
Dimitris Kolovos, Louis Rose, Antonio García-Domínguez, Richard Paige

Last update: July 29, 2018.

2

Contents

Contents 3

List of Figures 10

List of Tables 12

1 Introduction 15

1.1 What is Epsilon? . 15

1.2 How To Read This Book . 16

1.3 Questions and Feedback . 16

1.4 Additional Resources . 16

1.4.1 Epsilon Website . 16

1.4.2 EpsilonLabs . 17

1.4.3 Twitter . 17

2 The Epsilon Model Connectivity Layer (EMC) 19

2.1 The IModel interface . 19

2.2 Loading and Persistence . 19

2.3 Type-related Services . 21

2.4 Ownership . 21

2.5 Creation, Deletion and Modifications . 21

2.6 The IModelTransactionSupport interface . 22

2.7 The ModelRepository class . 22

2.8 The ModelGroup class . 22

2.9 Assumptions about the underlying modelling technologies 23

3 The Epsilon Object Language (EOL) 25

3.1 Module Organization . 25

3.2 User-Defined Operations . 27

3

3.2.1 Annotations . 28

3.2.2 Pre/post conditions in user-defined operations 29

3.2.3 Operation Result Caching . 30

3.3 Types . 31

3.3.1 Primitive Types . 34

3.3.2 Collections and Maps . 37

3.3.3 Native Types . 43

3.3.4 Model Element Types . 44

3.4 Expressions . 45

3.4.1 Literal Values . 45

3.4.2 Feature Navigation . 46

3.4.3 Arithmetical and Comparison Operators 47

3.4.4 Logical Operators . 48

3.4.5 Enumerations . 49

3.5 Statements . 49

3.5.1 Variable Declaration Statement . 49

3.5.2 Assignment Statement . 50

3.5.3 Special Assignment Statement . 51

3.5.4 If Statement . 53

3.5.5 Switch Statement . 53

3.5.6 While Statement . 53

3.5.7 For Statement . 54

3.5.8 Break, BreakAll and Continue Statements 55

3.5.9 Throw Statement . 55

3.5.10 Transaction Statement . 56

3.6 Extended Properties . 57

3.7 Context-Independent User Input . 58

3.8 Task-Specific Languages . 60

4 The Epsilon Validation Language (EVL) 63

4.1 Motivation . 63

4.1.1 Limited user feedback . 64

4.1.2 No support for warnings/critiques . 64

4.1.3 No support for dependent constraints 64

4.1.4 Limited flexibility in context definition 65

4.1.5 No support for repairing inconsistencies 66

4

4.1.6 No support for inter-model constraints 66

4.2 Abstract Syntax . 67

4.3 Concrete Syntax . 69

4.4 Execution Semantics . 70

4.4.1 Capturing Dependencies Between Invariants 71

4.5 Intra-Model Consistency Checking Example 71

4.5.1 Scenario: The Singleton Pattern . 72

4.5.2 Using OCL to Express the Invariants 72

4.5.3 Using EVL to Express the Invariants 74

4.6 Inter-Model Consistency Checking Example 77

4.7 Summary . 82

5 The Epsilon Transformation Language (ETL) 83

5.1 Style . 83

5.2 Source and Target Models . 84

5.3 Abstract Syntax . 84

5.4 Concrete Syntax . 84

5.5 Execution Semantics . 86

5.5.1 Rule and Block Overriding . 86

5.5.2 Rule Execution Scheduling . 87

5.5.3 Source Elements Resolution . 87

5.5.4 Overriding the semantics of the EOL SpecialAssignmentOperator . . 89

5.6 Interactive Transformations . 90

5.7 Summary . 91

6 The Epsilon Wizard Language (EWL) 93

6.1 Motivation . 94

6.1.1 Automating the Construction and Refactoring Process 94

6.2 Update Transformations in the Small . 95

6.2.1 Structure of Wizards . 95

6.2.2 Capabilities of Wizards . 96

6.3 Abstract Syntax . 97

6.4 Concrete Syntax . 98

6.5 Execution Semantics . 98

6.6 Examples . 98

6.7 Summary . 104

5

7 The Epsilon Generation Language (EGL) 105

7.1 Abstract Syntax . 105

7.2 Concrete Syntax . 106

7.2.1 Comments and Markers . 107

7.2.2 User-Defined Operations . 107

7.3 The OutputBuffer . 108

7.4 Co-ordination . 110

7.4.1 The Template type . 111

7.4.2 The TemplateFactory object . 113

7.4.3 An Example of Co-ordination with EGL 114

7.4.4 Customising the Co-ordination Engine 114

7.4.5 Summary . 117

7.5 Merge Engine . 117

7.6 Formatters . 118

7.6.1 Using a Formatter . 119

7.6.2 Implementing a Custom Formatter 120

7.7 Traceability . 121

8 The Epsilon Comparison Language (ECL) 123

8.1 Abstract Syntax . 123

8.2 Concrete Syntax . 124

8.3 Execution Semantics . 126

8.3.1 Rule and Block Overriding . 126

8.3.2 Comparison Outcome . 126

8.3.3 Rule Execution Scheduling . 126

8.3.4 The matches() built-in operation . 127

8.3.5 Cyclic invocation of matches() . 128

8.4 Fuzzy and Dictionary-based String Matching 129

8.5 Interactive Matching . 130

8.6 Exploiting the Comparison Outcome . 130

9 The Epsilon Merging Language (EML) 133

9.1 Motivation . 133

9.1.1 Phases of Model Merging . 133

9.1.2 Relationship between Model Merging and Model Transformation . . 134

9.2 Realizing a Model Merging Process with Epsilon 135

9.3 Abstract Syntax . 135

6

9.4 Concrete Syntax . 135

9.5 Execution Semantics . 137

9.5.1 Rule and Block Overriding . 137

9.5.2 Rule Scheduling . 137

9.5.3 Rule Applicability . 137

9.5.4 Source Elements Resolution . 138

9.6 Homogeneous Model Merging Example . 139

10 Epsilon Flock for Model Migration 145

10.1 Background and Motivation . 145

10.2 Abstract Syntax . 147

10.3 Concrete Syntax . 147

10.4 Execution Semantics . 149

10.5 Example . 151

10.6 Limitations and Scope . 153

10.6.1 Limitations . 153

10.6.2 Scope . 154

10.7 Further Reading . 154

11 The Epsilon Pattern Language (EPL) 155

11.1 Background and Motivation . 155

11.2 Syntax . 157

11.2.1 Negative Roles . 160

11.2.2 Optional and Active Roles . 160

11.2.3 Role Cardinality . 160

11.3 Execution Semantics . 161

11.4 Pattern Matching Output . 162

11.5 Interoperability with Other Model Management Tasks 163

12 The Epsilon Model Generation Language (EMG) 167

12.1 Background and Motivation . 167

12.1.1 Approaches to Model Generation . 168

12.2 Syntax . 168

12.2.1 EMG predefined operations . 170

12.3 Creating Model Elements . 174

12.4 Creating Model Links . 175

12.5 Meaningful Strings . 176

7

12.5.1 Values as a parameter . 177

12.5.2 Values as a model . 177

13 Implementing a New Task-Specific Language 179

13.1 Identifying the need for a new language . 179

13.2 Eliciting higher-level constructs from recurring patterns 181

13.3 Implement Execution Semantics and Scheduling 181

13.4 Overriding Semantics . 181

14 Orchestration Workflow 183

14.1 Motivation . 183

14.2 The ANT Tool . 184

14.2.1 Structure . 185

14.2.2 Concrete Syntax . 185

14.2.3 Extending ANT . 186

14.3 Integration Challenges . 186

14.4 Framework Design and Core Tasks . 187

14.4.1 The EpsilonTask task . 187

14.4.2 Model Loading Tasks . 190

14.4.3 Model Storing Task . 191

14.4.4 Model Disposal Tasks . 191

14.4.5 The StartTransaction Task . 191

14.4.6 The CommitTransaction and RollbackTransaction Tasks 192

14.4.7 The Abstract Executable Module Task 193

14.5 Model Management Tasks . 195

14.5.1 Generic Model Management Task . 195

14.5.2 Model Validation Task . 196

14.5.3 Model-to-Model Transformation Task 197

14.5.4 Model Comparison Task . 197

14.5.5 Model Merging Task . 197

14.5.6 Model-to-Text Transformation Task 198

14.5.7 Model Migration Task . 198

14.5.8 Pattern Matching Task . 199

14.6 Miscellaneous Tasks . 199

14.6.1 Java Class Static Method Execution Task 199

14.6.2 Adding a new Model Management Task 199

14.7 Chapter Summary . 200

8

15 The Epsilon Unit Testing Framework (EUnit) 201

15.1 Motivation . 201

15.1.1 Common Issues . 202

15.1.2 Testing with JUnit . 202

15.1.3 Selected Approach . 203

15.2 Test Organization . 204

15.2.1 Test Suites . 204

15.2.2 Test Cases . 206

15.3 Test Specification . 207

15.3.1 Ant Buildfile . 207

15.3.2 EOL script . 208

15.4 Examples . 216

15.4.1 Models and Tasks in the Buildfile . 216

15.4.2 Models and Tasks in the EOL Script 217

15.5 Extending EUnit . 218

15.6 Summary . 221

Bibliography 223

9

List of Figures

2.1 Overview of the Epsilon Model Connectivity layer 20

3.1 EOL Module Structure . 26

3.2 Overview of the type system of EOL . 31

3.3 Overview of the feature navigation EOL expressions 46

3.4 The Tree Metamodel . 57

3.5 Example of an Eclipse-based IUserInput implementation 60

3.6 Example of a command-line-based IUserInput implementation 60

4.1 Abstract Syntax of EVL . 68

4.2 The ProcessLang Metamodel . 77

4.3 The ProcessPerformanceLang Metamodel . 78

4.4 Exemplar Process and ProcessPerformance models 81

4.5 Screenshot of the validation view reporting the identified inconsistencies 82

5.1 ETL Abstract Syntax . 85

5.2 ETL Runtime . 88

5.3 A Simple Graph Metamodel . 90

6.1 EWL Abstract Syntax . 97

7.1 The abstract syntax of EGL’s core. 106

7.2 Sample output from the traceability API. 121

8.1 ECL Abstract Syntax . 125

8.2 ECL Match Trace . 127

8.3 The Tree Metamodel . 128

9.1 The Abstract Syntax of EML . 136

9.2 The EML runtime . 138

10

9.3 Left input model . 142

9.4 Right input model . 142

9.5 Target model derived by merging the models of Figures 9.3 and 9.4 143

10.1 Process-oriented metamodel evolution. 146

10.2 The Abstract Syntax of Flock . 148

10.3 Model migration strategy in pseudo code for the metamodel evolution in Fig-

ure 10.1. 152

11.1 Simplified view of the MoDisco Java metamodel 156

11.2 Abstract Syntax of EPL . 157

11.3 Pattern Matching Output . 162

12.1 PetriNet metamodel . 174

14.1 Simplified ANT object model . 185

14.2 Core Framework . 188

14.3 Core Models Framework . 189

14.4 Model Management Tasks . 196

15.1 Example of an EUnit test tree . 205

15.2 Comparison between parametric testing and theories 206

15.3 Screenshot of the EUnit graphical user interface 215

11

List of Tables

3.1 Operations of type Any . 32

3.2 Operations of type String . 35

3.3 Operations of type Real . 36

3.4 Operations of type Integer . 36

3.5 Operations of type Collection . 38

3.6 Operations of types Sequence and OrderedSet 40

3.7 First-order logic operations on Collections . 41

3.8 Operations of type Map . 42

3.9 Operations of Model Element Types . 44

3.10 Arithmetical operators . 47

3.11 Comparison operators . 47

3.12 Logical Operators . 48

3.13 Implies Truth Table . 48

3.14 Default values of primitive types . 49

3.15 Operations of IUserInput . 59

7.1 Operations of type OutputBuffer . 109

7.2 Operations of type Template . 112

7.3 Operations of the TemplateFactory object . 113

7.4 EGL’s default merging behaviour. 119

12.1 Emg data generation operations . 170

12.2 Operations of type Any . 173

15.1 Extra operations and variables in EUnit . 211

15.2 Assertions in EUnit . 212

15.3 Available options by model comparator . 214

12

Acknowledgements

The authors would like to express their gratitude to Maarten Bezemer, Chris Holmes, Nikos

Matragkas, Fiona Polack, Horacio Hoyos Rodriguez, Alireza Rouhi, Konrad Schwarz, Silvia

de la Torre, and James Williams for their comments and contributions to this book.

13

Chapter 1

Introduction

The purpose of this book is to provide a complete reference of the languages provided by

the Epsilon project (http://www.eclipse.org/epsilon).

1.1 What is Epsilon?

Epsilon, standing for Extensible Platform of Integrated Languages for mOdel maNagement,

is a platform for building consistent and interoperable task-specific languages for model

management tasks such as model transformation, code generation, model comparison,

merging, refactoring and validation.

Epsilon currently provides the following languages:

• Epsilon Object Language (EOL)

• Epsilon Validation Language (EVL)

• Epsilon Transformation Language (ETL)

• Epsilon Comparison Language (ECL)

• Epsilon Merging Language (EML)

• Epsilon Wizard Language (EWL)

• Epsilon Generation Language (EGL)

• Epsilon Pattern Language (EPL)

15

http://www.eclipse.org/epsilon

For each language, Epsilon provides Eclipse-based development tools and an inter-

preter1 that can execute programs written in this language. Epsilon also provides a set

of ANT tasks for creating workflows of different tasks (e.g. a validation followed by a

transformation followed by code generation). The following chapters present the syntax

of each language and a few usage examples.

1.2 How To Read This Book

If you are reading this book, there’s a good chance that you are already interested in using

a particular task-specific language provided by Epsilon (e.g. EVL for model validation or

ETL for model transformation). In this case, you don’t have to need to read about all the

languages: you should start by spending some time reading Chapter 3 that presents the

core Epsilon Object Language (EOL) – as all languages of the platform extend EOL both

syntactically and semantically – and you can then proceed directly to the chapter that

discusses the particular language you are interested in (e.g. Chapter 4 for EVL).

1.3 Questions and Feedback

Our intention is to keep this book a live project that will evolve in parallel with Epsilon.

Therefore, your feedback on any omissions, errors or outdated content is critical and

much appreciated (and will also earn you a place in the Acknowledgements section of

the book). Please send your feedback to the Epsilon forum (see http://www.eclipse.

org/epsilon/forum/ for detailed instructions).

1.4 Additional Resources

As mentioned above, information about Epsilon and examples are available in many dif-

ferent places. If you can’t find what you are looking for in this book there are a few other

places where you may try.

1.4.1 Epsilon Website

Epsilon is a component of the Eclipse Modelling project, hosted under http://www.

eclipse.org/epsilon. In the documentation section http://www.eclipse.org/

1The interpreters are not bound in any way to Eclipse and can also be used in standalone Java applica-
tions.

16

http://www.eclipse.org/epsilon/forum/
http://www.eclipse.org/epsilon/forum/
http://www.eclipse.org/epsilon
http://www.eclipse.org/epsilon
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc

epsilon/doc of the website you can find examples, articles and screencasts on all tools

and languages that Epsilon provides.

1.4.2 EpsilonLabs

EpsilonLabs is a satellite project of Epsilon that hosts experimental applications/extensions

of Epsilon or other content that cannot be shared under Eclipse.org due to licensing issues

(e.g. incompatibility with EPL). EpsilonLabs is hosted at GitHub: https://github.

com/epsilonlabs

1.4.3 Twitter

To keep in touch with the latest news on Epsilon, please follow @epsilonews on Twitter.

17

http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc
http://www.eclipse.org/epsilon/doc
https://github.com/epsilonlabs
https://github.com/epsilonlabs
http://twitter.com/#!/epsilonews

Chapter 2

The Epsilon Model Connectivity Layer
(EMC)

This section discusses the design of the Epsilon Model Connectivity (EMC) layer. EMC

provides abstraction facilities over concrete modelling technologies such as EMF, XML etc.

and enables Epsilon programs to interact with models conforming to these technologies in

a uniform manner. A graphical overview of the design is displayed in Figure 2.1.

To abstract away from diverse model representations and APIs provided by different

modelling technologies, EMC defines the IModel interface. IModel provides a number of

methods that enable querying and modifying the model elements it contains at a higher

level of abstraction. To enable languages and tools that build atop EMC to manage multiple

models simultaneously, the ModelRepository class acts as a container that offers façade

services. The following sections discuss these two core concepts in detail.

2.1 The IModel interface

Each model specifies a name which must be unique in the context of the model repository

in which it is contained. Also, it defines a number of aliases; that is non-unique alternate

names; via which it can be accessed. The interface also defines the following services.

2.2 Loading and Persistence

The load() and load(properties : Properties) methods enable extenders to specify in a uni-

form way how a model is loaded into memory from the physical location in which it

19

Figure
2.1:

O
verview

ofthe
Epsilon

M
odelC

onnectivity
layer

20

resides. Similarly, the store() and store(location : String) methods are used to define how

the model can be persisted from memory to a permanent storage location.

2.3 Type-related Services

The majority of metamodelling architectures support inheritance between meta-classes

and therefore two types of type-conformance relationships generally appear between model

elements and types. The type-of relationship appears when a model element is an instance

of the type and the kind-of relationship appears when the model element is an instance of

the type or any of its sub-types. Under this definition, the getAllOfType(type : String) and

the getAllOfKind(type : String) operations return all the elements in the model that have

a type-of and a kind-of relationship with the type in question respectively.

Similarly, the isTypeOf(element : Object, type : String) and isKindOf(element : Object,
type : String) return whether the element in question has a type-of or a kind-of relationship

with the type respectively. The getTypeOf(element : Object) method returns the fully-

qualified name of the type an element conforms to.

The hasType(type : String) method returns true if the model supports a type with

the specified name. To support technologies that enable users to define abstract (non-

instantiable) types, the isInstantiable(type : String) method returns if instances of the

type can be created.

2.4 Ownership

The allContents() method returns all the elements that the model contains and the owns(
element : Object) method returns true if the element under question belongs to the model.

2.5 Creation, Deletion and Modifications

Model elements are created and deleted using the createInstance(type : String) and dele-
teElement(element : Object) methods respectively.

To retrieve and set the values of properties of its model elements, IModel uses its as-

sociated propertyGetter (IPropertyGetter) and propertySetter (IPropertySetter) respectively.

Technology-specific implementations of those two interfaces are responsible for accessing

and modifying the value of a property of a model element through their invoke(element :
Object, property : String) and invoke(value : Object) respectively.

21

2.6 The IModelTransactionSupport interface

In its transactionSupport property, a model can optionally (if the target modelling technol-

ogy supports transactions) specify an instance of an implementation of the IModelTransac-
tionSupport interface. The interface provides transaction-related services for the specific

modelling technology. The interface provides the startTransaction(), commitTransaction()
and rollbackTransaction() methods that start a new transaction, commit and roll back the

current transaction respectively.

2.7 The ModelRepository class

A model repository acts as a container for a set of models that need to be managed in

the context of a task or a set of tasks. Apart from a reference to the models it contains,

ModelRepository also provides the following façade functionality.

The getOwningModel(element : Object) method returns the model that owns a partic-

ular element. The transactionSupport property specifies an instance of the ModelReposito-
ryTransactionSupport class which is responsible for aggregate management of transactions

by delegating calls to its startTransaction(), commitTransaction() and abortTransaction()
methods, to the respective methods of instances of IModelTransactionSupport associated

with models contained in the repository.

2.8 The ModelGroup class

A ModelGroup is a group of models that have a common alias. ModelGroups are calculated

dynamically by the model repository based on common model aliases. That is, if two

or more models share a common alias, the repository forms a new model group. Since

ModelGroup implements the IModel interface, clients can use all the methods of IModel to

perform aggregate operations on multiple models, such as collecting the contents of more

than one models. An exception to that is the createInstance(type : String) method which

cannot be defined for a group of models as it cannot be determined in which model of the

group the newly created element should belong.

22

2.9 Assumptions about the underlying modelling

technologies

The discussion provided above has demonstrated that EMC makes only minimal assump-

tions about the structure and the organization of the underlying modelling technologies.

Thus, it intentionally refrains from defining classes for concepts such as model element, type
and metamodel. By contrast, it employs a lightweight approach that uses primitive strings

for type names and objects of the target implementation platforms as model elements.

There are two reasons for this decision.

The primary reason is that by minimizing the assumptions about the underlying tech-

nologies EMC becomes more resistant to future changes of the implementations of the

current technologies and can also embrace new technologies without changes.

Another reason is that if a heavy-weight approach was used, extending the platform

with support for a new modelling technology would involve providing wrapping objects

for the native objects which represent model elements and types in the specific modelling

technology. Experiments in the early phases of the design of EMC demonstrated that such a

heavy-weight approach significantly increases the amount of memory required to represent

the models in memory, degrades performance and provides little benefits in reward1.

1Recent developments in the context of the ATL transformation language have also demonstrated signif-
icant performance gains delivered by using native model element representations. Relevant benchmarks can
be found http://wiki.eclipse.org/ATL_VM_Testing

23

http://wiki.eclipse.org/ATL_VM_Testing

Chapter 3

The Epsilon Object Language (EOL)

The primary aim of EOL is to provide a reusable set of common model management facil-

ities, atop which task-specific languages can be implemented. However, EOL can also be

used as a general-purpose standalone model management language for automating tasks

that do not fall into the patterns targeted by task-specific languages. This section presents

the syntax and semantics of the language using a combination of abstract syntax diagrams,

concrete syntax examples and informal discussion.

3.1 Module Organization

In this section the syntax of EOL is presented in a top-down manner. As displayed in Figure

3.1, EOL programs are organized in modules. Each module defines a body and a number

of operations. The body is a block of statements that are evaluated when the module is

executed1. Each operation defines the kind of objects on which it is applicable (context),
a name, a set of parameters and optionally a return type. Modules can also import other

modules using import statements and access their operations, as shown in Listing 3.1.

1Although the EOL parser permits loose statements (e.g. not contained in operations) between/after
operations, these are ignored at runtime.

25

Figure
3.1:

EO
L

M
odule

Structure

26

1 // file imported.eol
2 operation hello() {
3 ’Hello world!’.println();
4 }
5

6 // file importer.eol
7 // We can use relative/absolute paths or platform:/ URIs
8 import "imported.eol";
9

10 hello(); // main body
11

12 // ... more operations could be placed here ...

Listing 3.1: Example of two related EOL modules

3.2 User-Defined Operations

In typical object oriented languages such as Java and C++, operations are defined inside

classes and can be invoked on instances of those classes. EOL on the other hand is not

object-oriented in the sense that it does not define classes itself, but nevertheless needs

to manage objects of types defined externally to it (e.g. in metamodels). By defining the

context-type of an operation explicitly, the operation can be called on instances of the type

as if it was natively defined by the type. Alternatively, context-less operations could be

defined; however the adopted technique significantly improves readability of the concrete

syntax.

1 1.add1().add2().println();
2

3 operation Integer add1() : Integer {
4 return self + 1;
5 }
6

7 operation Integer add2() : Integer {
8 return self + 2;
9 }

Listing 3.2: Context-defining EOL operations

For example, consider the code excerpts displayed in Listings 3.2 and 3.3. In Listing

3.2, the operations add1 and add2 are defined in the context of the built-in Integer type,

which is specified before their names. Therefore, they can be invoked in line 1 using the

1.add1().add2() expression: the context (the integer 1) will be assigned to the special

variable self. On the other hand, in Listing 3.3 where no context is defined, they have to be

invoked in a nested manner which follows an in-to-out direction instead of the left to right

direction used by the former excerpt. As complex model queries often involve invoking

27

multiple properties and operations, this technique is particularly beneficial to the overall

readability of the code.

1 add2(add1(1)).println();
2

3 operation add1(base : Integer) : Integer {
4 return base + 1;
5 }
6

7 operation add2(base : Integer) : Integer {
8 return base + 2;
9 }

Listing 3.3: Context-less EOL operations

EOL supports polymorphic operations using a runtime dispatch mechanism. Multiple

operations with the same name and parameters can be defined, each defining a distinct

context type. For example, in Listing 3.4, the statement in line 1 invokes the test operation

defined in line 4, while the statement in line 2 invokes the test operation defined in line 8.

1 "1".test();
2 1.test();
3

4 operation String test() {
5 (self + " is a string").println();
6 }
7

8 operation Integer test() {
9 (self + "is an integer").println();

10 }

Listing 3.4: Demonstration of polymorphism in EOL

3.2.1 Annotations

EOL supports two types of annotations: simple and executable. A simple annotation speci-

fies a name and a set of String values while an executable annotation specifies a name and

an expression. The concrete syntaxes of simple and executable annotations are displayed

in Listings 3.5 and 3.6 respectively. Several examples for simple annotations are shown in

Listing 3.7. Examples for executable annotations will be given in the following sections.

In stand-alone EOL, annotations are supported only in the context of operations, how-

ever as discussed in the sequel, task-specific languages also make use of annotations in

their constructs, each with task-specific semantics. EOL operations support three partic-

28

ular annotations: the pre and post executable annotations for specifying pre and post-

conditions, and the cached simple annotation, which are discussed below.

1 @name value(,value)*

Listing 3.5: Concrete syntax of simple annotations

1 $name expression

Listing 3.6: Concrete syntax of executable annotations

1 @colors red
2 @colors red, blue
3 @colors red, blue, green

Listing 3.7: Examples of simple annotations

3.2.2 Pre/post conditions in user-defined operations

A number of pre and post executable annotations can be attached to EOL operations to

specify the pre- and post-conditions of the operation. When an operation is invoked, be-

fore its body is evaluated, the expressions of the pre annotations are evaluated. If all of

them return true, the body of the operation is processed, otherwise, an error is raised.

Similarly, once the body of the operation has been executed, the expressions of the post
annotations of the operation are executed to ensure that the operation has had the desired

effects. Pre and post annotations can access all the variables in the parent scope, as well as

the parameters of the operation and the object on which the operation is invoked (through

the self variable). Moreover, in post annotations, the returned value of the operation is ac-

cessible through the built-in _result variable. An example of using pre and post conditions

in EOL appears in Listing 3.8.

In line 4 the add operation defines a pre-condition stating that the parameter i must

be a positive number. In line 5, the operation defines that result of the operation (_result)
must be greater than the number on which it was invoked (self). Thus, when executed in

the context of the statement in line 1 the operation succeeds, while when executed in the

context of the statement in line 2, the pre-condition is not satisfied and an error is raised.

29

1 1.add(2);
2 1.add(-1);
3

4 $pre i > 0
5 $post _result > self
6 operation Integer add(i : Integer) : Integer {
7 return self + i;
8 }

Listing 3.8: Example of pre- and post-conditions in an EOL operation

3.2.3 Operation Result Caching

EOL supports caching the results of parameter-less operations using the @cached simple

annotation. In the following example, the Fibonacci number of a given Integer is calcu-

lated using the fibonacci recursive operation displayed in Listing 3.9. Since the fibonacci
operation is declared as cached, it is only executed once for each distinct Integer and sub-

sequent calls on the same target return the cached result. Therefore, when invoked in

line 1, the body of the operation is called 16 times. By contrast, if no @cached annotation

was specified, the body of the operation would be called recursively 1973 times. This fea-

ture is particularly useful for performing queries on large models and caching their results

without needing to introduce explicit variables that store the cached results.

It is worth noting that caching works by reference, which means that all clients of a

cached method for a given context will receive the same returned object. As such, if the

first client modifies the returned object in some way (e.g. sets a property in the case of an

object or adds an element in the case of the collection), subsequent clients of the method

for the same context will receive the modified object/collection.

1 15.fibonacci().println();
2

3 @cached
4 operation Integer fibonacci() : Integer {
5 if (self = 1 or self = 0) {
6 return 1;
7 }
8 else {
9 return (self-1).fibonacci() + (self-2).fibonacci();

10 }
11 }

Listing 3.9: Calculating the Fibonacci number using a cached operation

30

Figure 3.2: Overview of the type system of EOL

3.3 Types

As is the case for most programming languages, EOL defines a built-in system of types,

illustrated in Figure 3.2. The Any type, inspired by the OclAny type of OCL, is the basis of

all types in EOL including Collection types. The operations supported by instances of the

Any type are outlined in Table 3.12.

