu9Eim/Qqq0Iiq09mvAvuu4+qv/vR4swY4owsplxErs xFJs
xVrsxWJsxmrsxnJsx3rsx4JsyIrsyJJsyZrsyaJsyqrsyrJsy7rsy8JszMrs zNJs
zdrszeJszurszvJsz/rszwJt0Art0BJt0Rrt0SJt0irt0jJtsp7JvOIomkDt 8E3t
nj5l1UIpVGLtTGwtlUqt1n7tWnatjirl2Epq2YatU5otvNZqlaxtrKZtU74t u5Ll
3CJrtj4t2Obt1cYtU9qt3VrZ3+qt27Kl4PLt3qpt3y6l4SYu4sqt4qKt46Il 4z6u
5C4u5Moo5iIl5fqt5nan57Ym6LYtlQDuknHu5Vpu5BLu4a5u47ZuWp6u6pLu 4M4u
/+vWruvebuW+buemblnGbub27uaKLlH+rvAG7+ceL97u7lkWL/Iur+wGSenK WPMq
b+7y7vMCL/bW7fAOJfWObvTSLvjarvjiLvnqrvUyL/eKq/leL/pCL5BIr4l5 L/Gq
r8Gyb/om7/fCb/ju7/j2b/n+7/ne7/uuSPwmaP7SLwJ3b/2Op/Y6r/tmLwQb rwN/
pZFKiAV3Z5PepQZvLge/pgf3JwhvpwgTLwl36b5mMAqrqAnvJQsPpwtvKQy3 qQpP
pwwDqA37KA2fqQ53Lw4rpg/LJhD/qRDvKhEPBgaHMA9LphFTpRKfMMQmMRSP 8ML2
MBUvsRUfJ6duMBYzqRTvsP8XVzEYX7EYZzEXzzAZx7AZ37Aa5zAan7EBr5YT jzEc
Z5YcvzAbw6kWX7Aep7Abr7Eft7HZ2nFX4rGHAnJ8HrIh03EcJ/IPL3IdN3Ke RvJl
TrJoVrK3XjJ4ZrJzbnJ9drLWfjKMhrJMFrIjq+0og0UpB/HbqjIlszIqw2Qr W/Ij
D5YsHzEst+8AR7AuT7AEPzAv/3IA57Iwoy4FOyU1AkA0tqQvJjM2riQ0NnMz LnMv
RvM2jiQzVrM3piQwZjMynuQvdrMybjM4K/M1J2M4k2NJnnM5P3MzovM5jjMz s/P/
ReM736M6I6M9q6NRgmRGmqQ5LyQ+W2Q7/7NAeyQ9Y+T/NI/jN6ejQoMjQ5uj Q3cj
RC90PEc0P7OkRVc0QTekRGsjRT+0Roc0Rwf0QxY0QpOkSXc0QA+0Spc05vWz R1/j
UVJIAX6ba3Ff8LUiAtVKz9gTZOV0Aj5zPdn0TxcPGAq1rPX0yhh1gBGi4sF0 gRQ1
Ux/1GSY1ay31TQM1UkO1K37IVOM0V2ceT3+MT1O1U0viThNcTRNgUwd1V5M1 WG+1
VcP1Wkt1W5/1W4915WS1W4v1JiI0UeN1WNP1XiNeX+f1X6v1T0KFTztHWdlZ 7D02
YEOiY59cUEW20Ol0JcpYYzP1Y3NVZkfcZsvSqZ0FN20f2Wl2XTubZ0cFaheg t402
/2vnnWmDNmar9mwbNtL1hGXD9vFJNmmvk21fdmrLNmrvdqi59mlDdm4jN2V3 DHH/
9tgFN20rd29/dnHHtupN9mLXtm8393F/VHJD2nLftnFzt3AfmnSHd3pbN0+2 oUcx
91mYCiWBHSfW3XzTt2H5yX0j9Bjqtx7Zt/xBYn7ftoA/i39HtSLK94HXd4IT eHQb
+GUjeH9HuNXF90BR+INbuApeDYA7+LAMuIcvOIhvuIhDOIlLeIOfOH9/24Xb NYNr
eDlx+Iur+PCYOI2jeIdftVfneD1VuI33OI5PuI67+GZDd1C+W3AjQAIwACXR X5J/
HX+Xk5NDef/pozwtuWY3+f+TP0uUe3ftUTmQW/mXY3lEsiFgjPlZlPmY3/iU W0+V
e7mbD3mMLx6Tt3mcw/gmrjlH5HnsvXlrq7mes/mc63mgo16fd/mVK7hX3zmX /zmY
z2KiE7qfGzqg17mg61ylL7qZN3q4KXqknzkiSqSziPifYMdIcMfyfRuSz6HH WM9Z
MECqLxOrVwiiXzesnzqq0PqqL9+tZ3re8cmuz7p01Pqvy6GUa/qwnwqvG7uv J7ir
RxhQR0Wxqzqrtzqul7epN7u1H3u0a7u2EHuvYzuwvzcMcnu1k7utJ3uYnxi1 y/q6
I7u0o7kopnu8P3u5t/ukww+zq3u+szu9k3qa63q3yzv/uAd7v8M7qgP8vGv7 TprF
hDVAAeTHR1w6/QVYaetOR1B8xV8882V8vddjXUh8x+fHx7/hFZbhxkuFyU8H ym+d
yj/zUXN8xSsAzI+ezH84y0+8zeO8avP7tmsEz7u8xTN6zAd9xNdTz3v80ed8 0KP7
0Je8zzs90L86zbc81Xs60nO2iSl9zTf91j/91RO91tO5t0G9JZL80hf9zVc9 2pP9
1If92VtO198kTPhEA/iRzWeH5o13AQ7LNuX93ld83692age+yO/jRAx+WuSH 4es2
