Algorithmic Planning, Simulation and Validation of Smart, Shared Parking Services using Last Mile Hardware

Muralikrishna Thulasi Raman

st164234@stud.uni-stuttgart.de

University of Stuttgart

Institute of Architecture of Application Systems

Introduction

Important Background Terminologies

- Smart gate and Smart parking
- VANET

Contribution

- Setting up simulation-based testbed
- System design by extending existing mathematical models
- Analyse parameters related to various stakeholders

Limitations of previous work

- Surveys to gather data
- Mathematical models System design

HAAG Researc

System Design and Architecture

Microscopic area or Simulation base map network

Approach - Shared Private Parking Model in Web Service

Design of the system

Mathematical model - I (Focus on preferred walking distance)

$$U_m = \frac{\sum\limits_{n=1}^{N} t_{dur}^n \cdot x_{mn}}{T_m(H)}$$

$$\mathbf{x}_{mn} = \begin{cases} 1 & if, (D_m \le D_{max,n}) \& (P_m = P_n) \& (t_{start,m} < t + t_{dur}^n < t_{end,m}) \& (F_m > 0) \& (t - t_{lr,m} > t_{th}) \\ 0 & Otherwise \end{cases}$$

Mathe

$$R_m = \sum_{n=1}^{N} \left[\left(t_{dur}^n \cdot x_{mn} \cdot c_m \right) + \left(t_{od}^n \cdot x_{od.mn} \cdot c_{od.m} \right) \right]$$

$$\mathbf{x}_{mn} = \begin{cases} 1 & if, (D_m \le D_{max,n}) \& (P_m = P_n) \& (t_{start} < (t + t_{dur}^n) < t_{end}) \& (F_m > 0) \& (t - t_{lr,m} > t_{th}) \\ 0 & Otherwise \end{cases}$$

$$x_{od.mn} = \begin{cases} 1 & if, (t > t_{dur}^n) \& (x_{mn} = 1) \\ 0 & Otherwise \end{cases}$$

Data flow between components

Results

Metrics

- Vehicular Emission, Reroutes and Distance travelled
- Utilization rate of parking lots
- Revenue generated by parking lots
- Correlation heatmap

Simulation-based testbed setup

Employing a communication strategy to search for a parking spot

Metric	Unit	Base Scenario	Proposed model scenario
Mean Vehicular CO ₂ Emission	milligrams (mg)	1.909×10^{6}	1.016×10^{6}
Reroutes	(No unit)	16	0

Benefits of shared private parking model to vehicle or drivers

 0.916×10^{6}

9.80

32

 1.016×10^{6}

Benefits of shared private parking model to parking lot owners - Utilisation Rate

Benefits of shared private parking model to parking lot owners - Revenue

Revenue Analysis for Smart Shared Private Parking Models

Effects of change in number of shared private parking lots

Conclusion

Conclusion

- Proving effectiveness of the shared private parking model
- Improvement to traditional model by lesser emissions
- Comparison analysis to prove effectiveness
- Correlation analysis to conclude reaction of vehicles and model.

Out of scope

- Ensure better scalability
- Better route planning
- Needs parking and overtime parking behaviour model
- To improve standardisation of V2X messages

Future Works

- Larger city-based scenario
- HIL Simulation or Digital testbed
- Bike travel as Intermodal travel option

Questions?

Appendix

Survey

- Among 34 employees from itemis
- From different German locations
- To gather opinions on shared private parking model

Result of Survey to know how many people are interested to reserve the parking in advance

Result of Survey to know the preferred Inter-modal distance between the parking lot and the destination Result of Survey to know how many people are interested to reserve with Inter-modal Travel option

Percentage of people interested to offer their parking

Demand data survey points

Route planning procedure

- Sources and destinations are chosen as geographic coordinates
- Fed to custom script
- Integrated database is used for navigation

Shared Private Parking Lots model database schema

Applications deployed in vehicle and RSU

Vehicle

M Researc

Design - Cellular Automata - Allocation module

- Cellular Automata used in allocation module
- Ensures even distribution
- Rule type Rule 51
- Expression: $t t_{lr,m} > t_{th}$

Approach - Technical stack

- Eclipse MOSAIC V2X Framework with vehicles, RSUs
 - Eclipse SUMO Simulates traffic
- Python based web service Hosts the shared private parking model
- Python scripts for processing and analysis

Simulation-based testbed setup

- Need for a setup
- Facilitates to extract logs
- Emission logs and Database records

Correlation analysis between vehicular emissions and distance travelled

Utilisation of individual parking lots

Utilization Analysis for 3 common shared parking lots