2Parameters within square braces [] are optional

31

Table 3.1: Operations of type Any

Signature Description

asBag() : Bag Returns a new Bag containing the object

asBoolean() : Boolean Returns a Boolean based on the string representa-

tion of the object. If the string representation is

not of an acceptable format, an error is raised

asInteger() : Integer Returns an Integer based on the string represen-

tation of the object. If the string representation is

not of an acceptable format, an error is raised

asOrderedSet() : OrderedSet Returns a new OrderedSet containing the object

asReal() : Real Returns a Real based on the string representation

of the object. If the string representation is not of

an acceptable format, an error is raised

asDouble() : Double Returns a Java Double based on the string rep-

resentation of the object. If the string represen-

tation is not of an acceptable format, an error is

raised

asFloat() : Float Returns a Java Float based on the string represen-

tation of the object. If the string representation is

not of an acceptable format, an error is raised

asSequence() : Sequence Returns a new Sequence containing the object

asSet() : Set Returns a new Set containing the object

asString() : String Returns a string representation of the object

err([prefix : String]) : Any Prints a string representation of the object on

which it is invoked to the error stream prefixed

with the optional prefix string and returns the ob-

ject on which it was invoked. In this way, the err
operation can be used for debugging purposes in

a non-invasive manner

errln([prefix : String]) : Any Has the same effects as the err operation but also

produces a new line in the output stream.

32

format([pattern : String]) : String Uses the provided pattern to form a String rep-

resentation of the object on which the method is

invoked. The pattern argument must conform to

the format string syntax defined by Java3.

hasProperty(name : String) :

Boolean

Returns true if the object has a property with the

specified name or false otherwise

ifUndefined(alt : Any) : Any If the object is undefined, it returns alt else it re-

turns the object

isDefined() : Boolean Returns true if the object is defined and false oth-

erwise

isKindOf(type : Type) : Boolean Returns true if the object is of the given type or

one of its subtypes and false otherwise

isTypeOf(type : Type) : Boolean Returns true if the object is of the given type and

false otherwise

isUndefined() : Boolean Returns true if the object is undefined and false

otherwise

owningModel() : Model Returns the model that contains this object or an

undefined value otherwise

print([prefix : String]) : Any Prints a string representation of the object on

which it is invoked to the regular output stream,

prefixed with the optional prefix string and re-

turns the object on which it was invoked. In this

way, the print operation can be used for debug-

ging purposes in a non-invasive manner

println([prefix : String]) : Any Has the same effects as the print operation but

also produces a new line in the output stream.

type() : Type Returns the type of the object. The EOL type sys-

tem is illustrated in Figure 3.2

3http://download.oracle.com/javase/6/docs/api/java/util/Formatter.html#
syntax

33

http://download.oracle.com/javase/6/docs/api/java/util/Formatter.html#syntax
http://download.oracle.com/javase/6/docs/api/java/util/Formatter.html#syntax

3.3.1 Primitive Types

EOL provides four primitive types: String, Integer, Real and Boolean. The String type

represents finite sequences of characters and supports the following operations which can

be invoked on its instances.

34

Table 3.2: Operations of type String

Signature Description

characterAt(index : Integer) :

String

Returns the character in the specified index

concat(str : String) : String Returns a concatenated form of the string with the

str parameter

endsWith(str : String) : Boolean Returns true iff the string ends with str

firstToLowerCase() : String Returns a new string the first character of which

has been converted to lower case

firstToUpperCase() : String Returns a new string, the first character of which

has been converted to upper case

isInteger() : Boolean Returns true iff the string is an integer

isReal() : Boolean Returns true iff the string is a real number

isSubstringOf(str : String) :

Boolean

Returns true iff the string the operation is invoked

on is a substring of str

length() : Integer Returns the number of characters in the string

matches(reg : String) : Boolean Returns true if there are occurrences of the regu-

lar expression reg in the string

pad(length : Integer, padding :

String, right : Boolean) : String

Pads the string up to the specified length with

specified padding (e.g. "foo".pad(5, "*", true) re-

turns "foo**")

replace(source : String, target :

String) : String

Returns a new string in which all instances of

source have been replaced with instances of tar-
get

split(reg : String) : Se-

quence(String)

Splits the string using as a delimiter the provided

regular expression, reg, and returns a sequence

containing the parts

startsWith(str : String) : Boolean Returns true iff the string starts with str

substring(index : Integer) : String Returns a sub-string of the string starting from the

specified index and extending to the end of the

original string

35

substring(startIndex : Integer,

endIndex : Integer) : String

Returns a sub-string of the string starting from the

specified startIndex and ending at endIndex

toCharSequence() : Se-

quence(String)

Returns a sequence containing all the characters

of the string

toLowerCase() : String Returns a new string where all the characters have

been converted to lower case

toUpperCase() : String Returns a new string where all the characters have

been converted to upper case

trim() : String Returns a trimmed copy of the string

The Real type represents real numbers and provides the following operations.

Table 3.3: Operations of type Real

Signature Description

abs() : Real Returns the absolute value of the real

ceiling() : Integer Returns the nearest Integer that is greater than

the real

floor() : Integer Returns the nearest Integer that is less than the

real

log() : Real Returns the natural logarithm of the real

log10() : Real Returns the 10-based logarithm of the real

max(other : Real) : Real Returns the maximum of the two reals

min(other : Real) : Real Returns the minimum of the two reals

pow(exponent : Real) : Real Returns the real to the power of exponent

round() : Integer Rounds the real to the nearest Integer

The Integer type represents natural numbers and negatives and extends the Real prim-

itive type. It also defines the following operations:

Table 3.4: Operations of type Integer

36

Signature Description

iota(end : Integer, step : Integer) :

Sequence(Integer)

Returns a sequence of integers up to end using

the specified step (e.g. 1.iota(10,2) returns Se-

quence{1,3,5,7,9})

mod(divisor : Integer) : Integer Returns the remainder of dividing the integer by

the divisor

to(other : Integer) : Se-

quence(Integer)

Returns a sequence of integers (e.g. 1.to(5) re-

turns Sequence{1,2,3,4,5})

toBinary() : String Returns the binary representation of the integer

(e.g. 6.toBinary() returns "110")

toHex() : String Returns the hexadecimal representation of the in-

teger (e.g. 42.toBinary() returns "2a")

Finally, the Boolean type represents true/false states and provides no additional oper-

ations to those provided by the base Any type.

3.3.2 Collections and Maps

EOL provides four types of collections and a Map type. The Bag type represents non-

unique, unordered collections, the Sequence type represents non-unique, ordered col-

lections, the Set type represents unique and unordered collections and the OrderedSet

represents unique and ordered collections.

All collection types inherit from the abstract Collection type. Apart from simple oper-

ations, EOL also supports first-order logic operations on collections. The following opera-

tions apply to all types of collections:

37

Table 3.5: Operations of type Collection

Signature Description

add(item : Any) : Boolean Adds an item to the collection. If the collection is

a set, addition of duplicate items has no effect.

Returns true if the collection increased in size:

this is always the case for bags and sequences, and

for sets and ordered sets it is true if the element

was not part of the collection before.

addAll(col : Collection) : Boolean Adds all the items of the col argument to the col-

lection. If the collection is a set, it only adds items

that do not already exist in the collection. Returns

true if this collection changed as a result of the

call

asBag() Returns a Bag that contains the same elements as

the collection.

asOrderedSet() Returns a duplicate-free OrderedSet that contains

the same elements as the collection.

asSequence() Returns a Sequence that contains the same ele-

ments as the collection.

asSet() Returns a duplicate-free Set that contains the

same elements as the collection.

clear() Empties the collection

clone() : Collection Returns a new collection of the same type contain-

ing the same items with the original collection

concat() : String Returns the string created by converting each ele-

ment of the collection to a string

concat(separator : String) : String Returns the string created by converting each ele-

ment of the collection to a string, using the given

argument as a separator

count(item : Any) : Integer Returns the number of times the item exists in the

collection

excludes(item : Any) : Boolean Returns true if the collection excludes the item

38

excludesAll(col : Collection) :

Boolean

Returns true if the collection excludes all the items

of collection col

excluding(item : Any) : Collection Returns a new collection that excludes the item

– unlike the remove() operation that removes the

item from the collection itself

excludingAll(col : Collection) : Col-

lection

Returns a new collection that excludes all the ele-

ments of the col collection

flatten() : Collection Recursively flattens all items that are of collection

type and returns a new collection where no item

is a collection itself

includes(item : Any) : Boolean Returns true if the collection includes the item

includesAll(col : Collection) :

Boolean

Returns true if the collection includes all the items

of collection col

including(item : Any) : Collection Returns a new collection that also contains the

item – unlike the add() operation that adds the

item to the collection itself

includingAll(col : Collection) : Col-

lection

Returns a new collection that is a union of the two

collections. The type of the returned collection

(i.e. Bag, Sequence, Set, OrderedSet) is same as

the type of the collection on which the operation

is invoked

isEmpty() : Boolean Returns true if the collection does not contain any

elements and false otherwise

min() : Real Returns the minimum of all reals/integers in the

collection, or 0 if it is empty

min(default : Real) : Real Returns the minimum of all reals/integers in the

collection, or the default value if it is empty

max() : Real Returns the maximum of all reals/integers in the

collection, or 0 if it is empty

max(default : Real) : Real Returns the maximum of all reals/integers in the

collection, or the default value if it is empty

39

notEmpty() : Boolean Returns true if the collection contains any ele-

ments and false otherwise

powerset() : Set Returns the set of all subsets of the collection

product() : Real Returns the product of all reals/integers in the

collection

random() : Any Returns a random item from the collection

remove(item : Any) : Boolean Removes an item from the collection. Returns true

if the collection contained the specified element

removeAll(col : Collection) :

Boolean

Removes all the items of col from the collection.

Returns true if the collection changed as a result

of the call

size() : Integer Returns the number of items the collection con-

tains

sum() : Real Returns the sum of all reals/integers in the collec-

tion

The following operations apply to ordered collection types (i.e. Sequence and Ordered-

Set):

Table 3.6: Operations of types Sequence and Ordered-

Set

Signature Description

at(index : Integer) : Any Returns the item of the collection at the specified

index

first() : Any Returns the first item of the collection

fourth() : Any Returns the fourth item of the collection

indexOf(item : Any) : Integer Returns the index of the item in the collection or

-1 if it does not exist

invert() : Collection Returns an inverted copy of the collection

last() : Any Returns the last item of the collection

removeAt(index : Integer) : Any Removes and returns the item at the specified in-

dex.

40

second() : Any Returns the second item of the collection

third() : Any Returns the third item of the collection

Also, EOL collections support the following first-order operations:

Table 3.7: First-order logic operations on Collections

Signature Description

aggregate(iterator : Type | keyEx-

pression, valueExpression) : Map

Returns a map containing key-value pairs pro-

duced by evaluating the key and value expres-

sions on each item of the collection that is of the

specified type

closure(iterator : Type | expression)

: Collection

Returns a collection containing the results of eval-

uating the transitive closure of the results pro-

duced by the expression on each item of the col-

lection that is of the specified type. For example, if

t is a tree model element, t.closure(it|it.children)
will return all its descendants

collect(iterator : Type | expression)

: Collection

Returns a collection containing the results of eval-

uating the expression on each item of the collec-

tion that is of the specified type

exists(iterator : Type | condition) :

Boolean

Returns true if there exists at least one item in the

collection that satisfies the condition

forAll(iterator : Type | condition) :

Boolean

Returns true if all items in the collection satisfy

the condition

one(iterator : Type | condition) :

Boolean

Returns true if there exists exactly one item in the

collection that satisfies the condition

reject(iterator : Type | condition) :

Collection

Returns a sub-collection containing only items of

the specified type that do not satisfy the condition

select(iterator : Type | condition) :

Collection

Returns a sub-collection containing only items of

the specified type that satisfy the condition

selectOne(iterator : Type | condi-

tion) : Any

Returns the first element that satisfies the condi-

tion

41

sortBy(iterator: Type | expression)

: Collection

Returns a copy of the collection sorted by the re-

sults of evaluating the expression on each item of

the collection that conforms to the iterator type.

The expression should return either an Integer, a

String or an object that is an instance of Compa-

rable. The ordering is calculated as follows: for

integers, smaller to greater; for Strings, as de-

fined by the compareTo method of Java strings;

for Comparable objects, according to the seman-

tics of the type’s compareTo method implementa-

tion.

The Map type represents an array of key-value pairs in which the keys are unique. The

type provides the following operations.

Table 3.8: Operations of type Map

Signature Description

clear() Clears the map

containsKey(key : Any) : Boolean Returns true if the map contains the specified key

containsValue(value : Any) :

Boolean

Returns true if this map maps one or more keys to

the specified value.

get(key : Any) : Any Returns the value for the specified key

isEmpty() : Boolean Returns true if the map contains no key-value

mappings.

keySet() : Set Returns the keys of the map

put(key : Any, value : Any) Adds the key-value pair to the map. If the map

already contains the same key, the value is over-

written

putAll(map : Map) Copies all of the mappings from the specified map

to this map.

42

remove(key : Any) : Any Removes the mapping for the specified key from

this map if present. Returns the previous value

associated with key.

size() : Integer Returns the number of key-value mappings in this

map.

values() : Bag Returns the values of the map

3.3.3 Native Types

As discussed earlier, while the purpose of EOL is to provide significant expressive power

to enable users to manage models at a high level of abstraction, it is not intended to be a

general-purpose programming language. Therefore, there may be cases where users need

to implement some functionality that is either not efficiently supported by the EOL run-

time (e.g. complex mathematical computations) or that EOL does not support at all (e.g.

developing user interfaces, accessing databases). To overcome this problem, EOL enables

users to create objects of the underlying programming environment by using native types.

A native type specifies an implementation property that indicates the unique identifier for

an underlying platform type. For instance, in a Java implementation of EOL the user can

instantiate and use a Java class via its class identifier. Thus, in Listing 3.10 the EOL ex-

cerpt creates a Java window (Swing JFrame) and uses its methods to change its title and

dimensions and make it visible.

To pass arguments to the constructor of a native type, a parameter list must be added,

such as that in Listing 3.11.

1 var frame = new Native("javax.swing.JFrame");
2 frame.title = "Opened with EOL";
3 frame.setBounds(100,100,300,200);
4 frame.visible = true;

Listing 3.10: Demonstration of NativeType in EOL

1 var file = new Native("java.io.File")("myfile.txt");
2 file.absolutePath.println();

Listing 3.11: Demonstration of NativeType in EOL

43

3.3.4 Model Element Types

A model element type represents a meta-level classifier. As discussed in Section 2, Epsilon

intentionally refrains from defining more details about the meaning of a model element

type to be able to support diverse modelling technologies where a type has different se-

mantics. For instance a MOF class, an XSD complex type and a Java class can all be

regarded as model element types according to the implementation of the underlying mod-

elling framework.

In case of multiple models, as well as the name of the type, the name of the model is

also required to resolve a particular type since different models may contain elements of

homonymous but different model element types. In case a model defines more than one

type with the same name (e.g. in different packages), a fully qualified type name must be

provided.

In terms of concrete syntax, inspired by ATL, the ! character is used to separate the

name of the type from the name of the model it is defined in. For instance Ma!A rep-

resents the type A of model Ma. Also, to support modelling technologies that provide

hierarchical grouping of types (e.g. using packages) the :: notation is used to separate

between packages and classes. A model element type supports the following operations:

Table 3.9: Operations of Model Element Types

Signature Description

all() : Set Alias for allOfKind() (for syntax-compactness pur-

poses)

allInstances() : Set Alias for allOfKind() (for compatibility with OCL)

allOfKind() : Set Returns all the elements in the model that are in-

stances either of the type itself or of one of its

subtypes

allOfType() : Set Returns all the elements in the model that are in-

stances of the type

createInstance() : Any Creates an instance of the type in the model

isInstantiable() : Boolean Returns true if the type is instantiable (i.e. non-

abstract)

As an example of the concrete syntax, Listing 3.12 retrieves all the instances of the

Class type (including instances of its subtypes) defined in the Core package of the UML

44

1.4 metamodel that are contained in the model named UML14.

1 UML14!Core::Foundation::Class.allInstances();

Listing 3.12: Demonstration of the concrete syntax for accessing model element types

3.4 Expressions

3.4.1 Literal Values

EOL provides special syntax constructs to create instances of each of the built-in types:

Integer literals are defined by using one or more decimal digits (such as 42 or 999).

Optionally, long integers (with the same precision as a Java Long) can be produced

by adding a “l” suffix, such as 42l.

Real literals are defined by:

• Adding a decimal separator and non-empty fractional part to the integer part,

such as 42.0 or 3.14. Please note that .2 and 2. are not valid literals.

• Adding a floating point suffix: “f” and “F” denote single precision, and “d” and

“D” denote double precision. For example, 2f or 3D.

• Adding an exponent, such as 2e+1 (equal to 2e1) or 2e-1.

• Using any combination of the above options.

String literals are sequences of characters delimited by single (’hi’) or double ("hi")

quotes. Quotes inside the string can be escaped by using a backslash, such as in

’A\’s’ or "A\"s". Literal backslashes need to be escaped as well, such as in

’A\\B’. Special escape sequences are also provided: \n for a newline, \t for a

horizontal tab and \r for a carriage return, among others.

Boolean literals use the true reserved keyword for the true Boolean value, and false re-

served keyword for the false Boolean value.

Sequence and most other collections (except Maps) also have literals. Their format is T
{e}, where T is the name of the type and e are zero or more elements, separated by

commas. For instance, Sequence {} is the empty sequence, and Set {1, 2, 3} is the set

of numbers between 1 and 3.

45

Figure 3.3: Overview of the feature navigation EOL expressions

Map literals are similar to the sequential collection literals, but their elements are of the

form key = value. For instance, Map {’a’ = 1, ’b’ = 2} is a map which has two keys,

“a” and “b”, which map to the integer values 1 and 2, respectively.

Please note that, when defining an element such as 1 = 2 = 3, the key would be 1
and the value would be the result of evaluating 2 = 3 (false). If you would like to use

the result of the expression 1 = 2 as key, you will need to enclose it in parenthesis,

such as in (1 = 2) = 3.

3.4.2 Feature Navigation

Since EOL needs to manage models defined using object oriented modelling technologies,

it provides expressions to navigate properties and invoke simple and declarative operations

on objects (as presented in Figure 3.3).

In terms of concrete syntax, ‘.’ is used as a uniform operator to access a property

of an object and to invoke an operation on it. The ‘→’ operator, which is used in OCL to

46

1 "Something".println();
2

3 operation Any println() : Any {
4 ("Printing : " + self)->println();
5 }

Listing 3.13: Invoking operations using EOL

invoke first-order logic operations on sets, has been also preserved for syntax compatibility

reasons. In EOL, every operation can be invoked both using the ‘.’ or the ’→’ operators,

with a slightly different semantics to enable overriding the built-in operations. If the ‘.’

operator is used, precedence is given to the user-defined operations, otherwise precedence

is given to the built-in operations. For instance, the Any type defines a println() method

that prints the string representation of an object to the standard output stream. In Listing

3.13, the user has defined another parameterless println() operation in the context of Any.

Therefore the call to println() in Line 1 will be dispatched to the user-defined println()

operation defined in line 3. In its body the operation uses the ‘→’ operator to invoke the

built-in println() operation (line 4).

3.4.3 Arithmetical and Comparison Operators

EOL provides common operators for performing arithmetical computations and compar-

isons illustrated in Tables 3.10 and 3.11 respectively.

Table 3.10: Arithmetical operators

Operator Description

+ Adds reals/integers and concatenates strings

− Subtracts reals/integers

− (unary) Returns the negative of a real/integer

∗ Multiplies reals/integers

/ Divides reals/integers

+ = Adds the r-value to the l-value

− = Subtracts the r-value from the l-value

∗ = Multiplies the l-value by the r-value

/ = Divides the l-value by the r-value

Table 3.11: Comparison operators

Operator Description

47

= Returns true if the left hand side equals the right hand side. In the

case of primitive types (String, Boolean, Integer, Real) the opera-

tor compares the values; in the case of objects it returns true if the

two expressions evaluate to the same object

<> Is the logical negation of the (=) operator

> For reals/integers returns true if the left hand side is greater than

the right hand side number

< For reals/integers returns true if the left hand side is less than the

right hand side number

>= For reals/integers returns true if the left hand side is greater or

equal to the right hand side number

<= For reals/integers returns true if the left hand side is less or equal

to then right hand side number

3.4.4 Logical Operators

EOL provides common operators for performing logical computations illustrated in Table

3.12. Logical operations apply only to instances of the Boolean primitive type.

Table 3.12: Logical Operators

Operator Description

and Returns the logical conjunction of the two expressions

or Returns the logical disjunction of the two expressions

not Returns the logical negation of the expression

implies Returns the logical implication of the two expressions. Implication

is calculated according to the truth table 3.13

xor returns true if only one of the involved expressions evaluates to

true and false otherwise

Table 3.13: Implies Truth Table

Left Right Result

48

true true true

true false false

false true true

false false true

3.4.5 Enumerations

EOL provides the # operator for accessing enumeration literals. For example, the Visi-

bilityEnum#vk_public expression returns the value of the literal vk_public of the Visibili-
tyEnum enumeration. For EMF metamodels, VisibilityEnum#vk_public.instance can also be

used.

3.5 Statements

3.5.1 Variable Declaration Statement

A variable declaration statement declares the name and (optionally) the type and initial

value of a variable in an EOL program. If no type is explicitly declared, the variable

is assumed to be of type Any. For variables of primitive type, declaration automatically

creates an instance of the type with the default values presented in Table 3.14. For non-

primitive types the user has to explicitly assign the value of the variable either by using

the new keyword or by providing an initial value expression. If neither is done the value

of the variable is undefined. Variables in EOL are strongly-typed. Therefore a variable can

only be assigned values that conform to its type (or a sub-type of it).

Table 3.14: Default values of primitive types

Type Default value
Integer 0
Boolean false
String ""
Real 0.0

Scope The scope of variables in EOL is generally limited to the block of statements where

they are defined, including any nested blocks. Nevertheless, as discussed in the sequel,

there are cases in task-specific languages that build atop EOL where the scope of variables

is expanded to other non-nested blocks as well. EOL also allows variable shadowing; that

49

1 var i : Integer = 5;
2 var c : new Uml!Class;
3 //i = "somevalue";
4 if (c.isDefined()) {
5 var i : String;
6 i = "somevalue";
7 }
8 i = 3;

Listing 3.14: Example illustrating declaration and use of variables

is to define a variable with the same name in a nested block that overrides a variable

defined in an outer block.

In Listing 3.14, an example of declaring and using variables is provided. Line 1 defines

a variable named i of type Integer and assigns it an initial value of 5. Line 2 defines a

variable named c of type Class (from model Uml) and creates a new instance of the type

in the model (by using the new keyword). The commented out assignment statement

of line 3 would raise a runtime error since it would attempt to assign a String value to

an Integer variable. The condition of line 4 returns true since the c variable has been

initialized before. Line 5 defines a new variable also named i that is of type String and

which overrides the Integer variable declared in line 1. Therefore the assignment statement

of line 6 is legitimate as it assigns a string value to a variable of type String. Finally, as

the program has exited the scope of the if statement, the assignment statement of line 7 is

also legitimate as it refers to the i variable defined in line 1.

3.5.2 Assignment Statement

The assignment statement is used to update the values of variables and properties of native

objects and model elements.

Variable Assignment When the left hand side of an assignment statement is a variable,

the value of the variable is updated to the object to which the right hand side evaluates

to. If the type of the right hand side is not compatible (kind-of relationship) with the

type of the variable, the assignment is illegal and a runtime error is raised. Assignment

to objects of primitive types is performed by value while assignment to instances of non-

primitive values is performed by reference. For example, in Listing 3.15, in line 1 the

value of the a variable is set to a new Class in the Uml model. In line 2, a new untyped

variable b is declared and its value is assigned to a. In line 3 the name of the class is

updated to Customer and thus, line 4 prints Customer to the standard output stream. On

50

the other hand, in Listing 3.16, in line 1 the a String variable is declared. In line 2 an

untyped variable b is declared. In line 3, the value of a is changed to Customer (which is

an instance of the primitive String type). This has no effect on b and thus line 4 prints an

empty string to the standard output stream.

Native Object Property Assignment When the left hand side of the assignment is a

property of a native object, deciding on the legality and providing the semantics of the

assignment is delegated to the execution engine. For example, in a Java-based execution

engine, given that x is a native object, the statement x.y = a may be interpreted as x.setY(a)
or if x is an instance of a map x.put(”y”,a). By contrast, in a C# implementation, it can be

interpreted as x.y = a since the language natively supports properties in classes.

Model Element Property Assignment When the left hand side of the assignment is a

property of a model element, the model that owns the particular model element (accessible

using the ModelRepository.getOwningModel() operation) is responsible for implementing

the semantics of the assignment using its associated propertyGetter as discussed in Section

2.5. For example, if x is a model element, the statement x.y = a may be interpreted using

the Java code of Listing 3.17 if x belongs to an EMF-based model or using the Java code of

Listing 3.18 if it belongs to an MDR-based model.

3.5.3 Special Assignment Statement

In task-specific languages, an assignment operator with task-specific semantics is often re-

quired. Therefore, EOL provides an additional assignment operator. In standalone EOL,

the operator has the same semantics with the primary assignment operator discussed

above, however task-specific languages can redefine its semantics to implement custom

1 var a : new Uml!Class;
2 var b = a;
3 a.name = "Customer";
4 b.name.println();

Listing 3.15: Assigning the value of a variable by reference

1 var a : String;
2 var b = a;
3 a = "Customer";
4 b.println();

Listing 3.16: Assigning the value of a variable by value

51

1 EStructuralFeature feature = x.eClass().getEStructuralFeature("y");
2 x.eSet(feature, a);

Listing 3.17: Java code that assigns the value of a property of a model element that belongs
to an EMF-based model

1 StructuralFeature feature = findStructuralFeature(x.refClass(), "y");
2 x.refSetValue(feature, a);

Listing 3.18: Java code that assigns the value of a property of a model element that belongs
to an MDR-based model

assignment behaviour. For example, consider the simple model-to-model transformation

of Listing 3.19 where a simple object oriented model is transformed to a simple database

model using an ETL (see Section 5) transformation.

1 rule Class2Table
2 transform c : OO!Class
3 to t : DB!Table {
4

5 t.name = c.name;
6 }
7

8 rule Attribute2Column
9 transform a : OO!Attribute

10 to c : DB!Column {
11

12 c.name = a.name;
13 //c.owningTable = a.owningClass;
14 c.owningTable ::= a.owningClass;
15 }

Listing 3.19: A simple model-to-model transformation demonstrating the special assign-
ment statement

The Class2Table rule transforms a Class of the OO model into a Table in the DB

model and sets the name of the table to be the same as the name of the class. Rule

Atribute2Column transforms an Attribute from the OO model into a column in the DB

model. Except for setting its name (line 12), it also needs to define that the column be-

longs to the table which corresponds to the class that defines the source attribute. The

commented-out assignment statement of line 13 cannot be used for this purpose since it

would illegaly attempt to assign the owningTable feature of the column to a model ele-

ment of an inappropriate type (OO!Class). However, the special assignment operator in

the task-specific language implements the semantics discussed in Section 5.5.4, and thus

in line 14 it assigns to the owningTable feature not the class that owns the attribute but its

52

corresponding table (calculated using the Class2Table rule) in the DB model.

3.5.4 If Statement

As in most programming languages, an if statement consists of a condition, a block of

statements that is executed if the condition is satisfied and (optionally) a block of state-

ments that is executed otherwise. As an example, in Listing 3.20, if variable a holds a

value that is greater than 0 the statement of line 3 is executed, otherwise the statement of

line 5 is executed.

1 if (a > 0) {
2 "A is greater than 0".println();
3 }
4 else { "A is less equal than 0".println(); }

Listing 3.20: Example illustrating an if statement

3.5.5 Switch Statement

A switch statement consists of an expression and a set of cases, and can be used to imple-

ment multi-branching. Unlike Java/C, switch in EOL doesn’t by default fall through to the

next case after a successful one. Therefore, it is not necessary to add a break statement

after each case. To enable falling through to all subsequent cases you can use the continue
statement. Also, unlike Java/C, the switch expression can return anything (not only inte-

gers). As an example, when executed, the code in Listing 3.21 prints 2 while the code in

Listing 3.22 prints 2,3,default.