4KOarDU+3x+A3z+25MPaUFd+4V/+4Wu+4HcE4T/+50d+tCX+wNu7V3R+6WO+ uoV+
/0e1/nRAPnLHvuqPPOuPvuPTvunbPupPPmvN/kfU/t8D/+YH9vArQPFn/vGL vlSQ
fu+/fvr1XZaPE97vvuVPP+IHf3MpP/PDvvMr/jP/yQNkh0CARHqAB6KcBH3z Sfq9
evmfP1AkgPoDknZMm/svGJhZvzQJi8sARIADBx4oSBBAgYIHAwYcIHAAQUSJ BBw4
IHDRgQCNFTl25KhRQEQGDwQSNIhQIUOHECVGpGgRI0iPM2nWtHkTZ06dO3lW BCmS
5MCCBxMubPiwpcuKFynKxPkTwciSQ1EaXZkUwUumGTf29PoVbFixUKUKPVlU JdKk
WmN2vUk2qEmiKY+ybMm2qf9bsXv59gULd+pZulfXLm0rICdgs3Otqr1rOC9i v5Mp
V/aoWG7VtHYnQuYq+a1GoIEZb8aK97Nl1av3YqaKtu5pz05Dh4wa9/Vgx51h Rmb9
G3jwmTILJGRwYECBAhEXJFRgwADJBQ0GML2IwEFWArRtEjeOXDlz59ClU7dO ALt2
7sLZB/eu4Hjy5QiaJyQfYHp16+kvrqf5Pr7w6BsvOvzM2y+7/vRqj8HVAARv vvqe
KzC/8/jbbsH/NioOPgjFs4/CA5m60L8GTfTrQfk+nLA8/UZMEEPQutvwOxUH BLFF
C2Es8cQew0pRQAnvqxBB9TIcjsYObRQyRBev2/FIH6X/7AnICAnMsUgFZayp yhWH
FPFJI7ecksyduryRRQOdRA/KMZFEjMMArcRRTR3FLBPPHkFqwLkDqCvAzwH4 hI7Q
Qh+Y7gCLtEvtKY34TChQQKkbtFBDEVX0sDw1bVSARxWINFBKKyXvUvQy5dRT UCed
cNToSl2Ux0033bPPP0NlddRDG0jUVN9QrTW5W1sldVdMfZUV2Y8cBVZSQXGt VFde
YY2yI1ohtXXVYV0ttldGk03W2k+xdVbbaI31dsZOmRV2WHO7jfVbMsNVldx2 Xz21
tlTHFTXXe4+Nd9Zlrw02W3u5ndbNywQWl+B6W3UXYYAl5gsk5x44ANAFEGgg AIS0
/yX00F5jTEwjizE+QGOOPf7YVZHhnfjEios6OeWOn314AZepVVYAkzPe2GaW W9Zu
ZJjzlFkhmoFe+eOQiX75M59RXvrmfnVO2OiYS575Z5Wrhjbnp3f2aeukuw6a ZaeZ
gjpr9pC++Gymyw177bGj5npqr4VWW8u2y3xbab3TprtvTqWuWW57r/Zb3rLh zhvt
pgkvurbDqd57crYZhxlpgZYLgIABCvo6V+0QgLpzjBEAXXQQ9zZd880dLNvz 1UMf
XWjyYLc79c9vdz3t3bGW3T3aVWcd99wfEJ7knhOqHXngm2aeeK2dVwD630mH lvrK
nz9e+9yj6756Bnu3vfXtDf8ln0vjfU9f/OWvi738yc6PXn2Q2dfw+uzhV35/ 9QPO
/cIHwPnxzn3oS97rDjg8AcYLaQVIDgIOtbGiFCABC4AO9hbwAJA94AENQA/q yibB
5VTwUQ/AoAYNwEEPkgeEIjyd3R5ovxJOEIUXzOAG8fPC6MRwhAi8ngkpmDId stCF
HwxhEB1YQxsOEYdGVMgKedhBJcqQhFA8oRRVuMMW9vCKTHSicCIYRQtO0YtJ hOES
Z9jEMm7xjF1EIhjXiEUajrE1N4RjCqn4RSvWUYyGSwgRc4jGOf7xh2ykHx6/ 8sYi
xrGPakykHd2ox0fyMY10nGQgGTk7LV7yiFX0IQgVKUT/5xCSi5HUJCkp2cmJ gQQl
CTgZCAfynAQ4oDoFMIAI0ePBBFykg9XJYixnebED2BKXBNAlLylogF8SIJiU c2Vl
YJkQWQKKlsd0ZjKXeR1fAnMh0myfAIiJTWMiM5e79KYzwSnMO06TShopJ0HO uc10
MvOb0AznMK1ZzFraU5nq7CU79enOJsLTK9U0iD+1ect7rvOZ0eTnQs35T4cG FJ8E
leg7EaoThV6TnhblpkCbGdF9CnGe2UQnRiHaTnF2NI/k7GdFGzrSjJrUoM1L aT0v
2s2B4vSlMP2RPGca0po+9KcunShIVQpQn5ZUqRwVqts0YhIGCCoBCQiWB0W4 AOQI
/2QAXi3AAwhgHhAGVWECsCpWtYpNdXp1AGAVK1nNStZFTpV/a21AVrf61q8i Z65l
rc5Zs6hXvrq1q38NK8boOli7ShWvbzJsWwni17gClrGCJQBhhTjZvib2sosd q2Y5
e9DIpsuziIWmYgNbV7RWq6oFuepeKcvV1Ya2tY597Wmbl9rKglaumXVtYWXL 1s/e
NrijHS5keUs2tRaXtseFa3Ibu9nHVvK58DGuaqeLWeXq9q7N/Yxvbdtd0Va3 tL2F
