

Smart Building Energy and Comfort Management Based on Sensor Activity Recognition and Prediction

Francesca Marcello, Virginia Pilloni

University of Cagliari DIEE – Department of Electrical and Electronic Engineering CNIT – Consorzio Nazionale Interuniversitario per le Telecomunicazioni

Eclipse SAM IOT 2020 Security | AI | Modelling

Supported by:

Outline

- Introduction
- Scenario and Proposed System: Activity Recognition Module
 Activity Prediction Module
 Appliance Scheduling Module
- Simulations and Results
- Conclusion and Future Works

Introduction

- Building Energy and Comfort Management (BECM) System -> providing support to users of various intelligent buildings
 - Monitoring the environment and its users
 - Understand users' behaviours, preferences and habits
 - Efficient management of energy consumption
- Support cost-effective solutions to appliance management
- **Monitor users' habits** -> learning their preferences and predicting their sequences of performed activities and appliance usage during the day
- Most of the literature considers user comfort as a set of hard constraints on appliance usage, which are a priori set based on general statistics
- Some research has focused on Human Activity Recognition and Prediction, without considering a complex system for Smart Building solutions

Scenario and Objective

• Automatically and unobtrusively monitoring of user habits about appliance usage

- Usage of sensor networks distributed throughout an intelligent building
- Recognition of the activities usually performed by users
- Prediction of future activities, especially activities that imply appliance usage
- Energy-cost-saving appliance scheduling, according to user behaviour and user annoyance

Overview of the proposed system

Activity Recognition Module

• Training Phase

- Each activity instance is observed within an observation time window O_A , registering the events detected by the sensors

- For example: space of events $e = [e_1, e_2, e_3]$, instances of activities A_1, A_2

rates of detected event occurrences

- Model Vector for each activity

$$m_1 = mean_k(F_{1k}) = [0.53, 0.34, 0.20]$$

$$m_2 = mean_k(F_{1k}) = [0.34, 0.05, 0.79]$$

average rate for all the observed instances
of the same activity

- Running Phase
 - Sequences of detected events are divided into subsequences using an observation window $O^W(t)$ starting at time t $O^W = [e_1, e_2, e_1, e_2, e_3, e_1]$
 - The window contains a certain number of events equal to its size W
 - Feature Vector of subsequences computed as the vectors in the Training Phase

 $F_1^W = [0.50, 0.33, 0.17]$

 The sequences of detected events are classified based on their probability to belong to a given activity

- Provides a possible scenario in time **t** ahead in the future
- Probabilities of every activity A_j in t are calculated thanks to statistics information about all the activities A_i previously performed
- The probability for each activity is translated in the probability of one of the appliance in the house to be used at time *t*
- The output obtained is used by the next **Appliance Scheduling Module** to make a coherent scheduling of the appliances and the evaluations on energy consumption

Appliance Scheduling Module

- Appliance Scheduling Algorithm -> dynamically shifts tasks of controlled appliances to times when it is more convenient
- The scheduling of appliances is evaluated according to their related cost, calculated based on energy consumption and user annoyance

ACTIVITY	APPLIANCE			
Housekeeping	Vacuum Cleaner	Appliances and activities in rec		
Meal Preparation	Microwave Oven	are the ones controlled for the scheduling		
Relax	TV			
Wash Dishes	Water Heater	The algorithm performs		
Work	Laptop/Pc	scheduling of the appliances		
Taking Shower	Water Heater	corresponding to activities that		
Laundry	Washing Machine	have value of probability high		
Wash Dishes with Dish Washer	Dish Washer			

Simulations and Results

- Activity Recognition Algorithm -> Accuracy of 82.3%
- Activity Prediction Algorithm -> Accuracy of 67%
- Scheduling Algorithm -> Three different scenarios:
 - Without Scheduling Algorithm WSA
 - Sheduling Based on Perfect Time SBPT
 - Scheduling Based on Probability SBP

			WSA	SBAI	2Rh
Weekends,holidays and everyday (19:00- 8:00)	Everyday (8:00-19:00)	Energy consumption in kWh/week	65.43	42.43	35.83
Tariff 1 0.0534 €/kWh	Tariff 1 0.07666 €/kWb	Cost Saving with Tariff 1	-	50.4%	64.7%
Tariff 1 0.06799 €/kWh	Tariff 1 0.07666 €/kWh	Cost Saving with Tariff 2	-	49.2%	63.2%

- Most of the savings come especially from a wiser use of the Water Heater
 - Scheduled and turned on only for the strictly necessary duration of time to obtain the water to be heated enough for when it is needed by the user
- Washing Machine and Dish Washer are rarely used during the week and at times very distant from the periods of non-peak hours

Simulation and Results

• Annoyance rate-> Range of values from 1 to 5 modelled as a normal distribution with 15% deviation

> value 1 is the minimum level of discomfort

> value 5 is the highest level of discomfort

Conclusion

- Results show that appliance scheduling can guaranteed energy savings, reducing consumptions of at least 49.2%
- Prediction of users' activities permitted a quite accurate scheduling based on probabilities
- It was possible to guarantee that the annoyance rate was never too high, respecting user comfort

- There is the need to test the adaptability with different real-case scenarios and to improve prediction accuracies of next activities
- It will be evaluated how the presence of Renewable Energy Sources could affect the system
- Expand the system obtaining also information about user's health and finding the correlation between their right/wrong habits and their psychophysical health

University of Cagliari

DIEE - Department of Electrical and Electronic Engineering

Thank you for your attention

Francesca Marcello francesca.marcello@unica.it