1 var i = "2";
2

3 switch (i) {
4 case "1" : "1".println();
5 case "2" : "2".println();
6 case "3" : "3".println();
7 default : "default".println();
8 }

Listing 3.21: Example illustrating a switch statement

3.5.6 While Statement

A while statement consists of a condition and a block of statements which are executed

as long as the condition is satisfied. For example, in Listing 3.23 the body of the while

53

1 var i = "2";
2

3 switch (i) {
4 case "1" : "1".println();
5 case "2" : "2".println(); continue;
6 case "3" : "3".println();
7 default : "default".println();
8 }

Listing 3.22: Example illustrating falling through cases in a switch statement

statement is executed 5 times printing the numbers 0 to 4 to the output console. Inside

the body of a while statement, the built-in read-only loopCount integer variable holds the

number of times the innermost loop has been executed so far (including the current itera-

tion). Right after entering the loop for the first time and before running the first statement

in its body, loopCount is set to 1, and it is incremented after each following iteration.

1 var i : Integer = 0;
2 while (i < 5) {
3 // both lines print the same thing
4 i.println();
5 (loopCount - 1).println();
6 // increment the counter
7 i = i+1;
8 }

Listing 3.23: Example of a while statement

3.5.7 For Statement

In EOL, for statements are used to iterate the contents of collections. A for statement

defines a typed iterator and an iterated collection as well as a block of statements that

is executed for every item in the collection that has a kind-of relationship with the type

defined by the iterator. As with the majority of programming languages, modifying a

collection while iterating it raises a runtime error. To avoid this situation, users can use

the clone() built-in operation of the Collection type discussed in 3.3.2.

1 var col : Sequence = Sequence{"a", 1, 2, 2.5, "b"};
2 for (r : Real in col) {
3 r.print();
4 if (hasMore){",".print();}
5 }

Listing 3.24: Example of a for statement

54

Inside the body of a for statement, two built-in read-only variables are visible: the

loopCount integer variable (explained in Section 3.5.6) and the hasMore boolean variable.

hasMore is used to determine if there are more items if the collection for which the loop

will be executed. For example, in Listing 3.24 the col heterogeneous Sequence is defined

that contains two strings (a and b), two integers (1,2) and one real (2.5). The for loop of

line 2 only iterates through the items of the collection that are of kind Real and therefore

prints 1,2,2.5 to the standard output stream.

3.5.8 Break, BreakAll and Continue Statements

To exit from for and while loops on demand, EOL provides the break and breakAll state-

ments. The break statement exits the innermost loop while the breakAll statement exits

all outer loops as well. On the other hand, to skip a particular loop and proceed with the

next one, EOL provides the continue statement. For example, the excerpt of Listing 3.25,

prints 2,1 3,1 to the standard output stream.

1 for (i in Sequence{1..3}) {
2 if (i = 1) {continue;}
3 for (j in Sequence{1..4}) {
4 if (j = 2) {break;}
5 if (j = 3) {breakAll;}
6 (i + "," + j).println();
7 }
8 }

Listing 3.25: Example of the break breakAll and continue statements

3.5.9 Throw Statement

EOL provides the throw statement for throwing a value as an EOLUSEREXCEPTION Java

exception. This is especially useful when invoking EOL scripts from Java code: by catching

and processing the exception, the Java code may be able to automatically handle the

problem without requiring user input. Any value can be thrown, as shown in Listing 3.26,

where we throw a number and a string.

1 throw 42;
2 throw "Error!";

Listing 3.26: Example of the throw statement

55

3.5.10 Transaction Statement

As discussed in Section 2.6, the underlying EMC layer provides support for transactions

in models. To utilize this feature EOL provides the transaction statement. A transaction

statement (optionally) defines the models that participate in the transaction. If no mod-

els are defined, it is assumed that all the models that are accessible from the enclosing

program participate. When the statement is executed, a transaction is started on each par-

ticipating model. If no errors are raised during the execution of the contained statements,

any changes made to model elements are committed. On the other hand, if an error is

raised the transaction is rolled back and any changes made to the models in the context of

the transaction are undone. The user can also use the abort statement to explicitly exit a

transaction and roll-back any changes done in its context. In Listing 3.27, an example of

using this feature in a simulation problem is illustrated.

1 var system : System.allInstances.first();
2

3 for (i in Sequence {1..100}) {
4

5 transaction {
6

7 var failedProcessors : Set;
8

9 while (failedProcessors.size() < 10) {
10 failedProcessors.add(system.processors.random());
11 }
12

13 for (processor in failedProcessors) {
14 processor.failed = true;
15 processor.moveTasksElsewhere();
16 }
17

18 system.evaluateAvailability();
19

20 abort;
21 }
22

23 }

Listing 3.27: Example of a transaction statement

In this problem, a system consists of a number of processors. A processor manages some

tasks and can fail at any time. The EOL program in Listing 3.27 performs 100 simulation

steps, in every one of which 10 random processors from the model (lines 7-11) are marked

as failed by setting their failed property to true (line 14). Then, the tasks that the failed

processors manage are moved to other processors (line 15). Finally the availability of the

56

Figure 3.4: The Tree Metamodel

system in this state is evaluated.

After a simulation step, the state of the model has been drastically changed since pro-

cessors have failed and tasks have been relocated. To be able to restore the model to its

original state after every simulation step, each step is executed in the context of a trans-

action which is explicitly aborted (line 20) after evaluating the availability of the system.

Therefore after each simulation step the model is restored to its original state for the next

step to be executed.

3.6 Extended Properties

Quite often, during a model management operation it is necessary to associate model

elements with information that is not supported by the metamodel they conform to. For

instance, the EOL program in listing 3.28 calculates the depth of each Tree element in a

model that conforms to the Tree metamodel displayed in Figure 3.4.

As the Tree metamodel doesn’t support a depth property in the Tree metaclass, each

Tree has to be associated with its calculated depth (line 12) using the depths map defined

in line 1. Another approach would be to extend the Tree metamodel to support the desired

depth property; however, applying this technique every time an additional property is

needed for some model management operation would quickly pollute the metamodel with

properties of secondary importance.

To simplify the code required in such cases, EOL provides the concept of extended
properties. In terms of concrete syntax, an extended property is a normal property, the

name of which starts with the tilde character (~). With regards to its execution semantics,

the first time the value of an extended property of an object is assigned, the property is

created and associated with the object. Then, the property can be accessed as a normal

property. If an extended property is accessed before it is assigned, it returns null. Listing

3.29 demonstrates using a depth extended property to eliminate the need for using the

depths map in Listing 3.28.

57

1 var depths = new Map;
2

3 for (n in Tree.allInstances.select(t|not t.parent.isDefined())) {
4 n.setDepth(0);
5 }
6

7 for (n in Tree.allInstances) {
8 (n.name + " " + depths.get(n)).println();
9 }

10

11 operation Tree setDepth(depth : Integer) {
12 depths.put(self,depth);
13 for (c in self.children) {
14 c.setDepth(depth + 1);
15 }
16 }

Listing 3.28: Calculating and printing the depth of each Tree

1 for (n in Tree.allInstances.select(t|not t.parent.isDefined())) {
2 n.setDepth(0);
3 }
4

5 for (n in Tree.allInstances) {
6 (n.name + " " + n.~depth).println();
7 }
8

9 operation Tree setDepth(depth : Integer) {
10 self.~depth = depth;
11 for (c in self.children) {
12 c.setDepth(depth + 1);
13 }
14 }

Listing 3.29: A simplified version of Listing 3.28 using extended properties

3.7 Context-Independent User Input

A common assumption in model management languages is that model management tasks

are only executed in a batch-manner without human intervention. However, as demon-

strated in the sequel, it is often useful for the user to provide feedback that can precisely

drive the execution of a model management operation.

Model management operations can be executed in a number of runtime environments

in each of which a different user-input method is more appropriate. For instance when

executed in the context of an IDE (such as Eclipse) visual dialogs are preferable, while

when executed in the context of a server or from within an ANT workflow, a command-

line user input interface is deemed more suitable. To abstract away from the different

58

runtime environments and enable the user to specify user interaction statements uniformly

and regardless of the runtime context, EOL provides the IUserInput interface that can

be realized in different ways according to the execution environment and attached to

the runtime context via the IEolContext.setUserInput(IUserInput userInput) method. The

IUserInput specifies the methods presented in Table 3.15.

Table 3.15: Operations of IUserInput

Signature Description

inform(message : String) Displays the specified message to the user

confirm(message : String, [default

: Boolean]) : Boolean

Prompts the user to confirm if the condition de-

scribed by the message holds

prompt(message : String, [default :

String]) : String

Prompts the user for a string in response to the

message

promptInteger(message : String,

[default : Integer]) : Integer

Prompts the user for an Integer

promptReal(message : String, [de-

fault : Real]) : Real

Prompts the user for a Real

choose(message : String, options :

Sequence, [default : Any]) : Any

Prompts the user to select one of the options

chooseMany(message : String, op-

tions : Sequence, [default : Se-

quence]) : Sequence

Prompts the user to select one or more of the op-

tions

As displayed above, all the methods of the IUserInput interface accept a default pa-

rameter. The purpose of this parameter is dual. First, it enables the designer of the model

management program to prompt the user with the most likely value as a default choice and

secondly it enables a concrete implementation of the interface (UnattendedExecutionUser-
Input) which returns the default values without prompting the user at all and thus, can

be used for unattended execution of interactive Epsilon programs. Figures 3.5 and 3.6

demonstrate the interfaces through which input is required by the user when the exem-

plar System.user.promptInteger(’Please enter a number’, 1); statement is executed using an

Eclipse-based and a command-line-based IUserInput implementation respectively.

User-input facilities have been found to be particularly useful in all model manage-

ment tasks. Such facilities are essential for performing operations on live models such as

59

Figure 3.5: Example of an Eclipse-based IUserInput implementation

Figure 3.6: Example of a command-line-based IUserInput implementation

model validation and model refactoring but can also be useful in model comparison where

marginal matching decisions can be delegated to the user and model transformation where

the user can interactively specify the elements that will be transformed into corresponding

elements in the target model. Examples of interactive model management operations that

make use of the input facilities provided by EOL are demonstrated in Sections 5.6 and 8.5

3.8 Task-Specific Languages

Having discussed EOL in detail, in the following chapters, the following task-specific lan-

guages built atop EOL are presented:

• Epsilon Validation Language (EVL, Chapter 4)

• Epsilon Transformation Language (ETL, Chapter 5)

• Epsilon Generation Language (EGL, Chapter 7)

• Epsilon Wizard Language (EWL, Chapter 6)

60

• Epsilon Comparison Language (ECL, Chapter 8)

• Epsilon Merging Language (EML, Chapter 9)

• Flock Model Migration Language (Chapter 10))

• Epsilon Pattern Language (EPL, Chapter 11)

• Epsilon Model Generation (EMG, Chapter 12)

For each language, the abstract and concrete syntax are presented. To enhance read-

ability, the concrete syntax of each language is presented in an abstract, pseudo-grammar

form. An informal but detailed discussion, accompanied by concise examples for each fea-

ture of interest, of its execution semantics and the runtime structures that are essential to

implement those semantics is also provided.

Descriptions of the abstract and concrete syntaxes of the task-specific languages are

particularly brief since they inherit most of their syntax and features from EOL. As dis-

cussed earlier, this contributes to establishing a platform of uniform languages where each

provides a number of unique task-specific constructs but does not otherwise deviate from

each other.

To reduce unnecessary repetition, the following sections do not repeat all the features

inherited from EOL. However, the reader should bear in mind that by being supersets

of EOL, all task-specific languages can exploit the features it provides. For example, by

reusing EOL’s user-input facilities (discussed in 3.7), it is feasible to specify interactive

model to model transformations in ETL. As well, Native types can be used to access or

update information stored in an external system/tool (e.g. in a database or a remote

server) during model validation with EVL or model comparison with ECL.

Following the presentation, in Chapters 4 – 11, of the task-specific languages imple-

mented in Epsilon, Chapter 13 provides a brief overview of the process needed to con-

struct a new language that addresses a task that is not supported by one of the existing

languages.

61

Chapter 4

The Epsilon Validation Language (EVL)

The aim of EVL is to contribute model validation capabilities to Epsilon. More specifically,

EVL can be used to specify and evaluate constraints on models of arbitrary metamodels

and modelling technologies. This section provides a discussion on the motivation for im-

plementing EVL, its abstract and concrete syntax as well as its execution semantics. It also

provides two examples using the language to verify inter-model and intra-model consis-

tency.

4.1 Motivation

Although many approaches have been proposed to enable automated model validation, the

Object Constraint Language (OCL) [1] is the de facto standard for capturing constraints in

modelling languages specified using object-oriented metamodelling technologies. While

its powerful syntax enables users to specify meaningful and concise constraints, its purely

declarative and side-effect free nature introduces a number of limitations in the context

of a contemporary model management environment. In this section, the shortcomings of

OCL that have motivated the design of EVL are discussed in detail.

In OCL, structural constraints are captured in the form of invariants. Each invariant is

defined in the context of a meta-class of the metamodel and specifies a name and a body.

The body is an OCL expression that must evaluate to a Boolean result, indicating whether

an instance of the meta-class satisfies the invariant or not. Execution-wise, the body of

each invariant is evaluated for each instance of the meta-class and the results are stored in

a set of <Element, Invariant, Boolean> triplets. Each triplet captures the Boolean result of

the evaluation of an Invariant on a qualified Element. An exemplar OCL invariant for UML

1.4, requiring that abstract operations only belong to abstract classes, is shown in Listing

4.1.

63

1 context Operation

2 inv AbstractOperationInAbstractClassOnly :

3 self.isAbstract implies self.owner.isAbstract

Listing 4.1: OCL constraint on UML operations

While OCL enables users to capture particularly complex invariants, it also demon-

strates a number of shortcomings, as follows.

4.1.1 Limited user feedback

OCL does not support specifying meaningful messages that can be reported to the user in

case an invariant is not satisfied for certain elements. Therefore, feedback to the user is

limited to the name of the invariant and the instance(s) for which it failed. Weak support

for proper feedback messages implies that the end users must be familiar with OCL so that

they can comprehend the meaning of the failed invariant and locate the exact reason for

the failure. This is a significant shortcoming as in practice only a very small number of end

users are familiar with OCL.

4.1.2 No support for warnings/critiques

Contemporary software development environments typically produce two types of feed-

back when checking artefacts for consistency and correctness: errors and warnings. Errors

indicate critical deficiencies that contradict basic principles and invalidate the developed

artefacts. By contrast, warnings (or critiques) indicate non-critical issues that should nev-

ertheless be addressed by the user. To enable users to address warnings in a priority-based

manner, they are typically categorized into three levels of importance: High, Medium and

Low (although other classifications are also possible).

Nevertheless, in OCL there is no such distinction between errors and warnings and con-

sequently all reported issues are considered to be errors. This adds an additional burden

to identifying and prioritizing issues of major importance, particularly within an extensive

set of unsatisfied invariants in complex models.

4.1.3 No support for dependent constraints

Each OCL invariant is a self-contained unit that does not depend on other invariants. There

are cases where this design decision is particularly restrictive. For instance consider the

invariants I1 and I2 displayed in Listing 4.2. Both I1 and I2 are applicable on UML classes

with I1 requiring that: the name of a class must not be empty and I2 requiring that: the

64

name of a class must start with a capital letter. In the case of those two invariants, if I1 is

not satisfied for a particular UML class, evaluating I2 on that class would be meaningless.

In fact it would be worse than meaningless since it would consume time to evaluate and

would also produce an extraneous error message to the user. In practice, to avoid the

extraneous message, I2 needs to replicate the body of I1 using an if expression (lines 2

and 5).

1 context Class

2 inv I1 : self.name.size() > 0

3

4 inv I2 :

5 if self.name.size > 0 then

6 self.name.substring(0,1) =

7 self.name.substring(0,1).toUpper()

8 else

9 true

10 endif

Listing 4.2: Conceptually related OCL constraints

4.1.4 Limited flexibility in context definition

As already discussed, in OCL invariants are defined in the context of meta-classes. While

this achieves a reasonable partitioning of the model element space, there are cases where

more fine-grained partitioning is required. For instance, consider the following scenario.

Let IA1..N , IB1..M be invariants applying to classes that are stereotyped as <<A>> and

<> respectively. Since OCL only supports partitioning the model element space using

meta-classes, all IA1..N , IB1..M must appear under the same context (i.e. Class). Moreover,

each invariant must explicitly define that it addresses the one or the other conceptual

sub-partition. Therefore, each of IA1..N must limit its scope initially (using the self.isA

expression) and then express the real body. In our example the simplest way to achieve

this would be by combining a scope-limiting expression with the real invariant body using

the implies clause as demonstrated in Listing 4.3.

Furthermore, if the real body of the invariant needs to assume that self is stereotyped

with <<A>>, this technique is not applicable because OCL does not support lazy evaluation

of Boolean clauses [1] and therefore although the first part of the expression (self.isA)

may fail for some instances, the second part will still be evaluated thus producing runtime

errors. In this case, an if expression must be used, further complicating the specified

invariants.

65

1 context Class
2 inv I1 : self.isA implies <real-invariant-body>
3 inv I2 : self.isA implies <real-invariant-body>
4 ...
5 inv IN : self.isA implies <real-invariant-body>
6

7 def isA :
8 let isA : Boolean =
9 self.stereotype->exists(s|s.name = ’A’)

Listing 4.3: Demonstration of OCL constraints with duplication

4.1.5 No support for repairing inconsistencies

While OCL can be used for detecting inconsistencies, it provides no means for repairing

them. The reason is that OCL has been designed as a side-effect free language and there-

fore lacks constructs for modifying models. Nevertheless, there are many cases where

inconsistencies are trivial to resolve and users can benefit from semi-automatic repairing

facilities.

This need has been long recognized in the related field of code development tools (e.g.

Eclipse, Microsoft Visual Studio, NetBeans). In such tools, errors are not only identified

but also context-aware actions are proposed to the user for automatically repairing them.

This feature significantly increases the usability of such tools and consequently enhances

users’ productivity.

4.1.6 No support for inter-model constraints

OCL expressions (and therefore OCL constraints) can only be evaluated in the context of a

single model at a time. Consequently, OCL cannot be used to express constraints that span

across different models. In the context of a large-scale model driven engineering process

that involves many different models (that potentially conform to different modelling lan-

guages) this limitation is particularly severe.

Following this discussion on the shortcomings of OCL for capturing structural constraints

in modelling languages, the following sections present the abstract and concrete syntax

of EVL as well as their execution semantics, and explain how they address the aforemen-

tioned limitations.

66

4.2 Abstract Syntax

In EVL, validation specifications are organized in modules (EvlModule). As illustrated in

Figure 4.1, EvlModule extends EolLibraryModule which means that it can contain user-

defined operations and import other EOL library modules and EVL modules. Apart from

operations, an EVL module also contains a set of invariants grouped by the context they

apply to, and a number of pre and post blocks.

Context A context specifies the kind of instances on which the contained invariants will

be evaluated. Each context can optionally define a guard which limits its applicability to

a narrower subset of instances of its specified type. Thus, if the guard fails for a specific

instance of the type, none of its contained invariants are evaluated.

Invariant As with OCL, each EVL invariant defines a name and a body (check). However,

it can optionally also define a guard (defined in its abstract GuardedElement supertype)

which further limits its applicability to a subset of the instances of the type defined by

the embracing context. To achieve the requirement for detailed user feedback (Section

4.1.1), each invariant can optionally define a message as an ExpressionOrStatementBlock
that should return a String providing a description of the reason(s) for which the constraint

has failed on a particular element. To support semi-automatically fixing of elements on

which invariants have failed (Section 4.1.5), an invariant can optionally define a number

of fixes. Finally, as displayed in Figure 4.1, Invariant is an abstract class that is used as

a super-class for the specific types Constraint and Critique. This is to address the issue of

separation of errors and warnings/critiques (Section 4.1.2).

Guard Guards are used to limit the applicability of invariants (Section 4.1.4). This can

be achieved at two levels. At the Context level it limits the applicability of all invariants of

the context and at the Invariant level it limits the applicability of a specific invariant.

Fix A fix defines a title using an ExpressionOrStatementBlock instead of a static String to

allow users to specify context-aware titles (e.g. Rename class customer to Customer instead

of a generic Convert first letter to upper-case). Moreover, the do part is a statement block

where the fixing functionality can be defined using EOL. The developer is responsible for

ensuring that the actions contained in the fix actually repair the identified inconsistency.

67

Figure
4.1:

A
bstract

Syntax
ofEV

L

68

Constraint Constraints in EVL are used to capture critical errors that invalidate the

model. As discussed above, Constraint is a sub-class of Invariant and therefore inherits

all its features.

Critique Unlike Constraints, Critiques are used to capture non-critical situations that do

not invalidate the model, but should nevertheless be addressed by the user to enhance the

quality of the model. This separation addresses the issue raised in Section 4.1.2.

Pre and Post An EVL module can define a number of named pre and a post blocks that

contain EOL statements which are executed before and after evaluating the invariants

respectively. These should not be confused with the pre-/post-condition annotations avail-

able for EOL user-defined operations (Section 3.2.2).

4.3 Concrete Syntax

Listings 4.4, 4.5 and 4.6 demonstrate the concrete sytnax of the context, invariant and fix
abstract syntax constructs discussed above.

1 (@lazy)?

2 context <name> {

3

4 (guard (:expression)|({statementBlock}))?

5

6 (invariant)*

7 }

Listing 4.4: Concrete Syntax of an EVL context

1 (@lazy)?

2 (constraint|critique) <name> {

3

4 (guard (:expression)|({statementBlock}))?

5

6 (check (:expression)|({statementBlock}))?

7

8 (message (:expression)|({statementBlock}))?

9

10 (fix)*

11 }

Listing 4.5: Concrete Syntax of an EVL invariant

69

1 fix {
2 (guard (:expression)|({statementBlock}))?
3

4 (title (:expression)|({statementBlock}))
5

6 do {
7 statementBlock
8 }
9 }

Listing 4.6: Concrete Syntax of an EVL fix

1 (pre|post) <name> {
2 statement+
3 }

Listing 4.7: Concrete Syntax of Pre and Post blocks

Pre and post blocks have a simple syntax that, as presented in Listing 4.7, consists of

the identifier (pre or post), an optional name and the set of statements to be executed

enclosed in curly braces.

4.4 Execution Semantics

Having discussed the abstract and concrete syntaxes of EVL, this section provides an in-

formal discussion of the execution semantics of the language. The execution of an EVL

module is separated into four phases:

Phase 1 Before any invariant is evaluated, the pre sections of the module are executed

in the order in which they have been specified.

Phase 2 For each non-lazy context with at least one non-lazy invariant, the instances

of the meta-class it defines are collected. For each instance, the guard of the context is

evaluated. If the guard is satisfied, then for each non-lazy invariant contained in the

context the invariant’s guard is also evaluated. If the guard of the invariant is satisfied,

the body of the invariant is evaluated. In case the body evaluates to false, the message part

of the rule is evaluated and the produced message is added along with the instance, the

invariant and the available fixes to the ValidationTrace.

The execution order of an EVL module follows a top-down depth-first scheme that

respects the order in which the contexts and invariants appear in the module. However,

70

the execution order can change in case one of the satisfies, satisfiesOne, satisfiesAll built-in

operations, discussed in detail in the sequel, are called.

Phase 3 In this phase, the validation trace is examined for unsatisfied constraints and

the user is presented with the message each one has produced. The user can then select

one or more of the available fixes to be executed. Execution of fixes is performed in a

transactional manner using the respective facilities provided by the model connectivity

framework, as discussed in Section 2.6. This is to prevent runtime errors raised during the

execution of a fix from compromising the validated model by leaving it in an inconsistent

state.

Phase 4 When the user has performed all the necessary fixes or chooses to end Phase 3

explicitly, the post section of the module is executed. There, the user can perform tasks

such as serializing the validation trace or producing a summary of the validation process

results.

4.4.1 Capturing Dependencies Between Invariants

As discussed in Section 4.1.3, it is often the case that invariants conceptually depend on

each other. To allow users capture such dependencies, EVL provides the satisfies(invariant :
String) : Boolean, satisfiesAll(invariants : Sequence(String)) : Boolean and satisfiesOne(invariants
: Sequence(String)) : Boolean built-in operations. Using these operations, an invariant can

specify in its guard other invariants which need to be satisfied for it to be meaningful to

evaluate.

When one of these operations is invoked, if the required invariants (either lazy or non-

lazy) have been evaluated for the instances on which the operation is invoked, the engine

will return their cached results; otherwise it will evaluate them and return their results.

4.5 Intra-Model Consistency Checking Example

This section presents a case study comparing EVL and OCL in the context of a common

scenario. The purpose of the case study is to present readers with the concrete syntax

of the language and demonstrate the benefits delivered by the additional constructs it

facilitates.

71

4.5.1 Scenario: The Singleton Pattern

The singleton pattern is a widely used object oriented pattern. A singleton is a class for

which exactly one instance is allowed [2]. In UML, a singleton is typically represented as

a class which is stereotyped with a <<singleton>> stereotype and which also defines a

static operation named getInstance() that returns the unique instance.

To ensure that all singletons have been modelled correctly in a UML model one needs to

evaluate the following invariants on all classes that are stereotyped with the <<singleton>>

stereotype:

• DefinesGetInstance : Each stereotyped class must define a getInstance() method

• GetInstanceIsStatic : The getInstance() method must be static

• GetInstanceReturnsSame : The return type of the getInstance() method must be the

class itself

Obviously, invariants GetInstanceIsStatic and GetInstanceReturnsSame depend on De-
finesGetInstance because if the singleton does not define a getInstance() operation, check-

ing for the operation’s scope and return type is meaningless. Moreover, in case an in-

variant fails, there are corrective actions (fixes) that users may want to perform semi-

automatically: e.g. for DefinesGetInstance, such an action would be to add the missing

getInstance() operation, for GetInstanceIsStatic to change it to static and for GetInstanceRe-
tunrsSame to set the return type to the class itself. In the following sections OCL and EVL

are used to express the three constraints and then the two solutions are compared.

4.5.2 Using OCL to Express the Invariants

Listing 4.8 shows the aforementioned invariants implemented in OCL.

1 package Foundation::Core

2

3 context Class

4

5 def isSingleton :

6 let isSingleton : Boolean =

7 self.stereotype->exists(s|s.name = ’singleton’)

8

9 def getInstanceOperation :

10 let getInstanceOperation : Operation =

11 self.feature->select(f|f.oclIsTypeOf(Operation)

72

12 and f.name = ’getInstance’)->first().oclAsType(Operation)

13

14 inv DefinesGetInstanceOperation :

15 if isSingleton

16 then getInstanceOperation.isDefined

17 else true

18 endif

19

20 inv GetInstanceOperationIsStatic :

21 if isSingleton then

22 if getInstanceOperation.isDefined

23 then getInstanceOperation.ownerScope = #classifier

24 else false

25 endif

26 else

27 true

28 endif

29

30 inv GetOperationReturnsSame :

31 if isSingleton then

32 if getInstanceOperation.isDefined then

33 if getInstanceOperation.returnParameter.isDefined

34 then getInstanceOperation.returnParameter.type = self

35 else false

36 endif

37 else

38 false

39 endif

40 else

41 true

42 endif

43

44 context Operation

45

46 def returnParameter :

47 let returnParameter : Parameter =

48 self.parameter->select(p|p.kind = #return)->first()

49

50 endpackage

Listing 4.8: OCL Module for Validating Singletons

By examining the OCL solution it can be observed that all invariants first check that

the class is a singleton (lines 15, 21 and 31) by using the isSingleton derived property

73

defined in line 5. If the isSingleton returns false, the invariants return true since returning

false would cause them to fail for all non-singleton classes. This reveals an additional

shortcoming of OCL: if a constraint returns true it may mean two different things: either

that the instance satisfies the constraint or that the constraint is not applicable to the

instance at all. In our view, this overloading reduces understandability.