7mF/i1zvove64p3STxigABFirK0DgA42ERBauuZsARoLgAEWkMWo2PchGEyO fg3A
X/+WFcACJnB4m0tfBON3wf/7JUh/wfpfaEq4wEI
|
|
|
|
Re: Need HELP! Performance problem [message #120361 is a reply to message #120294] |
Wed, 03 March 2004 15:10 |
Eclipse User |
|
|
|
Originally posted by: none.us.ibm.com
The best thing to do is fix our code.
No seriously, create a snippet of code which generates the problematic
graph, and post it to a bugzilla. We will investigate to see if we are
doing something stupid.
You might also try building the same graph in our "flow" example using a
bunch of activities. Then you could save the file and post it to the
bugzilla.
"Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
news:opr4aepelylhlh26@localhost...
Hi Randy,
it is not really that many. It is 21 clusters of 12 nodes in each. (take a
look at the screen dump) It makes it 252 nodes. I run on 1.3Ghz machine.
CPU utilization is 100%.
For 250 nodes performance is surprising.... It seems that performance is
sensitive to the shape of the graph. I could run simpler and larger graphs
faster.
Serge
On Tue, 2 Mar 2004 14:51:59 -0500, Randy Hudson <none@us.ibm.com> wrote:
> How large is the graph you are laying out?
>
> Perhaps you would benefit from implementing the following algorithm for
> horizontal placement.
> http://www.inf.uni-konstanz.de/algo/publications/bk-fshca-01 .ps.gz
> The results are very similar, and it runs in O(N) time. We would like to
> implement it when we get a chance, but we haven't had time. This would
> be
> agreat opportunity to get involved in GEF.
>
> "Serge Mankovski" <smankovski-NO-SPAM-@cybermation.com> wrote in message
> news:opr38whvu7lhlh26@localhost...
> Hi
>
> Creation of a hierarchical graph spends 78% of its time in
> org.eclipse.draw2d.internal.graph.HorizontalPlacement#balanc eClusters
> method. When I build large graphs it amounts to most of the time counted
> in tens of seconds.
>
> I wander, if anybody knows how to speed this up? Is there way around?
>
> At this point we are pressed to make a decision not to use GEF any more
> for performance reasons. I would hate to see it go... If there is a way
> to
> make this stuff to run faster, it would save the day for us and we will
> stay with GEF.
>
>
> Thank you
> Serge
>
>
--
Using M2, Opera's revolutionary e-mail client: http://www.opera.com/m2/
|
|
|
Powered by
FUDForum. Page generated in 0.05488 seconds