By further studying the solution of Listing 4.8 it can be noticed that dependency be-

tween constraints is captured artificially using nested if expressions. For instance, both

GetInstanceIsStatic and GetInstanceRetunrsSame contain an if expression in lines 22 and 32

respectively, requiring that they recalculate the value of the getInstanceOperation defined

in line 9, where they actually recalculate the result of the DefinesGetInstanceOperation
invariant. As discussed in Section 4.1.3, this happens because OCL lacks constructs for

capturing dependencies in a structured manner.

4.5.3 Using EVL to Express the Invariants

Listing 4.9 provides a solution for this problem expressed in EVL.

1 context Singleton {

2

3 guard : self .stereotype−>exists(s|s.name = "singleton")

4

5 constraint DefinesGetInstance {

6 check : self .getGetInstanceOperation().isDefined()

7 message : "Singleton " + self .name +

8 " must define a getInstance() operation"

9 fix {

10 title : "Add a getInstance() operation to " + self .name

11 do {

12 // Create the getInstance operation

13 var op : new Operation;

14 op.name = "getInstance";

15 op.owner = self;

16 op.ownerScope = ScopeKind#sk_classifier;

17

18 // Create the return parameter

19 var returnParameter : new Parameter;

20 returnParameter.type = self;

21 op.parameter = Sequence{returnParameter};

22 returnParameter.kind = ParameterDirectionKind#pdk_return;

74

23 }

24 }

25 }

26

27 constraint GetInstanceIsStatic {

28 guard : self . satisfies ("DefinesGetInstance")

29 check : self .getGetInstanceOperation().ownerScope =

30 ScopeKind#sk_classifier

31 message : " The getInstance() operation of singleton "

32 + self .name + " must be static"

33

34 fix {

35 title : "Change to static "

36 do {

37 self .getGetInstanceOperation.ownerScope

38 = ScopeKind#sk_classifier;

39 }

40 }

41 }

42

43 constraint GetInstanceReturnsSame {

44

45 guard : self . satisfies ("DefinesGetInstance")

46 check {

47 var returnParameter : Parameter;

48 returnParameter = self.getReturnParameter();

49 return (returnParameter−>isDefined()

50 and returnParameter.type = self);

51 }

52 message : " The getInstance() operation of singleton "

53 + self .name + " must return " + self.name

54

55 fix {

56 title : "Change return type to " + self .name

57 do {

58 var returnParameter : Parameter;

59 returnParameter = self.getReturnParameter();

60

75

61 // If the operation does not have a return parameter

62 // create one

63 if (not returnParameter.isDefined()){

64 returnParameter = Parameter.newInstance();

65 returnParameter.kind = ParameterDirectionKind#pdk_return;

66 returnParameter.behavioralFeature =

67 self .getInstanceOperation();

68 }

69 // Set the correct return type

70 returnParameter.type = self;

71 }

72 }

73 }

74 }

75

76 operation Class getGetInstanceOperation() : Operation {

77 return self . feature .

78 select (o:Operation|o.name = "getInstance").first();

79 }

80

81 operation Operation getReturnParameter() : Parameter {

82 return self .parameter.

83 select (p:Parameter|p.kind =

84 ParameterDirectionKind#pdk_return).first();

85 }

Listing 4.9: EVL Module for Validating Singletons

The Singleton context defines that the invariants it contains will be evaluated on in-

stances of the UML Class type. Moreover, its guard defines that they will be evaluated only

on classes that are stereotyped with the singleton stereotype. Therefore, unlike the OCL so-

lution of Listing 4.8, invariants contained in this context do not need to check individually

that the instances on which they are evaluated are singletons.

Constraint DefinesGetInstance defines no guard which means that it will be evaluated

for all the instances of the context. In its check part, the constraint examines if the class

defines an operation named getInstance() by invoking the getGetInstanceOperation() oper-

ation. If this fails, it proposes a fix that adds the missing operation to the class.

Constraint GetInstanceIsStatic defines a guard which states that for the constraint to be

evaluated on an instance, the instance must first satisfy the DefinesGetInstance constraint.

76

If it doesn’t, it is not evaluated at all. In its check part it examines that the getInstance()
operation is static. Note that here the constraint needs not check that the getInstance()
operation is defined again since this is assumed by the DefinesGetInstance constraint on

which it depends. If the constraint fails for an instance, the fix part can be invoked to

change the scope of the getInstance() operation to static.

Constraint GetInstanceReturnsSame checks that the return type of the getInstance() op-

eration is the singleton itself. Similarly to the GetInstanceIsStatic constraint, it defines that

to be evaluated the DefinesGetInstance constraint must be satisfied. If it fails for a particu-

lar instance, the fix part can be invoked. In the fix part, if the operation defines a return

parameter of incorrect type, its type is changed and if it does not define a return parameter

at all, the parameter is created and added to the parameters of the operation.

By observing the two solutions the OCL solution resembles the concept of defensive

programming, where conditions are embedded in supplier code, while the EVL one is

closer to the design by contract [3] approach where conditions are explicitly checked in

guards.

This case study has demonstrated that the additional constructs provided by EVL can

reduce repetition significantly and thus enable specification of more concise constraints.

Moreover, in case a constraint is not satisfied for a particular instance, the user is pro-

vided with a meaningful context-aware message and with automated facilities (fixes) for

repairing the inconsistency.

4.6 Inter-Model Consistency Checking Example

In the previous example, EVL was used to check the internal consistency of a single UML

model. By contrast, this example demonstrates using EVL to detect and repair occur-

rences of incompleteness and contradiction between two different models. In this exam-

Figure 4.2: The ProcessLang Metamodel

77

ple the simplified ProcessLang metamodel, which captures information about hierarchical

processes, is used. To add performance information in a separate aspect ProcessPerfor-
manceLang metamodel is also defined. The metamodels are displayed in Figures 4.2 and

4.3 respectively.

Figure 4.3: The ProcessPerformanceLang Metamodel

There are two constraints that need to be defined and evaluated in this example: that

each Process in a process model (PM) has a corresponding ProcessPerformance in the pro-

cess performance model (PPM), and that the maxAcceptableTime of a process does not

exceed the sum of the maxAcceptableTimes of its children. This is achieved with the Perfor-
manceIsDefined and the PerformanceIsValid EVL constraints displayed in Listing 4.10.

1 context PM!Process {

2 constraint PerformanceIsDefined {

3

4 check {

5 var processPerformances =

6 PPM!ProcessPerformance.

7 allInstances.select(pt|pt.process = self);

8

9 return processPerformances.size() = 1;

10 }

11

12 message {

13 var prefix : String;

14 if (processPerformances.size() = 1) {

15 prefix = "More than one performance info";

16 }

17 else {

18 prefix = "No performance info";

19 }

20 return prefix + " found for process "

21 + self.name;

78

22 }

23

24 fix {

25 title : "Set the performance of " + self.name

26

27 do {

28 for (p in processPerformances.clone()) {

29 delete p;

30 }

31 var maxAcceptableTime : Integer;

32 maxAcceptableTime = UserInput.

33 promptInteger("maxAcceptableTime", 0);

34 var p :

35 new PPM!ProcessPerformance;

36 p.maxAcceptableTime = maxAcceptableTime;

37 p.process = self;

38 }

39 }

40 }

41

42 constraint PerformanceIsValid {

43

44 guard : self.satisfies("PerformanceIsDefined")

45 and self.children.forAll

46 (c|c.satisfies("PerformanceIsDefined"))

47

48 check {

49 var sum : Integer;

50 sum = self.children.

51 collect(c|c.getMaxAcceptableTime())

52 .sum().asInteger();

53 return self.getMaxAcceptableTime() >= sum;

54 }

55

56 message : "Process " + self.name +

57 " has a smaller maxAcceptableTime "

58 + "than the sum of its children"

59

60 fix {

61 title : "Increase maxAcceptableTime to " + sum

62 do {

63 self.setMaxAcceptableTime(sum);

64 }

79

65 }

66

67 }

68

69 }

70

71 operation PM!Process getMaxAcceptableTime()

72 : Integer {

73 return PPM!ProcessPerformance.

74 allInstances.selectOne(pt|pt.process=self)

75 .maxAcceptableTime;

76 }

77

78 operation PM!Process setMaxAcceptableTime

79 (time : Integer) {

80 PPM!ProcessPerformance.allInstances.

81 selectOne(pt|pt.process=self).maxAcceptableTime =

82 time;

83 }

Listing 4.10: Exemplar EVL module containing a cross-model constraint

In line 4, the check part of the PerformanceIsDefined constraint calculates the instances

of ProcessPerformance in the ProcessPerformanceModel that have their process reference set

to the currently examined Process (accessible via the self built-in variable) and stores it

in the processPerformances variable. If exactly one ProcessPerformance is defined for the

Process, the constraint is satisfied. Otherwise, the message part of the constraint, in line

12, is evaluated and an appropriate error message is displayed to the user.

Note that the processPerformances variable defined in the check part is also used from

within the message part of the constraint. As discussed in [4], EVL provides this feature to

reduce the need for duplicate calculations as our experience has shown that the message

for a failed constraint often needs to utilize side-information collected in the check part.

To repair the inconsistency, the user can invoke the fix defined in line 24 that will

delete any existing ProcessPerformance instances and create a new one with a user-defined

maxAcceptableTime obtained using the UserInput.promptInteger() statement of line 32.

Unlike the PerformanceIsDefined constraint, the PerformanceIsValid constraint, line 42,

defines a guard part (line 44). As discussed in [4], the guard part of a constraint is used to

further limit the applicability of the constraint beyond the simple type check performed in

the containing context. In this rule, the validity of the maxAcceptableTime of a Process needs

to be checked only if one has been defined in the ProcessPerformanceModel. Therefore, the

80

guard part of the constraint specifies that this constraint is only applicable to Processes
where, both they and they children, satisfy the PerformanceIsDefined constraint.

The check part of the constraint retrieves the maxAcceptableTime of the process and

that of its children and compares them. As the Process itself does not define performance

information, retrieval of the value of the maxAcceptableTime of the respective ProcessPer-
formance object is implemented using the user-defined getMaxAcceptableTime() operation

that is defined in line 71. In case the constraint is not satisfied, the user can invoke the

fix defined in line 60 to repair the inconsistency by setting the maxAcceptableTime of the

process to the sum calculated in line 50. As discussed earlier, the fix parts of EVL invari-

ants do not in any way guarantee that they do fix the problem they target or that in their

effort to fix one problem they do not create another problem; this is left to the user. For

instance, in this particular example, changing the maxAcceptableTime of a process through

a fix block may render its parent process invalid.

To demonstrate the evaluation of these constraints two exemplar models that conform

to the ProcessLang and ProcessPerformanceLang metamodels are used. A visual representa-

tion of the models is displayed in Figure 4.4.

Figure 4.4: Exemplar Process and ProcessPerformance models

Evaluating the constraints in the context of those two models reveals two problems

which are reported to the user via the view displayed in Figure 4.5. Indeed by examin-

ing the two models of Figure 4.4, it becomes apparent that there is no ProcessPerformance
linked to the Verify PIN process and also that the maxAcceptableTime of Complete Transac-
tion (5000) is less than the sum of the maxAcceptableTimes of its children (2000 + 3500).

81

Figure 4.5: Screenshot of the validation view reporting the identified inconsistencies

4.7 Summary

This section has provided a detailed discussion on the EVL model-validation language

which conceptually (as opposed to technically) extends OCL. EVL provides a number of

features such as support for detailed user feedback, constraint dependency management,

semi-automatic transactional inconsistency resolution and (as it is based on EOL) access

to multiple models of diverse metamodels and technologies.

82

Chapter 5

The Epsilon Transformation Language
(ETL)

The aim of ETL [5] is to contribute model-to-model transformation capabilities to Epsilon.

More specifically, ETL can be used to transform an arbitrary number of input models into

an arbitrary number of output models of different modelling languages and technologies

at a high level of abstraction.

5.1 Style

Three styles are generally recognized in model transformation languages: declarative,

imperative and hybrid, each one demonstrating particular advantages and shortcomings.

Declarative transformation languages are generally limited to scenarios where the source

and target metamodels are similar to each other in terms of structure and thus, the trans-

formation is a matter of a simple mapping. However they fail to address cases where

significant processing and complex mappings are involved. On the other hand, purely

imperative transformation languages are capable of addressing a wider range of transfor-

mation scenarios. Nevertheless, they operate at a low level of abstraction which means

that users need to manually address issues such as tracing and resolving target elements

from their source counterparts and orchestrating the transformation execution. To ad-

dress those shortcomings, hybrid languages (such as ATL [6] and QVT [7]) provide both a

declarative rule-based execution scheme as well as imperative features for handling com-

plex transformation scenarios.

Under this rationale, ETL has been designed as a hybrid language that implements a

task-specific rule definition and execution scheme but also inherits the imperative features

of EOL to handle complex transformations where this is deemed necessary.

83

5.2 Source and Target Models

The majority of model-to-model transformation languages assume that only two models

participate in each transformation: the source model and the target model. Nevertheless,

it is often essential to be able to access/update additional models during a transformation

(such as trace or configuration models). Building on the facilities provided by EMC and

EOL, ETL enables specification of transformations that can transform an arbitrary number

of source models into an arbitrary number of target models.

Another common assumption is that the contents of the target models are insignificant

and thus a transformation can safely overwrite their contents. As discussed in the sequel,

ETL - like all Epsilon languages - enables the user to specify, for each involved model,

whether its contents need to be preserved or not.

5.3 Abstract Syntax

As illustrated in Figure 5.1, ETL transformations are organized in modules (EtlModule).

A module can contain a number of transformation rules (TransformationRule). Each rule

has a unique name (in the context of the module) and also specifies one source and many

target parameters. A transformation rule can also extend a number of other transformation

rules and be declared as abstract, primary and/or lazy1. To limit its applicability to a subset

of elements that conform to the type of the source parameter, a rule can optionally define

a guard which is either an EOL expression or a block of EOL statements. Finally, each

rule defines a block of EOL statements (body) where the logic for populating the property

values of the target model elements is specified.

Besides transformation rules, an ETL module can also optionally contain a number of

pre and post named blocks of EOL statements which, as discussed later, are executed before

and after the transformation rules respectively. These should not be confused with the pre-

/post-condition annotations available for EOL user-defined operations (Section 3.2.2).

5.4 Concrete Syntax

The concrete syntax of a transformation rule is displayed in Listing 5.1. The optional

abstract, lazy and primary attributes of the rule are specified using respective annotations.

The name of the rule follows the rule keyword and the source and target parameters are

1The concept of lazy rules was first introduced in ATL

84

Fi
gu

re
5.

1:
ET

L
A

bs
tr

ac
t

Sy
nt

ax

85

defined after the transform and to keywords. Also, the rule can define an optional comma-

separated list of rules it extends after the extends keyword. Inside the curly braces ({}),

the rule can optionally specify its guard either as an EOL expression following a colon (:)

(for simple guards) or as a block of statements in curly braces (for more complex guards).

Finally, the body of the rule is specified as a sequence of EOL statements.

1 (@abstract)?

2 (@lazy)?

3 (@primary)?

4 rule <name>

5 transform <sourceParameterName>:<sourceParameterType>

6 to <rightParameterName>:<rightParameterType>

7 (, <rightParameterName>:<rightParameterType>)*
8 (extends <ruleName>(, <ruleName>)*)? {

9

10 (guard (:expression)|({statementBlock}))?

11

12 statement+

13 }

Listing 5.1: Concrete Syntax of a TransformationRule

Pre and post blocks have a simple syntax that, as presented in Listing 5.2, consists of

the identifier (pre or post), an optional name and the set of statements to be executed

enclosed in curly braces.

1 (pre|post) <name> {

2 statement+

3 }

Listing 5.2: Concrete Syntax of Pre and Post blocks

5.5 Execution Semantics

5.5.1 Rule and Block Overriding

Similarly to ECL, an ETL module can import a number of other ETL modules. In this

case, the importing ETL module inherits all the rules and pre/post blocks specified in the

modules it imports (recursively). If the module specifies a rule or a pre/post block with

the same name, the local rule/block overrides the imported one respectively.

86

5.5.2 Rule Execution Scheduling

When an ETL module is executed, the pre blocks of the module are executed first in the

order in which they have been specified.

Following that, each non-abstract and non-lazy rule is executed for all the elements on

which it is applicable. To be applicable on a particular element, the element must have

a type-of relationship with the type defined in the rule’s sourceParameter (or a kind-of

relationship if the rule is annotated as @greedy) and must also satisfy the guard of the rule

(and all the rules it extends). When a rule is executed on an applicable element, the target

elements are initially created by instantiating the targetParameters of the rules, and then

their contents are populated using the EOL statements of the body of the rule.

Finally, when all rules have been executed, the post blocks of the module are executed

in the order in which they have been declared.

5.5.3 Source Elements Resolution

Resolving target elements that have (or can be) transformed from source elements by other

rules is a frequent task in the body of a transformation rule. To automate this task and

reduce coupling between rules, ETL contributes the equivalents() and equivalent() built-in

operations that automatically resolve source elements to their transformed counterparts

in the target models.

When the equivalents() operation is applied on a single source element (as opposed to

a collection of them), it inspects the established transformation trace (displayed in Figure

5.2) and invokes the applicable rules (if necessary) to calculate the counterparts of the

element in the target model. When applied to a collection it returns a Bag containing Bags
that in turn contain the counterparts of the source elements contained in the collection.

The equivalents() operation can be also invoked with an arbitrary number of rule names as

parameters to invoke and return only the equivalents created by specific rules. Unlike the

main execution scheduling scheme discussed above, the equivalents() operation invokes

both lazy and non-lazy rules. It is worth noting that lazy rules are computationally expen-

sive and should be used with caution as they can significantly degrade the performance of

the overall transformation.

With regard to the ordering of the results of the equivalents() operations, the returned

elements appear in the respective order of the rules that have created them. An exception

to this occurs when one of the rules is declared as primary, in which case its results precede

the results of all other rules.

87

Figure
5.2:

ETL
R

untim
e

88

ETL also provides the convenience equivalent() operation which, when applied to a

single element, returns only the first element of the respective result that would have

been returned by the equivalents() operation discussed above. Also, when applied to a

collection the equivalent() operation returns a flattened collection (as opposed to the result

of equivalents() which is a Bag of Bags in this case). As with the equivalents() operation,

the equivalent() operation can also be invoked with or without parameters.

The semantics of the equivalent() operation are further illustrated through a simple

example. In this example, we need to transform a model that conforms to the Tree meta-

model displayed in Figure 8.3 into a model that conforms to the Graph metamodel of

Figure 5.3. More specifically, we need to transform each Tree element to a Node, and an

Edge that connects it with the Node that is equivalent to the tree’s parent. This is achieved

using the rule of Listing 5.3.

1 rule Tree2Node
2 transform t : Tree!Tree
3 to n : Graph!Node {
4

5 n.label = t.label;
6

7 if (t.parent.isDefined()) {
8 var edge = new Graph!Edge;
9 edge.source = n;

10 edge.target = t.parent.equivalent();
11 }
12 }

Listing 5.3: Exemplar ETL Rule demonstrating the equivalent() operation

In lines 1–3, the Tree2Node rule specifies that it can transform elements of the Tree type

in the Tree model into elements of the Node type in the Graph model. In line 5 it specifies

that the name of the created Node should be the same as the name of the source Tree. If

the parent of the source Tree is defined (line 7), the rule creates a new Edge (line 8) and

sets its source property to the created Node (line 9) and its target property to the equivalent
Node of the source Tree’s parent (line 10).

5.5.4 Overriding the semantics of the EOL

SpecialAssignmentOperator

As discussed above, resolving the equivalent(s) or source model elements in the target

model is a recurring task in model transformation. Furthermore, in most cases resolv-

ing the equivalent of a model element is immediately followed by assigning/adding the

89

Figure 5.3: A Simple Graph Metamodel

obtained target model elements to the value(s) of a property of another target model

element. For example, in line 10 of Listing 5.3 the equivalent obtained is immediately

assigned to the target property of the generated Edge. To make transformation specifica-

tions more readable, ETL overrides the semantics of the SpecialAssignmentStatement (::=
in terms of concrete syntax), described in Section 3.5.3 to set its left-hand side, not to

the element its right-hand side evaluates to, but to its equivalent as calculated using the

equivalent() operation discussed above. Using this feature, line 10 of the Tree2Node rule

can be rewritten as shown in Listing 5.4

1 edge.target ::= t.parent;

Listing 5.4: Rewritten Line 10 of the Tree2Node Rule Demonstrated in Listing 5.3

5.6 Interactive Transformations

Using the user interaction facilities of EOL discussed in Section 3.7, an ETL transforma-

tion can become interactive by prompting the user for input during its execution. For

example in Listing 5.5, we modify the Tree2Node rule originally presented in Listing 5.3

by adding a guard part that uses the user-input facilities of EOL (more specifically the

UserInput.confirm(String,Boolean) operation) to enable the user select manually at run-

time which of the Tree elements need to be transformed to respective Node elements in

the target model and which not.

1 rule Tree2Node

2 transform t : Tree!Tree

3 to n : Graph!Node {

4

5 guard : UserInput.confirm

6 ("Transform tree " + t.label + "?", true)

7

90

8 n.label = t.label;

9 var target : Graph!Node ::= t.parent;

10 if (target.isDefined()) {

11 var edge = new Graph!Edge;

12 edge.source = n;

13 edge.target = target;

14 }

15 }

Listing 5.5: Exemplar Interactive ETL Transformation

5.7 Summary

This section has provided a detailed discussion on the Epsilon Transformation Language

(ETL). ETL is capable of transforming an arbitrary number of source models into an ar-

bitrary number of target models. ETL adopts a hybrid style and features declarative rule

specification using advanced concepts such as guards, abstract, lazy and primary rules,

and automatic resolution of target elements from their source counterparts. Also, as ETL

is based on EOL reuses its imperative features to enable users to specify particularly com-

plex, and even interactive, transformations.

91

Chapter 6

The Epsilon Wizard Language (EWL)

There are two types of model-to-model transformations: mapping and update transfor-

mations [8]. Mapping transformations typically transform a source model into a set of

target models expressed in (potentially) different modelling languages by creating zero or

more model elements in the target models for each model element of the source model. By

contrast, update transformations perform in-place modifications in the source model itself.

They can be further classified into two subcategories: transformations in the small and in

the large. Update transformations in the large apply to sets of model elements calculated

using well-defined rules in a batch manner. An example of this category of transforma-

tions is a transformation that automatically adds accessor and mutator operations for all

attributes in a UML model. On the other hand, update transformations in the small are

applied in a user-driven manner on model elements that have been explicitly selected by

the user. An example of this kind of transformations is a transformation that renames a

user-specified UML class and all its incoming associations consistently.

In Epsilon, mapping transformations can be specified using ETL as discussed in Section

5, and update transformations in the large can be implemented either using the model

modification features of EOL or using an ETL transformation in which the source and

target models are the same model. By contrast, update transformations in the small cannot

be effectively addressed by any of the languages presented so far.

The following section discusses the importance of update transformations in the small

and motivates the definition of a task-specific language (Epsilon Wizard Language (EWL))

that provides tailored and effective support for defining and executing update transforma-

tions on models of diverse metamodels.

93

6.1 Motivation

Constructing and refactoring models is undoubtedly a mentally intensive process. How-

ever, during modelling, recurring patterns of model update activities typically appear. As

an example, when renaming a class in a UML class diagram, the user also needs to man-

ually update the names of association ends that link to the renamed class. Thus, when

renaming a class from Chapter to Section, all associations ends that point to the class and

are named chapter or chapters should be also renamed to section and sections respectively.

As another example, when a modeller needs to refactor a UML class into a singleton [2],

they need to go through a number of well-defined, but trivial, steps such as attaching

a stereotype (<< singleton >>), defining a static instance attribute and adding a static

getInstance() method that returns the unique instance of the singleton.

It is generally accepted that performing repetitive tasks manually is both counter-

productive and error-prone [9]. On the other hand, failing to complete such tasks correctly

and precisely compromises the consistency, and thus the quality, of the models. In Model

Driven Engineering, this is particularly important since models are increasingly used to

automatically produce (parts of) working systems.

6.1.1 Automating the Construction and Refactoring Process

Contemporary modelling tools provide built-in transformations (wizards) for automating

common repetitive tasks. However, according to the architecture of the designed system

and the specific problem domain, additional repetitive tasks typically appear, which can-

not be addressed by the pre-conceived built-in wizards of a modelling tool. To address

the automation problem in its general case, users must be able to easily define update

transformations (wizards) that are tailored to their specific needs.

To an extent, this can be achieved via the extensible architecture that state-of-the-art

modelling tools often provide and which enables users to add functionality to the tool via

scripts or application code using the implementation language of the tool. Nevertheless,

as discussed in [10], the majority of modelling tools provide an API through which they

expose an edited model, which requires significant effort to learn and use. Also, since

each API is proprietary, such scripts and extensions are not portable to other tools. Finally,

API scripting languages and third-generation languages such as Java and C++ are not

particularly suitable for model navigation and modification [10].

Furthermore, existing languages for mapping transformations, such as QVT, ATL and

ETL, cannot be used as-is for this purpose, because these languages have been designed

94

to operate in a batch manner without human involvement in the process. By contrast, as

discussed above, the task of constructing and refactoring models is inherently user-driven.

6.2 Update Transformations in the Small

Update transformations are actions that automatically create, update or delete model el-

ements based on a selection of existing elements in the model and information obtained

otherwise (e.g. through user input), in a user-driven fashion. In this section such actions

are referred to as wizards instead of rules to reduce confusion between them and rules of

mapping transformation languages. In the following sections the desirable characteristics

of wizards are elaborated informally.

6.2.1 Structure of Wizards

In its simplest form, a wizard only needs to define the actions it will perform when it is

applied to a selection of model elements. The structure of such a wizard that transforms a

UML class into a singleton is shown using pseudo-code in Listing 6.1.

1 do :

2 attach the singleton stereotype

3 create the instance attribute

4 create the getInstance method

Listing 6.1: The simplest form of a wizard for refactoring a class into a singleton

Since not all wizards apply to all types of elements in the model, each wizard needs to

specify the types of elements to which it applies. For example, the wizard of Listing 6.1,

which automatically transforms a class into a singleton, applies only when the selected

model element is a class. The simplest approach to ensuring that the wizard will only be

applied on classes is to enclose its body in an if condition as shown in Listing 6.2.

1 do :

2 if (selected element is a class) {

3 attach the singleton stereotype

4 create the instance attribute

5 create the getInstance method

6 }

Listing 6.2: The wizard of Listing 6.1 enhanced with an if condition

A more modular approach is to separate this condition from the body of the wizard.

This is shown in Listing 6.3 where the condition of the wizard is specified as a separate

95

guard stating that the wizard applies only to elements of type Class. The latter is preferable

since it enables filtering out wizards that are not applicable to the current selection of

elements by evaluating only their guard parts and rejecting those that return false. Thus, at

any time, the user can be provided with only the wizards that are applicable to the current

selection of elements. Filtering out irrelevant wizards reduces confusion and enhances

usability, particularly as the list of specified wizards grows.

1 guard : selected element is a class

2 do :

3 attach the singleton stereotype

4 create the instance attribute

5 create the getInstance method

Listing 6.3: The wizard of Listing 6.2 with an explicit guard instead of the if condition

To enhance usability, a wizard also needs to define a short human-readable description

of its functionality. To achieve this, another field named title has been added. There are

two options for defining the title of a wizard: the first is to use a static string and the

second to use a dynamic expression. The latter is preferable since it enables definition of

context-aware titles.

1 guard : selected element is a class

2 title : Convert class <class-name> into a singleton

3 do :

4 attach the singleton stereotype

5 create the instance attribute

6 create the getInstance method

Listing 6.4: The wizard of Listing 6.3 enhanced with a title part

6.2.2 Capabilities of Wizards

The guard and title parts of a wizard need to be expressed using a language that pro-

vides model querying and navigation facilities. Moreover, the do part also requires model

modification capabilities to implement the transformation. To achieve complex transfor-

mations, it is essential that the user can provide additional information. For instance, to

implement a wizard that addresses the class renaming scenario discussed in Section 6.1,

the information provided by the selected class does not suffice; the user must also provide

the new name of the class. Therefore, EWL must also provide mechanisms for capturing

user input.

96

Figure 6.1: EWL Abstract Syntax

6.3 Abstract Syntax

Since EWL is built atop Epsilon, its abstract and concrete syntax need only to define the

concepts that are relevant to the task it addresses; they can reuse lower-level constructs

from EOL. A graphical overview of the abstract syntax of the language is provided in Figure

6.1.

The basic concept of the EWL abstract syntax is a Wizard. A wizard defines a name,

a guard part, a title part and a do part. Wizards are organized in Modules. The name
of a wizard acts as an identifier and must be unique in the context of a module. The

guard and title parts of a wizard are of type ExpressionOrStatementBlock, inherited from

EOL. An ExpressionOrStatementBlock is either a single EOL expression or a block of EOL

statements that include one or more return statements. This construct allows users to

express simple declarative calculations as single expressions and complex calculations as

blocks of imperative statements. The usefulness of this construct is further discussed in

the examples presented in Section 6.6. Finally, the do part of the wizard is a block of EOL

statements that specify the effects of the wizard when applied to a compatible selection of

model elements.

97

6.4 Concrete Syntax

Listing 6.5 presents the concrete syntax of EWL wizards.

1 wizard <name> {

2 (guard (:expression)|({statementBlock}))?

3 (title (:expression)|({statementBlock}))?

4 do {

5 statementBlock

6 }

7 }

Listing 6.5: Concrete syntax of EWL wizards

6.5 Execution Semantics

The process of executing EWL wizards is inherently user-driven and as such it depends

on the environment in which they are used. In general, each time the selection of model

elements changes (i.e. the user selects or deselects a model element in the modelling tool),

the guards of all wizards are evaluated. If the guard of a wizard is satisfied, the title part

is also evaluated and the wizard is added to a list of applicable wizards. Then, the user can

select a wizard and execute its do part to perform the intended transformation.

In EWL, variables defined and initialized in the guard part of the wizard can be accessed

both by the title and the do parts. In this way, results of calculations performed in the guard
part can be re-used, instead of re-calculated in the subsequent parts. The practicality of this

approach is discussed in more detail in the examples that follow. Also, the execution of the

do part of each wizard is performed in a transactional mode by exploiting the transaction

capabilities of the underlying model connectivity framework, so that possible logical errors

in the do part of a wizard do not leave the edited model in an inconsistent state.

6.6 Examples

This section presents three concrete examples of EWL wizards for refactoring UML 1.4

models. The aim of this section is not to provide complete implementations that address

all the sub-cases of each scenario but to provide enhanced understanding of the concrete

syntax, the features and the capabilities of EWL to the reader. Moreover, it should be

stressed again that although the examples in this section are based on UML models, by

building on Epsilon, EWL can be used to capture wizards for diverse modelling languages

and technologies.

98

Converting a Class into a Singleton

The singleton pattern [2] is applied when there is a class for which only one instance

can exist at a time. In terms of UML, a singleton is a class stereotyped with the <<

singleton >> stereotype, and it defines a static attribute named instance which holds the

value of the unique instance. It also defines a static getInstance() operation that returns

that unique instance. Wizard ClassToSingleton, presented in Listing 6.6, simplifies the

process of converting a class into a singleton by adding the proper stereotype, attribute

and operation to it automatically.

1 wizard ClassToSingleton {

2

3 // The wizard applies when a class is selected

4 guard : self.isTypeOf(Class)

5

6 title : "Convert " + self.name + " to a singleton"

7

8 do {

9 // Create the getInstance() operation

10 var gi : new Operation;

11 gi.owner = self;

12 gi.name = "getInstance";

13 gi.visibility = VisibilityKind#vk_public;

14 gi.ownerScope = ScopeKind#sk_classifier;

15

16 // Create the return parameter of the operation

17 var ret : new Parameter;

18 ret.type = self;

19 ret.kind = ParameterDirectionKind#pdk_return;

20 gi.parameter = Sequence{ret};

21

22 // Create the instance field

23 var ins : new Attribute;

24 ins.name = "instance";

25 ins.type = self;

26 ins.visibility = VisibilityKind#vk_private;

27 ins.ownerScope = ScopeKind#sk_classifier;

28 ins.owner = self;

29

30 // Attach the <<singleton>> stereotype

31 self.attachStereotype("singleton");

32 }

33 }

99

34

35 // Attaches a stereotype with the specified name

36 // to the Model Element on which it is invoked

37 operation ModelElement attachStereotype(name : String) {

38 var stereotype : Stereotype;

39

40 // Try to find an existing stereotype with this name

41 stereotype = Stereotype.allInstances.selectOne(s|s.name = name);

42

43 // If there is no existing stereotype

44 // with that name, create one

45 if (not stereotype.isDefined()){

46 stereotype = Stereotype.createInstance();

47 stereotype.name = name;

48 stereotype.namespace = self.namespace;

49 }

50

51 // Attach the stereotype to the model element

52 self.stereotype.add(stereotype);

53 }

Listing 6.6: Implementation of the ClassToSingleton Wizard

The guard part of the wizard specifies that it is only applicable when the selection is

a single UML class. The title part specifies a context-aware title that informs the user of

the functionality of the wizard and the do part implements the functionality by adding

the getInstance operation (lines 10-14), the instance attribute (lines 23-28) and the <<

singleton >> stereotype (line 31).

The stereotype is added via a call to the attachStereotype() operation. Attaching a

stereotype is a very common action when refactoring UML models, particularly where

UML profiles are involved, and therefore to avoid duplication, this reusable operation that

checks for an existing stereotype, creates it if it does not already exists, and attaches it to

the model element on which it is invoked has been specified.

An extended version of this wizard could also check for existing association ends that

link to the class and for which the upper-bound of their multiplicity is greater than one and

either disallow the wizard from executing on such classes (in the guard part) or update

the upper-bound of their multiplicities to one (in the do part). However, the aim of this

section is not to implement complete wizards that address all sub-cases but to provide a

better understanding of the concrete syntax and the features of EWL. This principle also

applies to the examples presented in the sequel.

100

Renaming a Class

The most widely used convention for naming attributes and association ends of a given

class is to use a lower-case version of the name of the class as the name of the attribute

or the association end. For instance, the two ends of a one-to-many association that links

classes Book and Chapter are most likely to be named book and chapters respectively.

When renaming a class (e.g. from Chapter to Section) the user must then manually

traverse the model to find all attributes and association ends of this type and update their

names (i.e. from chapter or bookChapter to section and bookSection respec-

tively). This can be a daunting process especially in the context of large models. Wizard

RenameClass presented in Listing 6.7 automates this process.

1 wizard RenameClass {

2

3 // The wizard applies when a Class is selected

4 guard : self.isKindOf(Class)

5

6 title : "Rename class " + self.name

7

8 do {

9 var newName : String;

10

11 // Prompt the user for the new name of the class

12 newName = UserInput.prompt("New name for class " + self.name);

13 if (newName.isDefined()) {

14 var affectedElements : Sequence;

15

16 // Collect the AssociationEnds and Attributes

17 // that are affected by the rename

18 affectedElements.addAll(

19 AssociationEnd.allInstances.select(ae|ae.participant=self));

20 affectedElements.addAll(

21 Attribute.allInstances.select(a|a.type = self));

22

23 var oldNameToLower : String;

24 oldNameToLower = self.name.firstToLowerCase();

25 var newNameToLower : String;

26 newNameToLower = newName.firstToLowerCase();

27

28 // Update the names of the affected AssociationEnds

29 // and Attributes

30 for (ae in affectedElements) {

31 ae.replaceInName(oldNameToLower, newNameToLower);

101

32 ae.replaceInName(self.name, newName);

33 }

34 self.name = newName;

35 }

36 }

37

38 }

39

40 // Renames the ModelElement on which it is invoked

41 operation ModelElement replaceInName

42 (oldString : String, newString : String) {

43

44 if (oldString.isSubstringOf(self.name)) {

45 // Calculate the new name

46 var newName : String;

47 newName = self.name.replace(oldString, newString);

48

49 // Prompt the user for confirmation of the rename

50 if (UserInput.confirm

51 ("Rename " + self.name + " to " + newName + "?")) {

52 // Perform the rename

53 self.name = newName;

54 }

55 }

56 }

Listing 6.7: Implementation of the RenameClass Wizard

As with the ClassToSingleton wizard, the guard part of RenameClass specifies that

the wizard is applicable only when the selection is a simple class and the title provides a

context-aware description of the functionality of the wizard.

As discussed in Section 6.2, the information provided by the selected class itself does

not suffice in the case of renaming since the new name of the class is not specified any-

where in the existing model. In EWL, and in all languages that build on EOL, user input can

be obtained using the built-in UserInput facility. Thus, in line 12 the user is prompted for

the new name of the class using the UserInput.prompt() operation. Then, all the asso-

ciation ends and attributes that refer to the class are collected in the affectedElements

sequence (lines 14-21). Using the replaceInName operation (lines 31 and 32), the name

of each one is examined for a substring of the upper-case or the lower-case version of the

old name of the class. In case the check returns true, the user is prompted to confirm (line

48) that the feature needs to be renamed. This further highlights the importance of user

input for implementing update transformations with fine-grained user control.

102

Moving Model Elements into a Different Package

A common refactoring when modelling in UML is to move model elements, particularly

Classes, between different packages. When moving a pair of classes from one package to

another, the associations that connect them must also be moved in the target package. To

automate this process, Listing 6.8 presents the MoveToPackage wizard.

1 wizard MoveToPackage {

2

3 // The wizard applies when a Collection of

4 // elements, including at least one Package

5 // is selected

6 guard {

7 var moveTo : Package;

8 if (self.isKindOf(Collection)) {

9 moveTo = self.select(e|e.isKindOf(Package)).last();

10 }

11 return moveTo.isDefined();

12 }

13

14 title : "Move " + (self.size()-1) + " elements to " + moveTo.name

15

16 do {

17 // Move the selected Model Elements to the

18 // target package

19 for (me in self.excluding(moveTo)) {

20 me.namespace = moveTo;

21 }

22

23 // Move the Associations connecting any

24 // selected Classes to the target package

25 for (a in Association.allInstances) {

26 if (a.connection.forAll(c|self.includes(c.participant))){

27 a.namespace = moveTo;

28 }

29 }

30 }

31

32 }

Listing 6.8: Implementation of the MoveToPackage Wizard

The wizard applies when more than one element is selected and at least one of the

elements is a Package. If more than one package is selected, the last one is considered

103

as the target package to which the rest of the selected elements will be moved. This is

specified in the guard part of the wizard.

To reduce user confusion in identifying the package to which the elements will be

moved, the name of the target package appears in the title of the wizard. This example

shows the importance of the decision to express the title as a dynamically calculated ex-

pression (as opposed to a static string). It is worth noting that in the title part of the wizard

(line 14), the moveTo variable declared in the guard (line 7) is referenced. Through exper-

imenting with a number of wizards, it has been noticed that in complex wizards repeated

calculations need to be performed in the guard, title and do parts of the wizard. To elim-

inate this duplication, the scope of variables defined in the guard part has been extended

so that they are also accessible from the title and do part of the wizard.

6.7 Summary

This section has presented the Epsilon Wizard Language (EWL), a language for specify-

ing and executing update transformations in the small on models of diverse metamodels.

EWL provides a textual concrete syntax tailored to the task and features such as dynami-

cally calculated wizard titles, transactional execution of the do parts of wizards and user

interaction.

104

Chapter 7

The Epsilon Generation Language (EGL)

EGL provides a language tailored for model-to-text transformation (M2T). EGL can be

used to transform models into various types of textual artefact, including executable code

(e.g. Java), reports (e.g. in HTML), images (e.g. using DOT), formal specifications (e.g. Z

notation), or even entire applications comprising code in multiple languages (e.g. HTML,

Javascript and CSS).

EGL is a template-based code generator (i.e. EGL programs resemble the text that they

generate), and provides several features that simplify and support the generation of text

from models, including: a sophisticated and language-independent merging engine (for

preserving hand-written sections of generated text), an extensible template system (for

generating text to a variety of sources, such as a file on disk, a database server, or even

as a response issued by a web server), formatting algorithms (for producing generated

text that is well-formatted and hence readable), and traceability mechanisms (for linking

generated text with source models).

7.1 Abstract Syntax

Figure 7.1 depicts the abstract syntax of EGL’s core functionality.

Conceptually, an EGL program comprises one or more sections. The contents of static

sections are emitted verbatim and appear directly in the generated text. The contents of

dynamic sections are executed and are used to control the text that is generated.

In its dynamic sections, EGL re-uses EOL’s mechanisms for structuring program control

flow, performing model inspection and navigation, and defining custom operations. In

addition, EGL provides an EOL object, out, which is used in dynamic sections to perform

operations on the generated text, such as appending and removing strings; and specifying

the type of text to be generated.

105

Figure 7.1: The abstract syntax of EGL’s core.

1 [% for (i in Sequence{1..5}) { %]
2 i is [%=i%]
3 [% } %]

Listing 7.1: A basic EGL template.

1 i is 1
2 i is 2
3 i is 3
4 i is 4
5 i is 5

Listing 7.2: The text generated from the basic EGL template (Listing 7.1).

EGL also provides syntax for defining dynamic output sections, which provide a conve-

nient shorthand for outputting text from within dynamic sections. Similar syntax is often

provided by template-based code generators.

7.2 Concrete Syntax

The concrete syntax of EGL closely resembles the style of other template-based code gener-

ation languages, such as PHP. The tag pair [% %] is used to delimit a dynamic section. Any

text not enclosed in such a tag pair is contained in a static section. Listing 7.1 illustrates

the use of dynamic and static sections to form a basic EGL template.

Executing the EGL template in Listing 7.1 would produce the generated text in List-

ing 7.2. The [%=expr%] construct (line 2) is shorthand for [% out.print(expr); %], which

appends expr to the output generated by the transformation.

Any EOL statement can be contained in the dynamic sections of an EGL template.

For example, the EGL template depicted in Listing 7.3 generates text from a model that

106

1 [% for (c in Class.all) { %]
2 [%=c.name%]
3 [% } %]

Listing 7.3: Generating the name of each Class contained in an input model.

conforms to a metamodel that describes an object-oriented system.

7.2.1 Comments and Markers

Inside an EGL dynamic section, EOL’s comment syntax can be used. Additionally, EGL adds

syntax for comment blocks [* this is a comment *] and marker blocks [*- this

is a marker *]. Marker blocks are highlighted by the EGL editor and EGL outline view

in Eclipse.

7.2.2 User-Defined Operations

Like EOL, EGL permits users to define re-usable units of code via operations (Section 3.2).

EGL operations support the predefined annotations for regular EOL operations, such as

optional pre-/post-conditions (Section 3.2.2) or result caching (Section 3.2.3).

1 [% c.declaration(); %]
2 [% operation Class declaration() { %]
3 [%=self.visibility%] class [%=self.name%] {}
4 [% } %]

Listing 7.4: Using an operation to specify the text generated for a declaration of a Java
class.

In EGL, user-defined operations are defined in dynamic sections, but may mix static and

dynamic sections in their bodies. Consider, for example, the EGL code in Listing 7.4, which

emits a declaration for a Java class (e.g. public class Foo {}). Lines 2-4 declare

the operation. Note that the start and the end of the operation’s declaration (on lines 2

and 4, respectively) are contained in dynamic sections. The body of the operation (line

3), however, mixes static and dynamic output sections. Finally, note that the operation

is invoked from a dynamic section (line 1). It is worth noting that any loose (i.e. not

contained in other operations) dynamic or static sections below the first operation of a

template will be ignored at runtime.

When a user-defined operation is invoked, any static or dynamic sections contained in

the body of the operation are immediately appended to the generated text. Sometimes,

107

however, it is desirable to manipulate the text produced by an operation before it is ap-

pended to the generated text. To this end, EGL defines the @template annotation which

can applied to operations to indicate that any text generated by the operation must be

returned from the operation and not appended to the generated text. For example, the

EGL program in Listing 7.4 could be rewritten using a @template annotation, as demon-

strated in Listing 7.5.

1 [%=c.declaration()%]
2 [% @template
3 operation Class declaration() { %]
4 [%=self.visibility%] class [%=self.name%] {}
5 [% } %]

Listing 7.5: Using a template operation to specify the text generated for a declaration of a
Java class.

There is a subtle difference between the way in which standard (i.e. unannotated)

operations and @template operations are invoked. Compare the first line of Listings 7.4

and 7.5. The former uses a dynamic section, because invoking the operation causes the

evaluation of its body to be appended to the text generated by this program. By contrast,

the latter uses a dynamic output section to append the result returned by the @template

operation to the text generated by this program.

In general, @template operations afford more flexibility than standard operations.

For example, line 1 of Listing 7.5 could perform some manipulation of the text returned

by the declaration() operation before the text is outputted. Therefore, @template

operations provide a mechanism for re-using common pieces of a code generator, without

sacrificing the flexibility to slightly alter text before it is emitted. Standard (unannotated)

operations also permit re-use, but in a less flexible manner.

Finally, it is worth noting that user-defined operations in EGL do not have to generate

text. For example, Listing 7.6 illustrates two operations defined in an EGL program that

do not generate any text. The former is a query that returns a Boolean value, while the

latter alters the model, and does not return a value.

7.3 The OutputBuffer

As an EGL program is executed, text is appended to a data structure termed the Output-
Buffer. In every EGL program, the OutputBuffer is accessible via the out built-in variable.

The OutputBuffer provides operations for appending to and removing from the buffer, and

for merging generated text with existing text (see Section 7.5).

108

1 [%
2 operation Class isAnonymous() : Boolean {
3 return self.name.isUndefined();
4 }
5

6 operation removeOneClass() {
7 delete Class.all.random();
8 }
9 %]

Listing 7.6: Operations that do not generate any text.

For many EGL programs, interacting directly with the OutputBuffer is unnecessary. The

contents of static and dynamic output sections are sent directly to the OutputBuffer, and no

operation of the OutputBuffer need be invoked directly. However, in cases when generated

text must be sent to the OutputBuffer from dynamic sections, or when generated text must

be merged with existing text, the operations of OutputBuffer (Table 7.1) are provided.

Section 7.5 discusses merging generated and existing text, and presents several examples

of invoking the operations of OutputBuffer.

Table 7.1: Operations of type OutputBuffer

Signature Description

chop(numberOfChars : Integer) Removes the specified number of characters from

the end of the buffer

print(object : Any) Appends a string representation of the specified

object to the buffer

println(object : Any) Appends a string representation of the specified

object and a new line to the buffer

println() Appends a new line to the buffer

setContentType(contentType :

String)

Updates the content type of this template. Sub-

sequent calls to preserve or startPreserve

that do not specify a style of comment will use the

style of comment defined by the specified content

type. See Section 7.5.

109

preserve(id : String, enabled :

Boolean, contents : String)

Appends a protected region to the buffer with the

given identifier, enabled state and contents. Uses

the current content type to determine how to for-

mat the start and end markers. See Section 7.5.

preserve(startComment : String,

endComment : String, id : String,

enabled : Boolean, contents :

String)

Appends a protected region to the buffer with the

given identifier, enabled state and contents. Uses

the first two parameters as start and end markers.

See Section 7.5.

startPreserve(id : String, enabled :

Boolean)

Begins a protected region by appending the start

marker for a protected region to the buffer with

the given identifier and enabled state. Uses the

current content type to determine how to format

the start and end markers. See Section 7.5.

startPreserve(startComment :

String, endComment : String, id :

String, enabled : Boolean)

Begins a protected region by appending the start

marker to the buffer with the given identifier and

enabled state. Uses the first two parameters as

start and end markers. See Section 7.5.

stopPreserve() Ends the current protected region by appending

the end marker to the buffer. This operation

should be invoked only if there a protected region

is currently open (i.e. has been started by invok-

ing startPreserve but not yet stopped by in-

voking stopPreserve). See Section 7.5.

7.4 Co-ordination

In the large, M2T transformations are used to generate text to various destinations. For

example, code generators often produce files on disk, and web applications often generate

text as part of the response for a resource on the web server. Text might be generated to a

network socket during interprocess communication, or as a query that runs on a database.

Furthermore, (parts of) a single M2T transformation might be re-used in different contexts.

A M2T transformation that generates files on disk today might be re-purposed to generate

the response from a web server tomorrow.

Given these concerns, EGL provides a co-ordination engine that provides mechanisms

110

for modularising M2T transformations, and for controlling the destinations to which text

is generated. The EGL co-ordination engine fulfils three requirements:

1. Reusability: the co-ordination engine allows EGL programs to be decomposed into

one or more templates, which can be shared between EGL programs.

2. Variety of destination: the co-ordination engine provides an extensible set of tem-

plate types that can generate text to a variety of destinations. Section 7.4.1 describes

the default template type, which is tailored to generate text to files on disk, while

Section 7.4.4 discusses the way in which users can define their own template types

for generating text to other types of destination.

3. Separation of concerns: the co-ordination engine ensures that the logic for control-

ling the text that is generated (i.e. the content) and the logic for controlling the way

in which text is emitted (i.e. the destination) are kept separate.

7.4.1 The Template type

Central to the co-ordination engine is the Template type, which EGL provides in addition

to the default EOL types (Section 3.3). Via the Template type, EGL fulfils the three re-

quirements identified above. Firstly, a Template can invoke other Templates, and hence

can be shared and re-used between EGL programs. Secondly, the Template type has been

implemented in an extensible manner: users can define their own types of Template that

generate text to any destination (e.g. a database or a network socket), as described in

Section 7.4.4. Finally, the Template type provides a set of operations that are used to con-

trol the destination of generated text. Users typically define a “driver” template that does

not generate text, but rather controls the destination of text that is generated by other

templates.

For example, consider the EGL program in Listing 7.7. This template generates no text

(as it contains only a single dynamic section), but is used instead to control the destination

of text generated by another template. Line 1 defines a variable, t, of type Template. Note

that, unlike the EOL types, instances of Template are not created with the new keyword.

Instead, the TemplateFactory built-in object (Section 7.4.2) is used to load templates from,

for example, a file system path. On line 3, the generate operation of the Template type

invokes the EGL template stored in the file “ClassNames.egl” and emits the generated text

to “Output.txt”.

111

1 [%
2 var t : Template = TemplateFactory.load("ClassNames.egl");
3 t.generate("Output.txt");
4 %]

Listing 7.7: Storing the name of each Class to disk.

In addition to generate, the Template type defines further operations for controlling

the context and invocation of EGL templates. Table 7.2 lists all of the operations defined

on Template, and a further example of their use is given in Section 7.4.3.

Table 7.2: Operations of type Template

Signature Description

populate(name : String, value

: Any)

Makes a variable with the specified name and value

available during the execution of the template.

process() : String Executes the template and returns the text that is gen-

erated.

generate(destination : String) Executes the template and stores the text to the speci-

fied destination. The format of the destination param-

eter is dictated by the type of template. For example,

the default template type (which can generate files on

disk) expects a file system path as the destination pa-

rameter. Returns a JAVA.IO.FILE object representing the

generated file.

append(destination : String) Executes the template: if the destination exists, it will

add a newline and the generated text at the end of the

file. If the file does not exist, it will write the generated

text to it (with no newline). Returns a JAVA.IO.FILE

object representing the generated file.

setFormatter(formatter : For-

matter)

Changes the formatter for this template to the speci-

fied formatter. Subsequent calls to generate or process

will produce text that is formatted with the specified

formatter. See Section 7.6.

112

setFormatters(formatters :

Sequence(Formatter))

Changes the formatter for this template to the specified

sequence of formatters. Subsequent calls to generate or

process will produce text that is formatted with each of

the specified formatters in turn. See Section 7.6.

7.4.2 The TemplateFactory object

As discussed above, instances of Template are not created with the new keyword. Instead,

EGL provides a built-in object, the TemplateFactory, for this purpose. Users can customise

the type of the TemplateFactory object to gain more control over the way in which text is

generated (Section 7.4.4).

By default, EGL provides a TemplateFactory that exposes operations for loading tem-

plates (by loading files from disk), preparing templates (by parsing a string containing

EGL code), and for controlling the file system locations from which templates are loaded

and to which text is generated. Table 7.3 lists the operations provided by the built-in

TemplateFactory object.

Table 7.3: Operations of the TemplateFactory object

Signature Description

load(path : String) : Template Returns an instance of Template that can be used to ex-

ecute the EGL template stored at the specified path.

prepare(code : String) : Tem-

plate

Returns an instance of Template that can be used to ex-

ecute the specified EGL code.

setOutputRoot(path : String) Changes the default path that is used to resolve relative

paths when generating files to disk. Subsequent calls to

load and prepare will create templates that use the new

path.

setTemplateRoot(path :

String)

Changes the default path that is used to resolve relative

paths when loading templates with the load operation.

Subsequent calls to load will use the new path.

113

setDefaultFormatter(formatter

: Formatter)

Changes the formatter for this template factory to the

specified formatter. Templates that are constructed af-

ter this operation has been invoked will produce text

that is, by default, formatted with the specified format-

ter. See Section 7.6.

setDefaultFormatters(format-

ters : Sequence(Formatter))

Changes the formatter for this template to the specified

sequence of formatters. Templates that are constructed

after this operation has been invoked will produce text

that is, by default, formatted with each of the specified

formatters in turn. See Section 7.6.

7.4.3 An Example of Co-ordination with EGL

The operations provided by the TemplateFactory object and Template type are demonstrated

by the EGL program in Listing 7.8. Lines 2-3 use operations on TemplateFactory to change

the paths from which templates will be loaded (line 2) and to which generated files will

be created (line 3). Line 5 demonstrates the use of the prepare operation for creating a

template from EGL code. When the interface template is invoked, the EGL code passed

to the prepare operation will be executed. Finally, line 9 (and line 12) illustrates the

way in which the populate operation can be used to pass a value to a template before

invoking it. Specifically, the interface and implementation templates can use a variable

called root, which is populated by the driver template before invoking them.

7.4.4 Customising the Co-ordination Engine

EGL provides mechanisms for customising the co-ordination engine. Specifically, users can

define and use their own TemplateFactory. In many cases, users need not customise the

co-ordination engine, and can write transformations using the built-in Template type and

TemplateFactory object. If, however, you need more control over the co-ordination process,

the discussion in this section might be helpful. Specifically, a custom TemplateFactory is

typically used to achieve one or more of the following goals:

1. Provide additional mechanisms for constructing Templates. Example: facilitate the

loading of templates from a database.

2. Enrich / change the behaviour of the built-in Template type. Example: change the

way in which generated text is sent to its destination.

114

1 [%
2 TemplateFactory.setTemplateRoot("/usr/franz/templates");
3 TemplateFactory.setOutputRoot("/tmp/output");
4

5 var interface : Template =
6 TemplateFactory.prepare("public interface [%=root.name] {}");
7

8 var implementation : Template =
9 TemplateFactory.load("Class2Impl.egl");

10

11 for (c in Class.all) {
12 interface.populate("root", c);
13 interface.generate("I" + c.name + ".java");
14

15 implementation.populate("root", c);
16 implementation.generate(c.name + ".java");
17 }
18 %]

Listing 7.8: Using the various operations provided by the Template type and TemplateFac-
tory object.

3. Observe or instrument the transformation process by, for instance, logging calls to the

operations provided by the Template type of the TemplateFactory object. Example:

audit or trace the transformation process.

Customisation is achieved in two stages: implementing the custom TemplateFactory
(and potentially a custom Template) in Java, and using the custom TemplateFactory.

Implementing a custom TemplateFactory

A custom TemplateFactory is a subclass of EglTemplateFactory. Typically, a custom

TemplateFactory is implemented by overriding one of the methods of EglTemplateFactory.

For example, the createTemplate method is overriden to specify that a custom type of

Template should be created by the TemplateFactory. Likewise, the load and prepare

methods can be overriden to change the location from which Templates are constructed.

A custom Template is a subclass of EglTemplate or, most often, a subclass of EglPersistentTemplate.

Again, customisation is typically achieved by overriding methods in the superclass, or by

adding new methods. For example, to perform auditing activities whenever a template is

used to generate text, the doGenerate method of EglPersistentTemplate is overri-

den.

115

1 import org.eclipse.epsilon.egl.EglFileGeneratingTemplateFactory;
2 import org.eclipse.epsilon.egl.EglTemplate;
3 import org.eclipse.epsilon.egl.EglPersistentTemplate;
4 import org.eclipse.epsilon.egl.exceptions.EglRuntimeException;
5 import org.eclipse.epsilon.egl.execute.context.IEglContext;
6 import org.eclipse.epsilon.egl.spec.EglTemplateSpecification;
7

8 public class CountingTemplateFactory
9 extends EglFileGeneratingTemplateFactory {

10

11 @Override
12 protected EglTemplate createTemplate(EglTemplateSpecification spec)
13 throws Exception {
14 return new CountingTemplate(spec,
15 context,
16 getOutputRootOrRoot(),
17 outputRootPath);
18 }
19

20 public class CountingTemplate
21 extends EglPersistentTemplate {
22

23 public static int numberOfCallsToGenerate = 0;
24

25 public CountingTemplate(EglTemplateSpecification spec,
26 IEglContext context,
27 URI outputRoot,
28 String outputRootPath)
29 throws Exception {
30 super(spec, context, outputRoot, outputRootPath);
31 }
32

33

34

35 @Override
36 protected void doGenerate(File file,
37 String targetName,
38 boolean overwrite,
39 boolean protectRegions)
40 throws EglRuntimeException {
41 numberOfCallsToGenerate++;
42 }
43 }
44 }

Listing 7.9: A simple customisation of the co-ordination engine to count the number of
calls to generate().

Using a custom TemplateFactory

When invoking an EGL program, the user may select a custom TemplateFactory. For ex-

ample, the EGL development tools provide an Eclipse launch configuration that provides

116

a tab named “Generated Text.” On this tab, users can select a TemplateFactory (under the

group called “Type of Template Factory”). Note that a TemplateFactory only appears on the

launch configuration tab if it has been registered with EGL via an Eclipse extension. Simi-

larly, the workflow language provided by Epsilon (Chapter 14) allows the specification of

custom types of TemplateFactory via the templateFactoryType parameter.

7.4.5 Summary

The co-ordination engine provided by EGL facilitates the construction of modular and re-

usable M2T transformations and can be used to generate text to various types of destina-

tion. Furthermore, the logic for specifying the contents of generated text is kept separate

from the logic for specifying the destination of generated text.

7.5 Merge Engine

EGL provides language constructs that allow M2T transformations to designate regions of

generated text as protected. Whenever an EGL program attempts to generate text, any

protected regions that are encountered in the specified destination are preserved.

Within an EGL program, protected regions are specified with the preserve(String, String,
String, Boolean, String) method on the out keyword. The first two parameters define

the comment delimiters of the target language. The other parameters provide the name,

enable-state and content of the protected region, as illustrated in Listing 7.10.

1 [%=out.preserve("/*", "*/", "anId", true,
2 "System.out.println(foo);")
3 %]

Listing 7.10: Protected region declaration using the preserve method.

A protected region declaration may have many lines, and use many EGL variables in the

contents definition. To enhance readability, EGL provides two additional methods on the

out keyword: startPreserve(String, String, String, Boolean) and stopPreserve. Listing

7.11 uses these to generate a protected region equivalent to that in Listing 7.10.

1 [%=out.startPreserve("/*", "*/", "anId", true)%]
2 System.out.println(foo);
3 [%=out.stopPreserve()%]

Listing 7.11: Protected region declaration.

117

Because an EGL template may contain many protected regions, EGL also provides a

separate method to set the target language generated by the current template, setCon-
tentType(String). By default, EGL recognises Java, HTML, Perl and EGL as valid con-

tent types. An alternative configuration file can be used to specify further content types.

Following a call to setContentType, the first two arguments to the preserve and

startPreserve methods can be omitted, as shown in Listing 7.12.

1 [% out.setContentType("Java"); %]
2 [%=out.preserve("anId", true, "System.out.println(foo);")%]

Listing 7.12: Setting the content type.

Because some languages define more than one style of comment delimiter, EGL allows

mixed use of the styles for preserve and startPreserve methods.

Once a content type has been specified, a protected region may also be declared entirely

from a static section, using the syntax in Listing 7.13.

1 [% out.setContentType("Java"); %]
2 // protected region anId [on|off] begin
3 System.out.println(foo);
4 // protected region anId end

Listing 7.13: Declaring a protected region from within a static section.

When a template that defines one or more protected regions is processed by the EGL

execution engine, the target output destinations are examined and existing contents of any

protected regions are preserved. If either the output generated by from the template or

the existing contents of the target output destination contains protected regions, a merging

process is invoked. Table 7.4 shows the default behaviour of EGL’s merge engine.

7.6 Formatters

Often the text generated by a model-to-text transformation is not formatted in a desirable

manner. Text generated with a model-to-text transformation might contain extra whites-

pace or inconsistent indentation. This is because controlling the formatting of generated

text in a model-to-text transformation language can be challenging.

In a template-based model-to-text language, such as EGL, it can be difficult to know

how best to format a transformation. On the one hand, the transformation must be read-

able and understandable, and on the other hand, the generated text must typically also be

readable and understandable.

118

Protected Region Status
Contents taken from

Generated Existing
On On Existing
On Off Generated
On Absent Generated
Off On Existing
Off Off Generated
Off Absent Generated
Absent On Neither (causes a warning)
Absent Off Neither (causes a warning)

Table 7.4: EGL’s default merging behaviour.

Conscientious developers apply various conventions to produce readable code. EGL

encourages template developers to prioritise the readability of templates over the read-

ability of generated text when writing EGL templates. For formatting generated text, EGL

provides an extensible set of formatters that can be invoked during a model-to-text trans-

formation.

7.6.1 Using a Formatter

EGL provides several built-in formatters. Users can implement additional formatters (Sec-

tion 7.6.2). To use a formatter, invoke the setFormatter or setFormatters operation

on an instance of the Template type. A formatter is a Java class that implements EGL’s For-

matter interface. From within an EGL program, formatters can be created using a Native

(i.e. Java) type. Listing 7.14 demonstrates the use of a built-in formatter (XmlFormatter).

1 [%
2 var f = new Native("org.eclipse.epsilon.egl.formatter.language.XmlFormatter");
3 var t = TemplateFactory.load("generate_some_xml.egl");
4 t.setFormatter(f);
5 t.generate("formatted.xml");
6 %]

Listing 7.14: Using a formatter from within an EGL program.

To facilitate the re-use of a formatter with many templates, the TemplateFactory object

provides the setDefaultFormatter and setDefaultFormatters operations. Tem-

plates that are loaded or prepared after a call to setDefaultFormatter or setDefa-

ultFormatters will, by default, use the formatter(s) specified for the TemplateFactory.

119

Note that setting the formatter on a template overwrite any formatter that may have been

set on that template by the TemplateFactory.

The default formatters for an EGL program can also be set when invoking the program.

For example, the EGL development tools provide an Eclipse launch configuration that

provides a tab named “Generated Text.” On this tab, users can configure one or more

formatters which will be used as the default formatters for this EGL program. Note that

custom formatters only appear on the launch configuration tab if they have been registered

with EGL via an Eclipse extension. Similarly, the workflow language provided by Epsilon

(Chapter 14) provides a formatter nested element that can be used to specify one or

more default formatters.

7.6.2 Implementing a Custom Formatter

Providing a user-defined formatter involves implementing the Formatter interface (in

org.eclipse.epsilon.egl.formatter). For example, Listing 7.15 demonstrates a

simple formatter that transforms all generated text to uppercase.

1 import org.eclipse.epsilon.egl.formatter.Formatter;
2

3 public class UppercaseFormatter implements Formatter {
4

5 @Override
6 public String format(String text) {
7 return text.toUpperCase();
8 }
9 }

Listing 7.15: A simple custom formatter that transforms text to uppercase.

The set of built-in formatters provided by EGL includes some partial implementations

of the Formatter interface that can be re-used to simplify the implementation of custom

formatters. For instance, the LanguageFormatter class can correct the indentation of a

program written in most languages, when given a start and end regular expression.

Finally, an Eclipse extension point is provided for custom formatters. Providing an

extension that conforms to the custom formatter extension point allows EGL to display the

custom formatter in the launch configuration tabs of the EGL development tools.

120

1 IEolExecutableModule module =
2 new EglTemplateFactoryModuleAdapter(new EglTemplateFactory());
3

4 boolean parsed = module.parse(new File("myTemplate.egl"));
5

6 if (parsed && module.getParseProblems().isEmpty()) {
7 module.execute();
8

9 Template base = module.getContext().getBaseTemplate();
10

11 // traverse the template hierachy
12 // display data
13

14 } else {
15 // error handling
16 }

Listing 7.16: Programmatically accessing the EGL traceability API (in Java).

7.7 Traceability

EGL also provides a traceability API, as a debugging aid, to support auditing of the M2T

transformation process, and to facilitate change propagation. This API facilitates explo-

ration of the templates executed, files affected and protected regions processed during a

transformation. Figure 7.2 shows sample output from the traceability API after execution

of an EGL M2T transformation to generate Java code from an instance of an OO meta-

model. The view show in Figure 7.2 is accessed via the ... menu in Eclipse. Traceability

information can also be accessed programmatically, as demonstrated in Listing 7.16.

Figure 7.2: Sample output from the traceability API.

121

Chapter 8

The Epsilon Comparison Language
(ECL)

Model comparison is the task of identifying matching elements between models. In gen-

eral, matching elements are elements that are involved in a relationship of interest. For ex-

ample, before merging homogeneous models, it is essential to identify overlapping (com-

mon) elements so that they do not appear in duplicate in the merged model. Similarly, in

heterogeneous model merging, it is a prerequisite to identify the elements on which the

two models will be merged. Finally, in transformation testing, matching elements are pairs

consisting of elements in the input model and their generated counterparts in the output

model.

The aim of the Epsilon Comparison Language (ECL) is to enable users to specify com-

parison algorithms in a rule-based manner to identify pairs of matching elements between

two models of potentially different metamodels and modelling technologies. In this sec-

tion, the abstract and concrete syntax, as well as the execution semantics of the language,

are discussed in detail.

8.1 Abstract Syntax

In ECL, comparison specifications are organized in modules (EcLModule). As illustrated in

Figure 8.1, EclModule extends EOLLibraryModule which means that it can contain user-

defined operations and import other library modules and ECL modules. Apart from oper-

ations, an ECL module contains a set of match-rules (MatchRule) and a set of pre and post
blocks than run before and after all comparisons, respectively.

MatchRules enable users to perform comparison of model elements at a high level of

abstraction. Each match-rule declares a name, and two parameters (leftParameter and

123

rightParameter) that specify the types of elements it can compare. It also optionally de-

fines a number of rules it inherits (extends) and if it is abstract, lazy and/or greedy. The

semantics of the latter are discussed shortly.

A match rule has three parts. The guard part is an EOL expression or statement block

that further limits the applicability of the rule to an even narrower range of elements than

that specified by the left and right parameters. The compare part is an EOL expression or

statement block that is responsible for comparing a pair of elements and deciding if they

match or not. Finally, the do part is an EOL expression or block that is executed if the

compare part returns true to perform any additional actions required.

Pre and post blocks are named blocks of EOL statements which as discussed in the

sequel are executed before and after the match-rules have been executed respectively.

8.2 Concrete Syntax

The concrete syntax of a match-rule is displayed in Listing 8.1.

1 (@lazy)?

2 (@greedy)?

3 (@abstract)?

4 rule <name>

5 match <leftParameterName>:<leftParameterType>

6 with <rightParameterName>:<rightParameterType>

7 (extends <ruleName>(, <ruleName>)*)? {

8

9 (guard (:expression)|({statementBlock}))?

10

11 compare (:expression)|({statementBlock})

12

13 (do {statementBlock})?

14

15 }

Listing 8.1: Concrete Syntax of a MatchRule

Pre and post blocks have a simple syntax that, as presented in Listing 8.2, consists of

the identifier (pre or post), an optional name and the set of statements to be executed

enclosed in curly braces.

1 (pre|post) <name> {

2 statement+

3 }

Listing 8.2: Concrete Syntax of Pre and Post blocks

124

Fi
gu

re
8.

1:
EC

L
A

bs
tr

ac
t

Sy
nt

ax

125

8.3 Execution Semantics

8.3.1 Rule and Block Overriding

An ECL module can import a number of other ECL modules. In such a case, the importing

ECL module inherits all the rules and pre/post blocks specified in the modules it imports

(recursively). If the module specifies a rule or a pre/post block with the same name, the

local rule/block overrides the imported one respectively.

8.3.2 Comparison Outcome

As illustrated in Figure 8.2, the result of comparing two models with ECL is a trace (Match-
Trace) that consists of a number of matches (Match). Each match holds a reference to the

objects from the two models that have been compared (left and right), a boolean value

that indicates if they have been found to be matching or not, a reference to the rule that

has made the decision, and a Map (info) that is used to hold any additional information re-

quired by the user (accessible at runtime through the matchInfo implicit variable). During

the matching process, a second, temporary, match trace is also used to detect and resolve

cyclic invocation of match-rules as discussed in the sequel.

8.3.3 Rule Execution Scheduling

Non-abstract, non-lazy match-rules are evaluated automatically by the execution engine

in a top-down fashion - with respect to their order of appearance - in two passes. In the

first pass, each rule is evaluated for all the pairs of instances in the two models that have a

type-of relationship with the types specified by the leftParameter and rightParameter of the

rule. In the second pass, each rule that is marked as greedy is executed for all pairs that

have not been compared in the first pass, and which have a kind-of relationship with the

types specified by the rule. In both passes, to evaluate the compare part of the rule, the

guard must be satisfied.

Before the compare part of a rule is executed, the compare parts of all of the rules it

extends (super-rules) must be executed (recursively). Before executing the compare part

of a super-rule, the engine verifies that the super-rule is actually applicable to the elements

under comparison by checking for type conformance and evaluating the guard part of the

super-rule.

If the compare part of a rule evaluates to true, the optional do part is executed. In

the do part the user can specify any actions that need to be performed for the identified

126

Figure 8.2: ECL Match Trace

matching elements, such as to populate the info map of the established match with addi-

tional information. Finally, a new match is added to the match trace that has its matching
property set to the logical conjunction of the results of the evaluation of the compare parts

of the rule and its super-rules.

8.3.4 The matches() built-in operation

To refrain from performing duplicate comparisons and to de-couple match-rules from each

other, ECL provides the built-in matches(opposite : Any) operation for model elements

and collections. When the matches() operation is invoked on a pair of objects, it queries

the main and temporary match-traces to discover if the two elements have already been

matched and if so it returns the cached result of the comparison. Otherwise, it attempts to

find an appropriate match rule to compare the two elements and if such a rule is found,

it returns the result of the comparison, otherwise it returns false. Unlike the top-level

execution scheme, the matches() operation invokes both lazy and non-lazy rules.

127

Figure 8.3: The Tree Metamodel

In addition to objects, the matches operations can also be invoked to match pairs of

collections of the same type (e.g. a Sequence against a Sequence). When invoked on

ordered collections (i.e. Sequence and OrderedSet), it examines if the collections have the

same size and each item of the source collection matches with the item of the same index

in the target collection. Finally, when invoked on unordered collections (i.e. Bag and Set),
it examines if for each item in the source collection, there is a matching item in the target

collection irrespective of its index. Users can also override the built-in matches operation

using user-defined operations with the same name, as discussed in Section 3.4.2, that

loosen or strengthen the built-in semantics.

8.3.5 Cyclic invocation of matches()

Providing the built-in matches operation significantly simplifies comparison specifications.

It also enhances decoupling between match-rules from each other as when a rule needs to

compare two elements that are outside its scope, it does not need to know/specify which

other rule can compare those elements explicitly.

On the other hand, it is possible - and quite common indeed - for two rules to implicitly

invoke each other. For example consider the match rule of Listing 8.3 that attempts to

match nodes of the simple Tree metamodel displayed in Figure 8.3.

1 rule Tree2Tree

2 match l : T1!Tree

3 with r : T2!Tree {

4

5 compare : l.label = r.label and

6 l.parent.matches(r.parent) and

7 l.children.matches(r.children)

8 }

Listing 8.3: The Tree2Tree rule

The rule specifies that for two Tree nodes (l and r) to match, they should have the

same label, belong to matching parents and have matching children. In the absence of

128

a dedicated mechanism for cycle detection and resolution, the rule would end up in an

infinite loop. To address this problem, ECL provides a temporary match-trace which is

used to detect and resolve cyclic invocations of the match() built-in operation.

As discussed above, a match is added to the primary match-trace as soon as the com-

pare part of the rule has been executed to completion. By contrast, a temporary match

(with its matching property set to true) is added to the temporary trace before the com-

pare part is executed. In this way, any subsequent attempts to match the two elements

from invoked rules will not re-invoke the rule. Finally, when a top-level rule returns, the

temporary match trace is reset.

8.4 Fuzzy and Dictionary-based String Matching

In the example of Listing 8.3, the rule specifies that to match, two trees must - among

other criteria - have the same label. However, there are cases when a less-strict approach

to matching string properties of model elements is desired. For instance, when compar-

ing two UML models originating from different organizations, it is common to encounter

ontologically equivalent classes which however have different names (e.g. Client and Cus-

tomer). In this case, to achieve a more sound matching, the use of a dictionary or a lexical

database (e.g. WordNet [11]) is necessary. Alternatively, fuzzy string matching algorithms

such as those presented in [12] can be used.

As several such tools and algorithms have been implemented in various programming

languages, it is a sensible approach to reuse them instead of re-implementing them. For

example, in Listing 8.4 a wrapper for the Simmetrics [13] fuzzy string comparison tool is

used to compare the labels of the trees using the Levenshtein [14] algorithm. To achieve

this, line 11 invokes the fuzzyMatch() operation defined in lines 16-18 which uses the

simmterics native tool (instantiated in lines 2-4) to match the two labels using their Lev-

enshtein distance with a threshold of 0.5.

1 pre {

2 var simmetrics =

3 new Native("org.epsilon.ecl.tools.

4 textcomparison.simmetrics.SimMetricsTool");

5 }

6

7 rule FuzzyTree2Tree

8 match l : T1!Tree

9 with r : T2!Tree {

10

11 compare : l.label.fuzzyMatch(r.label) and

129

12 l.parent.matches(r.parent) and

13 l.children.matches(r.children)

14 }

15

16 operation String fuzzyMatch(other : String) : Boolean {

17 return simmetrics.similarity(self,other,"Levenshtein") > 0.5;

18 }

Listing 8.4: The FuzzyTree2Tree rule

8.5 Interactive Matching

Using the user interaction features discussed in Section 3.7 the comparison can become

interactive by replacing the fuzzyMatch operation of listing 8.4 with the one specified in

Listing 8.5. The fuzzyMatch operation of Listing 8.5, performs the fuzzy string comparison

and – as the previous version – if the result is greater than 0.5 it returns true. However,

in this updated version if the result is lower than 0.5 but greater than 0.3, it prompts the

user to confirm if the two strings match, and if it is lower than 0.3 it returns false.

1 operation String fuzzyMatch(other : String) : Boolean {

2 var similarity : Real;

3 similarity = simmetrics.similarity(self,other,"Levenshtein");

4 if (similarity > 0.5) {

5 return true;

6 }

7 else if (similarity > 0.3) {

8 return UserInput.confirm(self + " matches " + other + "?");

9 }

10 else {

11 return false;

12 }

13 }

Listing 8.5: An interactive version of the fuzzyMatch operation of Listing 8.4

8.6 Exploiting the Comparison Outcome

Users can query and modify the match trace calculated during the comparison process in

the post sections of the module or export it into another application or Epsilon program.

For example, in a post section, the trace can be printed to the default output stream or

serialized into a model of an arbitrary metamodel. In another use case, the trace may

130

be exported to be used in the context of a validation module that will use the identified

matches to evaluate inter-model constraints, or in a merging module that will use the

matches to identify the elements on which the two models will be merged. The topic of in-

teroperability - that includes importing and exporting objects - between modules expressed

in different Epsilon languages is discussed in Chapter 14.

131

Chapter 9

The Epsilon Merging Language (EML)

The aim of EML is to contribute model merging capabilities to Epsilon. More specifically,

EML can be used to merge an arbitrary number of input models of potentially diverse

metamodels and modelling technologies. This section provides a discussion on the mo-

tivation for implementing EML, its abstract and concrete syntax, as well as its execution

semantics. It also provides two examples of merging homogeneous and heterogeneous

models.

9.1 Motivation

A mechanism that enables automatically merging models on a set of established correspon-

dences has a number of applications in a model driven engineering process. For instance,

it can be used to unify two complementary, but potentially overlapping, models that de-

scribe different views of the same system. In another scenario, it can be used to merge a

core model with an aspect model (potentially conforming to different metamodels), as dis-

cussed in [15] where a core Platform Independent Model (PIM) is merged with a Platform
Definition Model (PDM), that contributes platform-specific aspects, into a Platform Specific
Model (PSM).

9.1.1 Phases of Model Merging

Existing research [16, 17] has demonstrated that model merging can be decomposed into

four distinct phases: comparison, conformance checking, merging and reconciliation (or

restructuring).

133

Comparison Phase In the comparison phase, correspondences between equivalent ele-

ments of the source models are identified, so that such elements are not propagated in

duplicate in the merged model.

Conformance Checking Phase In this phase, elements that have been identified as

matching in the previous phase are examined for conformance with each other. The pur-

pose of this phase is to identify potential conflicts that would render merging infeasible.

The majority of proposed approaches, such as [18], address conformance checking of

models complying with the same metamodel.

Merging Phase Several approaches have been proposed for the merging phase. In [16,

19], graph-based algorithms for merging models of the same metamodel are proposed. In

[18], an interactive process for merging of UML 2.0 models is presented. There are at

least two weaknesses in the methods proposed so far. First, they only address the issue of

merging models of the same metamodel, and some of them address a specific metamodel

indeed. Second, they use an inflexible merging algorithm and do not provide means for

extending or customizing its logic.

Reconciliation and Restructuring Phase After the merging phase, the target model may

contain inconsistencies that need fixing. In the final step of the process, such inconsisten-

cies are removed and the model is polished to acquire its final form. Although the need for

a reconciliation phase is discussed in [17, 19], in the related literature the subject is not

explicitly targeted.

9.1.2 Relationship between Model Merging and Model

Transformation

A merging operation is a transformation in a general sense, since it transforms some input

(source models) into some output (target models). However, as discussed throughout

this section, a model merging facility has special requirements (support for comparison,

conformance checking and merging pairs of input elements) that are not required for

typical one-to-one or one-to-many transformations [8] and are therefore not supported by

contemporary model transformation languages.

134

9.2 Realizing a Model Merging Process with Epsilon

The first two steps of the process described above can be realized with existing languages

provided by Epsilon. As discussed in Section 8, the comparison step can be realized with

the Epsilon Comparison Language (ECL). Following that, the Epsilon Validation Language

(EVL) can be used to validate the identified correspondences using the match trace calcu-

lated by ECL. The Epsilon Merging Language (EML) presented below provides support for

the last two steps of the process (merging and reconciliation/restructuring).

9.3 Abstract Syntax

In EML, merging specifications are organized in modules (EmlModule). As displayed in

Figure 9.1, EmlModule inherits from EtlModule.

By extending EtlModule, an EML module can contain a number of transformation rules

and user-defined operations. An EML module can also contain one or more merge rules

as well as a set of pre and post named EOL statement blocks. As usual, pre and post blocks

will be run before and after all rules, respectively.

Each merge rule defines a name, a left, a right, and one or more target parameters. It

can also extend one or more other merge rules and be defined as having one or more of

the following properties: abstract, greedy, lazy and primary.

9.4 Concrete Syntax

Listing 9.1 demonstrates the concrete syntax of EML merge-rules.

1 (@abstract)?

2 (@lazy)?

3 (@primary)?

4 (@greedy)?

5 rule <name>

6 merge <leftParameter>

7 with <rightParameter>

8 into (<targetParameter>(, <targetParameter>)*)?

9 (extends <ruleName>(, <ruleName>)*)? {

10

11 statementBlock

12

13 }

Listing 9.1: Concrete syntax of an EML merge-rule

135

Figure
9.1:

The
A

bstract
Syntax

ofEM
L

136

Pre and post blocks have a simple syntax that, as presented in Listing 9.2, consists of

the identifier (pre or post), an optional name and the set of statements to be executed

enclosed in curly braces.

1 (pre|post) <name> {

2 statement+

3 }

Listing 9.2: Concrete Syntax of Pre and Post blocks

9.5 Execution Semantics

9.5.1 Rule and Block Overriding

An EML module can import a number of other EML and ETL modules. In this case, the

importing EML module inherits all the rules and pre/post blocks specified in the modules

it imports (recursively). If the module specifies a rule or a pre/post block with the same

name, the local rule/block overrides the imported one respectively.

9.5.2 Rule Scheduling

When an EML module is executed, the pre blocks are executed in the order in which they

have been defined.

Following that, for each match of the established matchTrace the applicable non-abstract,

non-lazy merge rules are executed. When all matches have been merged, the transforma-

tion rules of the module are executed on all applicable elements - that have not been

merged - in the models.

Finally, after all rules have been applied, the post blocks of the module are executed.

9.5.3 Rule Applicability

By default, for a merge-rule to apply to a match, the left and right elements of the match

must have a type-of relationship with the leftParameter and rightParameter of the rule

respectively. This can be relaxed to a kind-of relationship by specifying that the merge rule

is greedy (using the @greedy annotation in terms of concrete syntax).

137

Figure 9.2: The EML runtime

9.5.4 Source Elements Resolution

As with model transformation, in model merging it is often required to resolve the coun-

terparts of an element of a source model into the target models. In EML, this is achieved by

overloading the semantics of the equivalents() and equivalent() operations defined by ETL.

In EML, in addition to inspecting the transformation trace and invoking any applicable

transformation rules, the equivalents() operation also examines the mergeTrace (displayed

in Figure 9.2) that stores the results of the application of merge-rules and invokes any

applicable (both lazy and non-lazy) rules.

Similarly to ETL, the order of the results of the equivalents() operation respects the

order of the (merge or transform) rules that have produced them. An exception to that oc-

curs if one of the rules has been declared as primary, in which case its results are prepended

to the list of elements returned by equivalent.

138

9.6 Homogeneous Model Merging Example

In this scenario, two models conforming to the Graph metamodel need to be merged. The

first step is to compare the two graphs using the ECL module of Listing 9.3.

1 rule MatchNodes

2 match l : Left!Node

3 with r : Right!Node {

4

5 compare : l.label = r.label

6 }

7

8 rule MatchEdges

9 match l : Left!Edge

10 with r : Right!Edge {

11

12 compare : l.source.matches(r.source)

13 and l.target.matches(r.target)

14 }

15

16 rule MatchGraphs

17 match l : Left!Graph

18 with r : Right!Graph {

19

20 compare : true

21 }

Listing 9.3: ECL module for comparing two instances of the Graph metamodel

The MatchNodes rule in line 1 defines that two nodes match if they have the same label.

The MatchEdges rule in line 8 specifies that two edges match if both their source and target

nodes match (regardless of whether the labels of the edges match or not as it is assumed

that there can not be two distinct edges between the same nodes). Finally, since only one

instance of Graph is expected to be in each model, the MatchGraphs rule in line 16 returns

true for any pair of Graphs1.

Having established the necessary correspondences between matching elements of the

two models, the EML specification of listing 9.4 performs the merge.

1 import "Graphs.etl";

2

3 rule MergeGraphs

4 merge l : Left!Graph

1Both assumptions can be checked using EVL before matching/merging takes place but this is out of the
scope of this example

139

5 with r : Right!Graph

6 into t : Target!Graph {

7

8 t.label = l.label + " and " + r.label;

9

10 }

11

12 @abstract

13 rule MergeGraphElements

14 merge l : Left!GraphElement

15 with r : Right!GraphElement

16 into t : Target!GraphElement {

17

18 t.graph ::= l.graph;

19

20 }

21

22 rule MergeNodes

23 merge l : Left!Node

24 with r : Right!Node

25 into t : Target!Node

26 extends GraphElements {

27

28 t.label = "c_" + l.label;

29

30 }

31 rule MergeEdges

32 merge l : Left!Edge

33 with r : Right!Edge

34 into t : Target!Edge

35 extends GraphElements {

36

37 t.source ::= l.source;

38 t.target ::= l.target;

39

40 }

Listing 9.4: EML module for merging two instances of the Graph metamodel on the corre-

spondences identified in Listing 9.3

In line 3, the MergeGraphs merge rule specifies that two matching Graphs (l and r) are

to be merged into one Graph t in the target model that has as a label, the concatenation

of the labels of the two input graphs separated using ’and’. The mergeNodes rule In line 22

specifies that two matching Nodes are merged into a single Node in the target model. The

140

label of the merged node is derived by concatenating the c (for common) static string with

the label of the source Node from the left model. Similarly, the MergeEdges rule specifies

that two matching Edges are merged into a single Edge in the target model. The source

and target nodes of the merged Edge are set to the equivalents (::=) of the source and

target nodes of the edge from the left model.

To reduce duplication, the MergeNodes and MergeEdges rules extend the abstract Merge-
GraphElements rule specified in line 13 which assigns the graph property of the graph

element to the equivalent of the left graph.

The rules displayed in Listing 9.4 address only the matching elements of the two mod-

els. To also copy the elements for which no equivalent has been found in the opposite

model, the EML module imports the ETL module of Listing 9.5.

1 rule TransformGraph

2 transform s : Source!Graph

3 to t : Target!Graph {

4

5 t.label = s.label;

6

7 }

8

9 @abstract

10 rule TransformGraphElement

11 transform s : Source!GraphElement

12 to t : Target!GraphElement {

13

14 t.graph ::= s.graph;

15 }

16

17 rule TransformNode

18 transform s : Source!Node

19 to t : Target!Node

20 extends TransformGraphElement {

21

22 t.label = s.graph.label + "_" + s.label;

23 }

24

25 rule TransformEdge

26 transform s : Source!Edge

27 to t : Target!Edge

28 extends TransformGraphElement {

29

30 t.source ::= s.source;

141

31 t.target ::= s.target;

32 }

Listing 9.5: The Graphs.etl ETL transformation module

The rules of the ETL module apply to model elements of both the Left and the Right

model as both have been aliased as Source. Of special interest is the TransformNode rule in

line 17 that specifies that non-matching nodes in the two input models will be transformed

into nodes in the target model the labels of which will be a concatenation of their input

graph and the label of their counterparts in the input models.

Executing the ECL and EML modules of Listings 9.3 and 9.4 on the exemplar models

displayed in Figures 9.3 and 9.4 creates the target model of Figure 9.5.

Figure 9.3: Left input model

Figure 9.4: Right input model

142

Figure 9.5: Target model derived by merging the models of Figures 9.3 and 9.4

143

Chapter 10

Epsilon Flock for Model Migration

The aim of Epsilon Flock is to contribute model migration capabilities to Epsilon. Model

migration is the process of updating models in response to metamodel changes. This sec-

tion discusses the motivation for implementing Flock, introduces its syntax and execution

semantics, and demonstrates the use of Flock with an example. Flock can be used to up-

date models to a new version of their metamodel, or even to move from one modelling

technology to another (e.g., from XML to EMF).

10.1 Background and Motivation

Model migration involves updating a model in response to changes to the metamodel.

Typically, metamodel evolution is accomplished incrementally: changes are made to part

of the metamodel and hence model migration typically involves updating only a small

proportion of a model’s elements [20, 21]. Effectively then, model migration is a model-

to-model transformation in which the source and target metamodels are similar but not

the same. However, as discussed below, model-to-model transformation languages are

often cumbersome for specifying model migration.

To illustrate the challenges of model migration, we use the example of metamodel evo-

lution in Figure 10.1. In Figure 10.1(a), a Component comprises other Components,

Connectors and Ports. A Connector joins two Ports. Connectors are unidirec-

tional, and hence define to and from references to Port. The original metamodel allows

a Connector to start and end at the same Port, and the metamodel was evolved to

prevent this, as shown in Figure 10.1(b). Port was made abstract, and split into two

subtypes, InputPort and OutputPort. The references between Connector and (the

subtypes of) Port were renamed for consistency with the names of the subtypes.

145

(a) Original metamodel.

(b) Evolved metamodel.

Figure 10.1: Process-oriented metamodel evolution.

Some models that conform to the original metamodel do not conform to the evolved

metamodel. Specifically, models might not conform to the evolved metamodel because:

1. They contain instances of Port, which is an abstract class in the evolved metamodel.

2. They contain instances of Connector that specify values for the features to and

from, which are not defined for the Connector type in the evolved metamodel.

3. They contain instances of Connector that do not specify a value for the in and out

features, which are mandatory for the Connector type in the evolved metamodel.

146

Model migration can be achieved with a general-purpose model-to-model transforma-

tion using a language such as ETL (Chapter 5). However, this typically involves writing a

large amount of repetitive and redundant code [22]. Flock reduces the amount of repeti-

tive and redundant code needed to specify model migration by automatically copying from

the original to the migrated model all of the model elements that conform to the evolved

metamodel as described below.

10.2 Abstract Syntax

As illustrated by Figure 10.2, Flock migration strategies are organised into individual mod-

ules (FlockModule). Flock modules inherit from EOL language constructs for specifying

user-defined operations and for importing other (EOL and Flock) modules. Like the other

rule-based of Epsilon, Flock modules may comprise any number of pre (post) blocks, which

are executed before (after) all other constructs. Flock modules comprise any number of

type mappings (TypeMapping) and rules (Rule). Type mappings operate on metamodel

types (Retyping and Deletion) or on metamodel packages (PackageRetyping and

PackageDeletion). Type mappings are applied to a type in the original metamodel

(originalType) or to a package in the original metamodel (originalPackage) . Ad-

ditionally, Retypings apply to an evolved metamodel type (evolvedType) or package

(evolvedPackage). Each rule has an original metamodel type (originalType), a bo-

dy comprising a block of EOL statements, and zero or more ignoredFeatures. Type

mappings and rules can optionally specify a guard, which is either an EOL statement or a

block of EOL statements. Type mappings that operate on metamodel types and rules can

be marked as strict.

10.3 Concrete Syntax

Listing 10.1 demonstrates the concrete syntax of the Flock language constructs. All of

the constructs begin with keyword(s) (retype, retype package delete, delete

package or migrate), followed by the original metamodel type or package. Addition-

ally, type mappings that operate on metamodel types and rules can be annotated with the

strict modifier. The delete construct can be annotated with a cascade modifier. All

constructs can have guards, which are specified using the when keyword.

Migrate rules can specify a list of features that conservative copy will ignore (ignoring),

and a body containing a sequence of at least one EOL statement. Note that a migrate rule

must have a list of ignored features, or a body, or both.

147

Figure
10.2:

The
A

bstract
Syntax

ofFlock

148

1 (@strict)?

2 retype <originalType> to <evolvedType>

3 (when (:<eolExpression>)|({<eolStatement>+}))?

4

5 retype package <originalPackage> to <evolvedPackage>

6 (when (:<eolExpression>)|({<eolStatement>+}))?

7

8 (@strict)?

9 (@cascade)?

10 delete <originalType>

11 (when (:<eolExpression>)|({<eolStatement>+}))?

12

13 delete package <originalPackage>

14 (when (:<eolExpression>)|({<eolStatement>+}))?

15

16 (@strict)?

17 migrate <originalType>

18 (ignoring <featureList>)?

19 (when (:<eolExpression>)|({<eolStatement>+}))? {

20 <eolStatement>+

21 }

Listing 10.1: Concrete syntax of Flock retypings, deletions and migrate rules

Pre and post blocks have a simple syntax that, as presented in Listing 10.2, consists

of the identifier (pre or post), an optional name and the set of statements to be executed

enclosed in curly braces.

1 (pre|post) <name> {

2 statement+

3 }

Listing 10.2: Concrete Syntax of Pre and Post blocks

10.4 Execution Semantics

The execution semantics of a Flock module are now described. Note that the Epsilon Model

Connectivity (EMC) layer (Chapter 2), which Flock uses to access and manipulate models

supports a range of modelling technologies, and identifies types by name. Consequently,

the term type is used to mean “the name of an element of a metamodel” in the following

discussion. For example, Component, Connector and InputPort are three of the types

defined in Figure 10.1(b).

Execution of a Flock module occurs in six phases:

149

1. Any pre blocks are executed.

2. Type mapping constructs (retypings and deletions) are processed to identify the way

in which original and evolved metamodel types are to be related.

3. Migrate rules are inspected to build sets of ignored properties.

4. The information determined in steps 2 and 3 is used as input a copying algorithm,

which creates an (equivalent) element in the migrated model for each element of the

original model, and copies values from original to equivalent model elements.

5. Migrate rules are executed on each pair of original and (equivalent) migrated model

elements.

6. Any post blocks are executed.

In phases 2-5, language constructs are executed only when they are applicable. The

applicability of the Flock language constructs (retyping, deletion or migrate rule) is deter-

mined from their type and guard. For a language construct c to be applicable to an original

model element o, o must instantiate either the original type of c or one of the subtypes of

the original type of c; and o must satisfy the guard of c. For language constructs that have

been annotated as strict, type-checking is more restrictive: o must instantiate the original

type of c (and not one its subtypes). In other words, the applicability of strict constructs is

determined with EOL’s isTypeOf operation and the applicability of non-strict constructs

is determined with EOL’s isKindOf operation (Table 3.1). For language constructs that

have been annotated with cascade, type-checking is less restrictive: o must be contained

in another model element (either directly or indirectly) to which the construct is appli-

cable. Similarly, for language constructs that operate on packages (i.e. package retyping

and package deletions), type-checking is less restrictive: o must be contained in a package

with the same name as the original package of c.

Phases 2-4 of execution implement a copying algorithm which has been termed con-

servative copy and is discussed thoroughly elsewhere [22]. Essentially, conservative copy

will do the following for each element of the original model, o:

1. Do nothing when o instantiates a type that cannot be instantiated in the evolved

metamodel (e.g., because the type of o is now abstract or no longer exists). Example:

instances of Port in Figure 10.1 are not copied because Port has become abstract.

2. Fully copy o to produce m in the migrated model when o instantiate a type that has

not been at all affected by metamodel evolution. Example: instances of Component

150

in Figure 10.1 are fully copied because neither Component nor any of its features

have been changed.

3. Partially copy o to produce m in the migrated model when o instantiates a type

with one or more features that have been affected by metamodel evolution. Exam-

ple: instances of Connector in Figure 10.1 are partially copied because the from

and to features have been renamed. Note that in a partial copy only the features

that have not been affected by metamodel evolution are copied (e.g., the names of

Connectors).

In phase 5, migrate rules are applied. These rules specify the problem-specific mi-

gration logic and might, for example, create migrated model elements for original model

elements that were skipped or partially copied by the copying algorithm described above.

The Flock engine makes available two variables (original and migrated) for use in

the body of any migration rule. These variables are used to refer to the particular ele-

ments of the original and migrated models to which the rule is currently being applied.

In addition, Flock defines an equivalent() operation that can be called on any origi-

nal model element and returns the equivalent migrated model element (or null). The

equivalent() operation is used to access elements of the migrated model that cannot

be accessed via the migrated variable due to metamodel evolution. Flock rules often

contain statements of the form: original.x.equivalent() where x is a feature that

has been removed from the evolved metamodel.

Finally, we should consider the order in which Flock schedules language constructs:

a construct that appears earlier (higher) in the source file has priority. This is important

because only one type mapping (retypings and deletions) is applied per original model

element, and because this implies that migrate rules are applied from top-to-bottom. This

ordering is consistent with the other languages of the Epsilon platform.

10.5 Example

Flock is now demonstrated using the example of model migration introduced in Sec-

tion 10.1. Recall that the metamodel evolution in Figure 10.1 involves splitting the Port

type to form the InputPort and OutputPort types. Figure 10.3 provides a high-level

design for migrating models from the original to the evolved metamodel in Figure 10.1.

The Flock migration strategy that implements this design is shown1 in Listing 10.3.
1Note that in and to are reserved words in EOL, and hence backticks are used to refer to the metamodel

features in and to on lines 7, 8 and 16 of Listing 10.3.

151

• For every instance, p, of Port in the original model:

− If there exists in the original model a Connector, c, that specifies p as the value for its
from feature:

− Create a new instance, i, of InputPort in the migrated model.

− Set c as the connector of i.

− Add c to the ports reference of the Component that contains c.

− If there exists in the original model a Connector, c, that specifies p as the value for its
to feature:

− Create a new instance of OutputPort in the migrated model.

− Set c as the connector of i.

− Add c to the ports reference of the Component that contains c.

• And nothing else changes.

Figure 10.3: Model migration strategy in pseudo code for the metamodel evolution in
Figure 10.1.

1 delete Port when: not (original.isInput() xor original.isOutput())
2

3 retype Port to InputPort when: original.isInput()
4 retype Port to OutputPort when: original.isOutput()
5

6 migrate Connector {
7 migrated.‘in‘ = original.from.equivalent();
8 migrated.out = original.‘to‘.equivalent();
9 }

10

11 operation Original!Port isInput() : Boolean {
12 return Original!Connector.all.exists(c|c.from == self);
13 }
14

15 operation Original!Port isOutput() : Boolean {
16 return Original!Connector.all.exists(c|c.‘to‘ == self);
17 }

Listing 10.3: Flock migration strategy for the process-oriented metamodel evolution in
Figure 10.1

Three type mappings constructs (on lines 1-4) are used to control the way in which in-

stances of Port are migrated. For example, line 3 specifies that instances of Port that

are referenced via the from feature of a Connector are retyped, becoming InputPorts.

Instances of Connector are migrated using the rule on lines 6-9, which specifies the way

in which the from and to features have evolved to form the in and out features.

Note that metamodel elements that have not been affected by the metamodel evolu-

152

tion, such as Components, are migrated automatically. Explicit copying code would be

needed to achieve this with a general purpose model-to-model transformation language.

10.6 Limitations and Scope

Although Flock has been shown to much more concise than general purpose model-to-

model transformation languages for specifying model migration, Flock does not provide

some of the features commonly available in general-purpose model-to-model transforma-

tion language. This section discusses the limitations of Flock and its intended scope with

respect to other tools for model migration.

10.6.1 Limitations

Firstly, Flock does not support rule inheritance, and re-use of migration logic is instead

achieved by exploiting the inheritance hierarchy of the original metamodel. The form of

re-use provided by Flock is less general than rule-inheritance, but has proved sufficient for

existing use-cases.

Secondly, Flock does not provide language constructs for controlling the order in which

rules are scheduled (other than the ordering of the rules in the program file). ATL, for ex-

ample, includes constructs that allow users to specify that rules are scheduled explicitly

(lazy rules) or in a memoised manner (unique rules). We anticipate that scheduling con-

structs might be necessary for larger migration strategies, but have not yet encountered

situations in which they have been required.

Thirdly, Flock is tailored for applying migration to a single original and a single mi-

grated model. Although further models can be accessed by a Flock migration strategy,

they cannot be used as the source or target of the conservative copy algorithm. By con-

trast, some general-purpose model transformation languages can access and manipulate

any number of models.

Finally, Flock has been tailored to the model migration problem. In other words, we

believe that Flock is well-suited to specifying model transformations between two meta-

models that are very similar. For metamodel evolution in which the original metamodel

undergoes significant and large-scale revision, a general-purpose transformation might be

more suitable than Flock for specifying model migration.

153

10.6.2 Scope

Flock is typically used as a manual specification approach in which model migration strate-

gies are written by hand. As such, we believe that Flock provides a flexible and con-

cise way to specify migration, and is a foundation for further tools that seek to auto-

mate the metamodel evolution and model migration processes. There are approaches

to model migration that encompass both the metamodel evolution and model migra-

tion processes, seeking to automatically derive model migration strategies (e.g., Edapt

http://www.eclipse.org/edapt/). These approaches provide more automation but

at the cost of flexibility: for example, you might be restricted to using a tool-specific editor

to perform model migration, or to using only EMF.

10.7 Further Reading

Further examples of applying Flock include migration of UML activity diagrams (at Trans-

formation Tool Contest 2010 workshop2), and migration of UML class diagrams, GMF

models, and a domain-specific modelling language for NNTP newsgroups in Rose’s doc-

toral thesis [23].

A more thorough discussion of the design decisions and execution semantics of Flock

can be found in a SoSyM journal article [22]. Flock has been compared with other model

migration tools and languages in a MoDELS paper [24].

2http://planet-mde.org/ttc2010/

154

http://www.eclipse.org/edapt/
http://planet-mde.org/ttc2010/

Chapter 11

The Epsilon Pattern Language (EPL)

11.1 Background and Motivation

Several solutions have been proposed for the problem of pattern matching in models con-

forming to metamodels specified using standardised metamodelling languages. The ma-

jority of these solutions take the form of tailored graphical or textual languages, through

which patterns can be specified at a certain level of abstraction, and accompanying in-

terpreters/compilers which can then match these pattern specifications against concrete

models. Examples of graphical pattern matching languages include AGG [25] and EMF

Tiger [26], while examples of textual languages include GrGen.NET [27], VIATRA2 [28]

and EMF-IncQuery [29]. In [30], QVTr has also been used to express and detect patterns

in EMF models.

Pattern matching is often only one step in a chain of model management operations. As

such, languages for pattern matching should ideally integrate seamlessly with languages

that support other model management tasks such as model validation, comparison, trans-

formation etc. In our review of previous work, we have identified that existing languages

for pattern matching are typically bundled together with in-place and/or model-to-model

transformation capabilities, and can only be integrated with languages that support other

MDE tasks such as model validation and model-to-text transformation either through seri-

alising detected patterns in a commonly supported format or through developing bespoke

inter-tool adapters. Even in cases where interoperability with other model management

languages is feasible, developing pattern specifications and other model management pro-

grams in different and inconsistent syntaxes can introduce code duplication and, conse-

quently, hinder development and maintenance [31]. Another limitation of existing pattern

matching languages is that they typically target a specific modelling technology (e.g. EMF)

and/or model representation format, which renders specifying and detecting patterns that

155

involve elements of heterogeneous models (e.g. an EMF model and an XML document)

particularly challenging, if possible at all.

The above limitations have motivated us to design and implement a new pattern match-

ing language, the Epsilon Pattern Language (EPL), which enables seamless runtime inter-

operability and code reuse with languages supporting a range of model management tasks,

and also provides support for specifying patterns that involve elements of models conform-

ing to different modelling technologies.

This chapter discusses the abstract and concrete syntax of EPL as well as its execution

semantics. To aid understanding, the discussion of the syntax and the semantics of the

language revolves around an exemplar pattern which is developed incrementally through-

out the chapter. The exemplar pattern is matched against models extracted from Java

source code using tooling provided by the MoDisco1 project. MoDisco is an Eclipse project

that provides a fine-grained Ecore-based metamodel of the Java language as well as tool-

ing for extracting models that conform to this Java metamodel from Java source code. A

simplified view of the relevant part of the MoDisco Java metamodel used in this running

example is presented in Figure 11.1.

The aim of the pattern developed in this chapter (which we will call PublicField) is to

identify quartets of <ClassDeclaration, FieldDeclaration, MethodDeclaration, MethodDeclaration>,

each representing a field of a Java class for which appropriately named accessor/getter

(getX/isX) and mutator/setter (setX) methods are defined by the class.

name : String
ClassDeclaration

name : String
BodyDeclaration

bodyDeclarations
0..*

FieldDeclaration MethodDeclaration

name : String

VariableDeclaration
Fragment

fragments 1..*

Modifier

modifiers
*

TypeAccess

returnType
type

#none
#public
#protected
#private

VisibilityKind

visibility

Figure 11.1: Simplified view of the MoDisco Java metamodel

1http://www.eclipse.org/MoDisco/

156

11.2 Syntax

The syntax of EPL is an extension of the syntax of the EOL language, which – as dis-

cussed earlier – is the core language of Epsilon. As such, any references to expression
and statement block in this chapter, refer to EOL expressions and blocks of EOL statements

respectively. It is also worth noting that EOL expressions and statements can produce side-

effects on models, and therefore, it is the responsibility of the developer to decide which

expressions used in the context of EPL patterns should be side-effect free and which not.

As illustrated in Figure 11.2, EPL patterns are organised in modules. Each module

contains a number of named patterns and optionally, pre and post statement blocks that

are executed before and after the pattern matching process, and helper EOL operations.

EPL modules can import other EPL and EOL modules to facilitate reuse and modularity.

iterative : Boolean
maxLoops : Integer

EPLModule

name : String
match : Expression [0..1]
onMatch: Block [0..1]
noMatch: Block [0..1]
do: Block [0..1]

Pattern

parts : String[1..*]
negative : Boolean
type : Type
guard: Expression [0..1]
active: Expression [0..1]
optional: Expression [0..1]

Role

roles 1..*

values: Expression
Domain

domain
0..1

patterns

Operation
(from EOL)

operations0..* 0..*

StaticDomain DynamicDomain

imports
0..*

lowerBound : Integer
upperBound : Integer

Cardinality
cardinality

StatementBlock
(from EOL)

pre 0..*

post 0..*

Figure 11.2: Abstract Syntax of EPL

In its simplest form a pattern consists of a number of named and typed roles and a

match condition. For example, in lines 2-3, the PublicField pattern of Listing 11.1, defines

four roles (class, field, setter and getter). The match condition of the pattern specifies that

for a quartet to be a valid match, the field, setter and getter must all belong to the class

(lines 5-7), and that the setter and getter methods must be appropriately named2.

2To maintain the running example simple and concise, the pattern does not check aspects such as match-
ing/compatible parameter/return types in the field, setter and getter but the reader should easily be able to
envision how this would be supported through additional clauses in the match condition.

157

1 pattern PublicField

2 class : ClassDeclaration, field : FieldDeclaration,

3 setter : MethodDeclaration, getter : MethodDeclaration {

4

5 match : class.bodyDeclarations.includes(field) and

6 class.bodyDeclarations.includes(setter) and

7 class.bodyDeclarations.includes(getter) and

8 setter.name = "set" + field.getName() and

9 (getter.name = "get" + field.getName() or

10 getter.name = "is" + field.getName())

11 }

12

13 @cached

14 operation FieldDeclaration getName() {

15 return self.fragments.at(0).name.firstToUpperCase();

16 }

Listing 11.1: First version of the PublicField pattern

The implementation of the PublicField pattern provided in Listing 11.1 is fully func-

tional but not particularly efficient as the match condition needs to be evaluated #ClassDefinition∗
#FieldDeclaration∗#MethodDeclaration2 times. To enable pattern developers to reduce

the search space, each role in an EPL pattern can specify a domain which is an EOL expres-

sion that returns a collection of model elements from which the role will draw values.

There are two types of domains in EPL: static domains which are computed once for all

applications of the pattern, and which are not dependent on the bindings of other roles of

the pattern (denoted using the in keyword in terms of the concrete syntax), and dynamic

domains which are recomputed every time the candidate values of the role are iterated,

and which are dependent on the bindings of other roles (denoted using the from keyword).

Beyond a domain, each role can also specify a guard expression that further prunes un-

necessary evaluations of the match condition. Using dynamic domains and guards, the

PublicField pattern can be expressed in a more efficient way, as illustrated in Listing 11.2.

To further illustrate the difference between dynamic and static domains, changing from
to in in line 4 would trigger a runtime exception as the domain would become static and

therefore not able to access bindings of other roles (i.e. class).

158

1 pattern PublicField

2 class : ClassDeclaration,

3 field : FieldDeclaration

4 from: class.bodyDeclarations,

5 setter : MethodDeclaration

6 from: class.bodyDeclarations

7 guard: setter.name = "set" + field.getName(),

8 getter : MethodDeclaration

9 from: class.bodyDeclarations

10 guard : (getter.name = "get" + field.getName() or

11 getter.name = "is" + field.getName()) { }

Listing 11.2: Second version of the PublicField pattern using domains and guards

The implementation of Listing 11.2 is significantly more efficient than the previous im-

plementation but can still be improved by further reducing the number of name compar-

isons of candidate setter and getter methods. To achieve this we can employ memoisation:

we create a hash map of method names and methods once before pattern matching (line

2), and use it to identify candidate setters and getters (lines 9 and 12-13).

1 pre {

2 var methodMap = MethodDeclaration.all.mapBy(m|m.name);

3 }

4 pattern PublicField

5 class : ClassDeclaration,

6 field : FieldDeclaration

7 from: class.bodyDeclarations,

8 setter : MethodDeclaration

9 from: getMethods("set" + field.getName())

10 guard: setter.abstractTypeDeclaration = class,

11 getter : MethodDeclaration

12 from: getMethods("get" + field.getName())

13 .includingAll(getMethods("is" + field.getName())),

14 guard: getter.abstractTypeDeclaration = class {

15 }

16

17 operation getMethods(name : String) : Sequence(MethodDeclaration) {

18 var methods = methodMap.get(name);

19 if (methods.isDefined()) return methods;

20 else return new Sequence;

21 }

Listing 11.3: Third version of the PublicField pattern

The sections below discuss the remainder of the syntax of EPL.

159

11.2.1 Negative Roles

Pattern roles can be negated using the no keyword. For instance, by adding the no keyword

before the setter role in line 8 of Listing 11.3, the pattern will match fields that have getters

but no setters (i.e. read-only fields).

11.2.2 Optional and Active Roles

Pattern roles can be designated as optional using the optional EOL expression. For ex-

ample, adding optional: true to the setter role would also match all fields that

only have a getter. By adding optional: true to the setter role and optional:

setter.isDefined() to the getter role, the pattern would match fields that have at

least a setter or a getter. Roles can be completely deactivated depending on the bindings

of other roles through the active construct. For example, if the pattern developer prefers

to specify separate roles for getX and isX getters, with a preference over getX getters, the

pattern can be formulated as illustrated in Listing 11.4 so that if a getX getter is found, no

attempt is even made to match an isX getter.

1 pattern PublicField

2 class : ClassDeclaration,

3 field : FieldDeclaration ...,

4 setter : MethodDeclaration ...,

5 getGetter : MethodDeclaration ...,

6 isGetter: MethodDeclaration

7 ...

8 active: getGetter.isUndefined() {

9 }

Listing 11.4: PublicField Pattern Version 4

11.2.3 Role Cardinality

The cardinality of a role (lower and upper bound) can be defined in square brackets follow-

ing the type of the role. Roles that have a cardinality with an upper bound > 1 are bound to

the subset of elements from the domain of the role which also satisfy the guard, if the size

of that subset is within the bounds of the role’s cardinality. Listing 11.5 demonstrates the

ClassAndPrivateFields pattern that detects instances of classes and all their private fields. If

the cardinality of the field role in line 3 was [1..3] instead of [*], the pattern would only

detect classes that own 1 to 3 private fields.

160

1 pattern ClassAndPrivateFields

2 class : ClassDeclaration,

3 field : FieldDeclaration[*]

4 from: class.bodyDeclarations

5 guard: field.getVisibility() = VisibilityKind#private {

6

7 onmatch {

8 var message : String;

9 message = class.name + " matches";

10 message.println();

11 }

12

13 do {

14 // More actions here

15 }

16

17 nomatch : (class.name + " does not match").println()

18 }

19 operation FieldDeclaration getVisibility() {

20 if (self.modifier.isDefined()) {

21 return self.modifier.visibility; }

22 else { return null; }

23 }

Listing 11.5: Demonstration of Role Cardinality

11.3 Execution Semantics

When an EPL module is executed, all of its pre statement blocks are first executed in order

to define and initialise any global variables needed (e.g. the methodMap variable in Listing

11.3) or to print diagnostic messages to the user. Subsequently, patterns are executed in

the order in which they appear. For each pattern, all combinations that conform to the type

and constraints of the roles of the pattern are iterated, and the validity of each combination

is evaluated in the match statement block of the pattern. In the absence of a match block,

every combination that satisfies the constraints of the roles of the pattern is accepted as a

valid instance of the pattern.

Immediately after every successful match, the optional onmatch statement block of the

pattern is invoked (see lines 7-11 of Listing 11.5) and after every unsuccessful matching

attempt, for combinations which however satisfy the constraints specified by the roles of

the pattern, the optional nomatch statement block of the pattern (line 17) is executed .

161

When matching of all patterns is complete, the do part (line 13) of each successful match

is executed. In the do part, developers can modify the involved models (e.g to perform

in-place transformation), without the risk of concurrent list modification errors (which can

occur if elements are created/deleted during pattern matching). After pattern matching

has been completed, the post statement blocks of the module are executed in order to

perform any necessary finalisation actions.

An EPL module can be executed in a one-off or iterative mode. In the one-off mode,

patterns are only evaluated once, while in the iterative mode, the process is repeated until

no more matches have been found or until the maximum number of iterations (specified

by the developer) has been reached. The iterative mode is particularly suitable for patterns

that perform reduction of the models they are evaluated against.

11.4 Pattern Matching Output

The output of the execution of an EPL module on a set of models is a collection of matches

encapsulated in a PatternMatchModel, as illustrated in Figure 11.3. As PatternMatchModel
implements the IModel interface discussed in Chapter 2, its instances can be accessed from

other programs expressed in languages of the Epsilon family.

Pattern
(from EPL) bindings : Map<String,

Object>

Match

getAllOfType(type:String) : Object[*]
getAllOfKind(type:String) : Object[*]
isOfType(element: Object, type:String) : boolean
isOfKind(element: Object, type:String) : boolean
 ...

name : String
 ...

IModel
(from EOL)

PatternMatchModel

matches
*

pattern

patterns *

Figure 11.3: Pattern Matching Output

A PatternMatchModel introduces one model element type for each pattern and one type

for each field of each pattern (the name of these types are derived by concatenating the

name of the pattern with a camel-case version of the name of the field). Instances of the

prior are the matches of the pattern while instances of the latter are elements that have

162

been matched in this particular role. For example, after executing the EPL module of

Listing 11.3, the produced PatternMatchModel contains 5 types: PublicField, instances of

which are all the identified matches of the PublicField pattern, PublicFieldClass, instances

of which are all the classes in the input model which have been matched to the class role

in instances of the PublicField pattern, and similarly PublicFieldField, PublicFieldSetter and

PublicFieldGetter.

11.5 Interoperability with Other Model Management

Tasks

As a PatternMatchModel is an instance of IModel, after its computation it can be manip-

ulated by other Epsilon programs. For example, Listing 11.6 demonstrates running the

EPL module of Listing 11.3 and passing its output to the EVL constraints module of Listing

11.7 and, if validation is successful, to an ETL transformation where it is used to guide the

generation of a UML model.

In lines 4-7 of Listing 11.6 (see Chapter 14 for a detailed discussion on the Epsilon ANT

tasks), the Java model is loaded and is assigned the name Java. Then, in line 9, the Java
model is passed on to publicfield.epl for pattern matching. The result of pattern matching,

which is an instance of the PatternMatchModel class (and therefore also an instance of

IModel) is exported to the global context under the name Patterns. Then, in lines 13, both

the Patterns and the Java are passed on to the EVL model validation task which performs

validation of the identified pattern matches.

1 <project default="main">

2 <target name="main">

3

4 <epsilon.emf.loadModel name="Java"

5 modelfile="org.eclipse.epsilon.eol.engine_java.xmi"

6 metamodeluri="...MoDisco/Java/0.2.incubation/java"

7 read="true" store="false"/>

8

9 <epsilon.epl src="publicfield.epl" exportAs="Patterns">

10 <model ref="Java"/>

11 </epsilon.epl>

12

13 <epsilon.evl src="constraints.evl">

14 <model ref="Patterns"/>

15 <model ref="Java"/>

16 </epsilon.evl>

163

17

18 <epsilon.etl src="java2uml.etl">

19 <model ref="Patterns"/>

20 <model ref="Java"/>

21 </epsilon.etl>

22 </target>

23 </project>

Listing 11.6: ANT workflow calculating and passing a pattern match model to an EVL

validation module

Line 1 of Listing 11.7 defines a set of constraints that will be applied to instances of

the PublicField type from the Patterns model. As discussed above, these are all matched

instances of the PublicField pattern. Line 4, specifies the condition that needs to be satisfied

by instances of the pattern. Notice the self.getter and self.field expressions which return the

MethodDeclaration and FieldDeclaration bound to the instance of the pattern. Then, line 5

defines the message that should be produced for instances of PublicField that do not satisfy

this constraint.

1 context Patterns!PublicField {

2 guard: self.field.type.isDefined()

3 constraint GetterAndFieldSameType {

4 check : self.getter.returnType.type = self.field.type.type

5 message : "The getter of " + self.class.name + "."

6 + self.field.fragments.at(0).name +

7 " does not have the same type as the field itself"

8 }

9 }

Listing 11.7: Fragment of the constraints.evl EVL constraints module

If validation is successful, both the Java and the Patterns model are passed on to an

ETL transformation that transforms the Java model to a UML model, a fragment of which

is presented in Listing 11.8. The transformation encodes < field, setter, getter > triplets

in the Java model as public properties in the UML model. As such, in line 6 of the trans-

formation, the Patterns model is used to check whether field s has been matched under the

PublicField pattern, and if so, the next line ignores the field’s declared visibility and sets

the visibility of the respective UML property to public.

1 rule FieldDeclaration2Property

2 transform s: Java!FieldDeclaration

3 to t: Uml!Property {

4

5 t.name = s.getName();

164

6 if (s.instanceOf(Patterns!PublicFieldField)) {

7 t.visibility = Uml!VisibilityKind#public;

8 }

9 else {

10 t.visibility = s.toUmlVisibility();

11 }

12 ...

13 }

Listing 11.8: Fragment of the java2uml.etl Java to UML ETL transformation

As Epsilon provides ANT tasks for all its languages, the same technique can be used to

pass the result of pattern matching on to model-to-text transformations, as well as model

comparison and model merging programs.

165

Chapter 12

The Epsilon Model Generation Language
(EMG)

12.1 Background and Motivation

At some point, programs written in any of the Epsilon model management languages might

need to be tested in order to find defects (bugs) and assert their correctness, or bench-

marked in order to assess their performance. Both testing and benchmarking activities

require appropriate test data, i.e. models that conform to specific metamodels and their

constraints, satisfy additional requirements or characteristics (e.g. certain size), and/or

contain data and provide a structure that exercises particular aspects of the program un-

der test.

Manual assembly of test models is an error prone, time and labour consuming activity.

This type of activities are perfect candidates for automation. Given that it is also a model

management activity, it follows that the automation can be provided by a model generation

engine that can execute model generation scripts. The scripts should be written in a model

generation language that allows the user to generate models that conform to specific meta-

models and its arbitrarily complex constraints (e.g constraints formulated in compound

first-order OCL operations), satisfy particular characteristics, and contain specific data and

exhibit particular structures. The model generation engine should exhibit characteristics

such as randomness, repeatability, scalability and easy parametrization [32, 33].

The Epsilon Model Generation Language addresses the automated generation of com-

plex models.

167

12.1.1 Approaches to Model Generation

The model generation approaches found in literature provide fully-automated behaviour.

In a fully-automated approach, the tool loads the metamodel (and in some cases its con-

straints) and generates models that conform to the metamodel (and satisfy the constraints,

if constraints are supported). However, the existing solutions can generate invalid models

and in the case where constraints are supported, only simple constraints are supported.

The Epsilon Model Generation follows a semi-automated generation approach. There

are three main tasks in model generation:

• Create instances of types in the metamodel(s).

• Assign values to the instance’s attributes (properties typed by primitive types: String,

Integer, etc.).

• Create links between instances to assign values to references (properties typed by

complex types: other types in the metamodel).

In the semi-automated approach, all of these tasks can be configured to execute stat-

ically or dynamically (with randomness). Statically, the user must specify every single

aspect of the generation. Dynamically, for example, the number of instances to create of

a given type can be random, or the value of a given attribute can be set to random val-

ues, or the links between elements can be done between random pairs of elements. The

combination of random and static definition of the generation tasks allows the user to

generate models that can satisfy complex constraints, guarantee additional characteristics

and exercise particular aspects of the program under test.

This chapter discusses the concrete syntax of EMG as well as its execution semantics. To

aid understanding, the discussion of the syntax and the semantics of the language revolves

around an exemplar generation which is developed incrementally throughout the chapter.

12.2 Syntax

The EMG language does not provide additional syntax. Instead it provides a set of pre-

defined annotations that can be added to EOL operations and EPL patterns in order to

perform the model generation. The predefined EOL operation annotations are:

instances Defines the number of instances to create. This annotation accepts one param-

eter. The parameter can be an expression that resolves to an Integer (e.g. literal,

168

variable name, etc.) or a sequence in the form Sequence {min, max}). An inte-

ger value statically defines how many instances are to be created. A sequence defines

a range that is used by the engine to generates a random number n of instances, with

min ≤ n ≤ max.

list Defines an identifier (listID) for a placeholder list for the elements created. This anno-

tation accepts one parameter. The parameter is the identifier (String) that can later

be used in operations that accept it as an argument in order to access the elements

created by the operation.

parameters If the instantiated type accepts/needs arguments for instantiation, the pa-

rameters annotation can be used to provide them. This annotation accepts one pa-

rameter. The parameter must be a Sequence that contains the desired arguments in

the order expected by the constructor.

All three annotations are executable and hence must be prefixed with a $ symbol when

used. Further, these annotations are only evaluated on create operations (see Section

12.3).

The EPL pattern annotations are:

number This limits the number of times the pattern is matched, to constraint the number

of links created between elements. This annotation accepts one parameter. The

parameter can be an expression that resolves to an Integer (e.g. literal, variable

name, etc.) or a sequence in the form Sequence {min, max}). An integer value

statically defines how many instances are to be created. A sequence defines a range

that is used by the engine to generates a random number n of instances, with min ≤
n ≤ max.

probability This defines the probability that the body of the pattern will be executed for

a matching set of elements. The effect is that not all matching elements are linked.

Effectively this also limits the number of times links are created.

noRepeat This forbids previous matched elements to be re-linked.

The first two annotations are executable and hence must be prefixed with a $ symbol

when used and the last one is a simple annotation and must be prefixed with @.

Additionally the EMG engine provides a set of predefined operations that provide sup-

port for generating random data that can be used to set the attributes and references of

the generated model elements, to select random elements from collections, etc.

169

12.2.1 EMG predefined operations

Table 12.1: Emg data generation operations

Signature Description

nextAddTo(n : Integer, m : Inte-

ger): Sequence(Integer)

Returns a sequence of n integers who’s sum is

equal to m.

nextBoolean() Returns the next pseudorandom, uniformly dis-

tributed boolean value.

nextCamelCaseWords(charSet :

String, length : Integer, min-

WordLength : Integer) : String

Generates a string of the given length format-

ted as CamelCase, with subwords of a minimum

length of the minWordLength argument, using

characters from the given charSet (see 12.2.1).

nextCapitalisedWord(charSet :

String, length : Integer) : String

Generate a Capitalized string of the given length

using characters from the given charSet (see

12.2.1).

nextFromCollection(c : Sequence) :

Any

Returns the next object from the collection, se-

lected pseudoramdomly using the uniform distri-

bution. If the collection is empty, returns null.

nextFromList(listID : String) : Any Returns the next object from the list, selected

pseudoramdomly using the uniform distribution.

If the list is empty, returns null. The listID can ei-

ther be a name defined by the @list annotation or

a parameter name from the run configuration. In

the latter case, the parameter value can be either

a comma separated string or a file path. If it is a

comma separated string, then a list is created by

splitting the string, if the value is a path, then the

file will be read and each line will be treated as a

list element.

nextFromListAsSample(listID :

String) : Any

Same as nextFromList, but in this case the list

is treated as a sample without replacement, i.e.

each call will return a unique member of the list.

170

nextHttpURI(addPort : Boolean,

addPath : Boolean, addQuery :

Boolean, addFragment : Boolean)

: String

Generates a random URI that com-

plies to http:[//host[:port]][/]path

[?query][#fragment]. The path, query and

fragment parts are optional and will be added if

the respective argument is True.

nextInt() : Integer Returns the next pseudorandom, uniformly dis-

tributed integer. All 232 possible integer values

should be produced with (approximately) equal

probability.

nextInt(upper : Integer) : Integer Returns a pseudorandom, uniformly distributed

integer value between 0 (inclusive) and upper (ex-

clusive). The argument must be positive.

nextInt(lower: Integer, upper : In-

teger) : Integer

Returns a pseudorandom, uniformly distributed

integer value between lower and upper (end-

points included). The arguments must be positive

and upper >= lower.

nextReal() : Real Returns the next pseudorandom, uniformly dis-

tributed real value between 0.0 and 1.0.

nextReal(upper : Real) : Real Returns the next pseudorandom, uniformly dis-

tributed real value between 0.0 and upper (in-

clusive).

nextReal(lower: Real, upper : Real)

: Real

Returns a pseudorandom, uniformly distributed

real value between lower and upper (endpoints

included).

nextSample(c : Sequence, k : Inte-

ger) : Sequence(Any)

Returns a Sequence of k objects selected ran-

domly from the Sequence c using a uniform distri-

bution. Sampling from c is without replacement;

but if c contains identical objects, the sample may

include repeats. If all elements of c are distinct,

the resulting object collection represents a Simple

Random Sample of size k from the elements of c.

171

nextSample(listID : String, k : Inte-

ger) : Sequence(Any)

Same as nextSample but the sequence is refer-

enced by listID. The listID has the same meanings

as for operation nextFromList.

nextString() : String Returns the next string made up from characters

of the LETTER character set (see 12.2.1), pseu-

dorandomly selected with a uniform distribution.

The length of the string is between 4 and 10 char-

acters.

nextString(length : Integer) :

String

Returns the next String made up from characters

of the LETTER character set (see 12.2.1), pseu-

dorandomly selected with a uniform distribution.

The length of the String is equal to length.

nextString(charSet : String, length

: Integer) : String

Returns the next String of the given length using

the specified character set (see 12.2.1) , pseudo-

randomly selected with a uniform distribution.

nextURI() : String Generates a random URI that complies to:

scheme:[//[user:password]host[:port]][/]path

[?query][#fragment]. The port, path, query and

fragment are added randomly. The scheme is

randomly selected from: http, ssh and ftp. For

ssh and ftp, a user and pasword are randomly

generated. The host is generated from a random

string and uses a top-level domain. The number

of paths and queries are random between 1 and

4.

nextURI(addPort : Boolean, ad-

dPath : Boolean, addQuery :

Boolean, addFragment : Boolean)

: String

Same as nextURI, but the given arguments control

what additional port, path, query and fragment

information is added.

nextUUID() : String Returns a type 4 (pseudo randomly generated)

UUID. The UUID is generated using a crypto-

graphically strong pseudo random number gen-

erator.

172

nextValue() : Real Returns the next pseudorandom value, picked

from the configured distribution (by default the

uniform distribution is used).

nextValue(d : String, p : Sequence)

: Real

Returns the next pseudorandom, from the pro-

vided distribution d. The parameters p are used

to configure the distribution (if required). The

supported distributions are: Binomial, Exponen-

tial and Uniform. For Binomial parameters are:

numberOfTrials and probabilityOfSuccess. For Ex-

ponential the mean. For Uniform the lower and

upper values (lower inclusive).

setNextValueDistribution(d :

String, p : Sequence)

Define the distribution to use for calls to

nextValue(). Parameters are the same as for

nextValue(d, p).

Character Sets for String operations

For the operations that accept a character set, the supported sets are defined as follows:

Table 12.2: Operations of type Any

Name Characters

ID abcdefghijklmnopqrstuvwxyz ABCDEFGHI-

JKLMNOPQRSTUVWXYZ 1234567890

NUMERIC 1234567890

LETTER abcdefghijklmnopqrstuvwxyz ABCDEFGHI-

JKLMNOPQRSTUVWXYZ

LETTER_UPPER ABCDEFGHIJKLMNOPQRSTUVWXYZ

LETTER_LOWER abcdefghijklmnopqrstuvwxyz

UPPER_NUM ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890

LOWER_NUM abcdefghijklmnopqrstuvwxyz 1234567890

173

ID_SYMBOL abcdefghijklmnopqrstuvwxyz ABCDEFGHI-

JKLMNOPQRSTUVWXYZ 1234567890

{̃}!@#$%^&∗() _+-=[] \|;’: " < > ? , .

/

HEX_LOWER abcdef1234567890

HEX_UPPER ABCDEF1234567890

12.3 Creating Model Elements

Th EMG engine will search for EOL operations that follow a particular signature in order

to determine what elements to create in the generated model. The signature is: create

<OutputType> () { ... }. That is, the operation must be named create, the oper-

ation’s context type defines the type of the created instance and no parameters should be

passed. By default the create operation only creates one instance. Hence, the provided

annotations can be used to tailor the behaviour of the operation.

Figure 12.1: PetriNet metamodel

Consider the case of the PetriNet metamodel in Figure 12.1. The code excerpt displayed

in Listing 12.1 creates a PetriNet and then adds some places and transitions to it. Note that

the instances annotation is executable and hence you can use absolute values, variables

174

or expressions. The list annotation in the PetriNet creation will result in all PetriNet

instances to be stored in a sequence called net. The list name is then used in the Place and

Transition create operations to add the places and transitions to a random (nextFromList)
PetriNet. In this example there is only one, but we could easily create more PetriNet

instances and hence have them contain random number of Places and Transitions. The

name of the elements is generated using the random string generation facilities.

1 pre {
2 var num_p = 10
3 }
4

5 $instances 1
6 @list net
7 operation PetriNet create() {
8 self.name = nextCamelCaseWords("LETTER_LOWER", 15, 10);
9 }

10

11 $instances num_p
12 operation Place create() {
13 self.name = "P_" + nextString("LETTER_LOWER", 15);
14 nextFromList("net").transitions.add(self);
15 }
16

17 $instances num_p / 2
18 operation Transition create() {
19 self.name = "T_" + nextString("LETTER_LOWER", 15);
20 nextFromList("net").transitions.add(self);
21 }

Listing 12.1: EMG create operations

12.4 Creating Model Links

In the previous section, the places and transitions references of the PetriNet were defined

during the creation of the Place and Transition elements. For more complex reference

patterns, EMG leverages the use of EPL patterns. For example, Arcs can have complex

constraints in order to determine the source and target transition/place, and possibly even

having separate rules for each type of Arc.

The EPL pattern in Listing 12.2 creates two arcs in order to connect a source and a

target Place via a Transition. The pattern matches all transitions in a given PetriNet. The

pattern body selects a random Place for the source and a random Place for the target (the

while loops are used to pick places that have the lowest incoming/outgoing arcs possible).

The weight of the arc is generated randomly from 0 to 10 (nextInt(10)). The pattern has

175

been annotated with the @probability annotation which will effectively only use 70% of

the transitions to create arcs (i.e. of all the possible PetriNet-Transition matches, the code

of the pattern will only be executed with a probability of 0.70).

1 @probability 0.7
2 pattern Transition
3 net:PetriNet,
4 tra:Transition
5 from: net.transitions {
6 onmatch {
7 var size = 0;
8 var freeSources = Place.all().select(s | s.incoming.size() == size);
9 while (freeSources.isEmpty()) {

10 size += 1;
11 freeSources = Place.all().select(s | s.incoming.size() == size);
12 }
13 size = 0;
14 var freeTarget = Place.all().select(s | s.outgoing.size() == size);
15 while (freeTarget.isEmpty()) {
16 size += 1;
17 freeTarget = Place.all().select(s | s.outgoing.size() == size);
18 }
19 var source = nextFromCollection(freeSources);
20 var target = nextFromCollection(freeTarget);
21 var a1:Arc = new PlaceToTransArc();
22 a1.weight = nextInt(10);
23 a1.source = source;
24 net.places.add(source);
25 a1.target = tra;
26 net.arcs.add(a1);
27 var a2:Arc = new TransToPlaceArc();
28 a1.weight = nextInt(10);
29 a2.source = tra;
30 a2.target = target;
31 net.places.add(target);
32 net.arcs.add(a2);
33 }
34 }

Listing 12.2: EMG create operations

12.5 Meaningful Strings

In some scenarios having completely random Strings for some of the element fields might

not be desirable. In this case EMG has an embedded mechanism to facilitate the use of

meaningful attribute values (not only for Strings) and we show a second approach based

on additional models.

176

12.5.1 Values as a parameter

The nextFromList() operation will first look for a list with that name, if it can’t find it

will look for a parameter (from the run configuration) with that name. The value of the

parameter can be either an absolute path to a file or a comma separated list of values.

If it is a comma separated list of values, then the individual values will be loaded as

a Collection. For example, if we added the parameter names: John, Rose, Juan,

Xiang, Joe to the run configuration, Listing 12.3 shows how to use that information to

define the instance attributes.

1 $instances num_p
2 operation Place create() {
3 self.name = nextFromList("name");
4 nextFromList("net").transitions.add(self);
5 }

Listing 12.3: EMG create operations

If it is a file path, then each line of the file will be loaded as an item to the Collection.

Note that the distinction between paths and comma separated values is the assumption

that paths don’t contain commas.

12.5.2 Values as a model

A more powerful approach would be to use an existing model to serve as the source for

attribute values. Given that there are several websites1 to generate random data in the

form of CSV files, we recommend the use of a CSV model to serve as an attribute value

source. A CSV file with name, lastName, and email can be easily generated and loaded as

a second model the the EMG script. Then, a Row of data can be picked randomly to set an

element’s attributes. Listing 12.4 shows this approach.

1 $instances num_p
2 operation Person create() {
3 var p = nextFromCollection(dataModel.Row.all());
4 self.name = p.name;
5 self.lastName = p.lastName;
6 self.email = p.email;
7 }

Listing 12.4: EMG create operations

1https://www.mockaroo.com/, https://www.generatedata.com/, www.freedatagenerator.com/, etc.

177

Note that in this case, by using different rows for each value you can further randomize

the data.

178

Chapter 13

Implementing a New Task-Specific
Language

Although Epsilon already provides languages for a wide range of model management tasks,

additional tasks that could benefit from the convenience syntax and dedicated semantics

of a task-specific language are likely to be identified in the future. Thus, this section dis-

tils the experiences obtained through the construction of existing task-specific languages

to provide guidance on how to identify a task for which a dedicated language can be

beneficial and develop the respective task-specific language for it atop the infrastructure

provided by Epsilon.

13.1 Identifying the need for a new language

The first step of the process of constructing a new task-specific language is to identify a

specific task for which a dedicated language is more appropriate than the general-purpose

EOL. Typically, recurring syntactic and semantic patterns that emerge when attempting to

implement the task using EOL indicate that a new task-specific language may be useful.

For example, before the introduction of the Epsilon Comparison Language, pure EOL

was being used to perform model comparison. A simple comparison specification that

establishes name-based matches between classes/attributes and tables/columns between

two OO and DB models respectively using EOL is demonstrated in Listing 13.1.

Two patterns can be readily detected by inspecting the EOL code in Listing 13.1. First,

explicit variables (matchingCT, matchingAT) are defined to capture the matching elements

(class-table and attribute-column)identified during the comparison process. Also, to check

all elements of one type (classes against tables and attributes against columns) repeated

for statements are used in lines 3–4 and 7–8. By contrast, Listing 13.2 which is specified

179

using the task-specific ECL language does not include such low-level information. Instead

it defines only the types of elements that need to be compared and the criteria on which

comparison must performed and leaves the mundane tasks of scheduling and maintaining

the match trace to the execution engine.

1 var matchingCT : Sequence;

2 var matchingAC : Sequence;

3 for (c in OO!Class.allInstances) {

4 for (t in DB!Table.allInstances) {

5 if (t.name = c.name) {

6 matchingCT.add(Sequence{c,t});

7 for (att in c.attributes) {

8 for (col in t.columns) {

9 if (att.name = c.name) {

10 matchingAC.add(Sequence{att, col});

11 }

12 }

13 }

14 }

15 }

16 }

Listing 13.1: Comparing an OO model with a DB model using EOL

1 rule ClassTable

2 match c : OO!Class

3 with t : DB!Table {

4

5 compare : c.name = t.name

6 }

7

8 rule AttributeColumn

9 match a : OO!Attribute

10 with c : DB!Column {

11

12 compare : a.name = c.name and

13 a.class.matches(c.table)

14 }

Listing 13.2: Comparing an OO model with a DB model using ECL

180

13.2 Eliciting higher-level constructs from recurring

patterns

Once recurring patterns, such as those discussed above, have been identified, the next step

of the process is to derive higher level constructs from them. For instance, in the previous

example, the nested for loops and the explicit trace variable declaration and population

have been replaced by task-specific match rules.

Introducing higher-level involves defining its abstract and concrete syntax as well as its

connection points with the underlying infrastructure. For example, in the case of ECL, the

types of match rules are EOL model element types, the guard and check parts of a rule are

EOL expressions or statements blocks and the pre and post blocks as well as the do part of

each rule are blocks of EOL statements.

13.3 Implement Execution Semantics and Scheduling

Once higher-level constructs (e.g. task-specific rules) have been identified and specified,

their execution semantics and scheduling must be implemented similarly to what has been

done for existing languages. Development of existing languages has demonstrated that

task-specific constructs often need to provide more than one modes of execution (e.g. the

lazy and greedy modes of ETL transformation rules discussed in Section 5.5).

A lightweight way to easily provide new execution modes and semantics for rules and

user-defined operations without modifying the syntax of the language and introducing

new keywords that may conflict with existing code, is through the annotations mechanism

provided by EOL (see Section 3.2.1). This approach has been adopted for the definition a

small unit-testing language (EUnit), which is discussed in detail in [34].

13.4 Overriding Semantics

In certain cases, it is useful to modify the semantics of certain constructs in EOL to meet

the purposes of the task-specific language. An example of such a modification occurs in

EVL where – as discussed in Section 4.4 – the scope of the variables defined in guard
expression/block is extended so that variables can be reused in the context of non-nested

blocks such as the title, and check parts of the invariant. Another example of overriding

the semantics of EOL is the implementation of the special assignment operator (::=) by

ETL which was discussed in 5.5.4.

181

Chapter 14

Orchestration Workflow

The previous chapters provided a detailed discussion on a number of task-specific lan-

guages, each one addressing an individual model management task. However, in practice,

model management tasks are seldom carried out in isolation; instead, they are often com-

bined together to form complex workflows. Therefore, of similar importance to the exis-

tence of individual task-specific management languages is the provision of a mechanism

that enables developers to compose modular and reusable tasks into complex automated

processes. In a broader context, to facilitate implementation of seamless workflows, an ap-

propriate MDE workflow mechanism should also support mainstream development tasks

such as file management, version control management, source code compilation and invo-

cation of external programs and services.

14.1 Motivation

As a motivating example, an exemplar workflow that consists of both MDD tasks (1-4, 6)

and mainstream software development tasks (5, 7) is displayed below.

1. Load a UML model

2. Validate it

3. Transform it into a Database Schema model

4. Generate Java code from the UML model

5. Compile the Java code

6. Generate SQL code from the Database model

183

7. Deploy the SQL code in a Database Management System (DBMS)

In the above workflow, if the validation step (2) fails, the entire process should be

aborted and the identified errors should be reported to the user. This example demon-

strates that to be of practical use, a task orchestration framework needs to be able to co-

ordinate both model management and mainstream development tasks and provide mech-

anisms for establishing dependencies between different tasks.

This chapter presents such a framework for orchestrating modular model management

tasks implemented using languages of the Epsilon platform. As the problem of task coor-

dination is common in software development, many technical solutions have been already

proposed and are widely used by software practitioners. In this context, designing a new

general-purpose workflow management solution was deemed inappropriate. Therefore,

the task orchestration solution discussed here has been designed as an extension to the

robust and widely used ANT [35] framework. A brief overview of ANT as well as a dis-

cussion on the choice to design the orchestration workflow of Epsilon atop it is provided

below.

14.2 The ANT Tool

ANT, named so because it is a little thing that can be used to build big things [36], is a robust

and widely-used framework for composing automated workflows from small reusable ac-

tivities. The most important advantages of ANT, compared to traditional build tools such as

gnumake [37], is that it is platform independent and easily extensible. Platform indepen-

dence is achieved by building atop Java, and extensibility is realized through a lightweight

binding mechanism that enables developers to contribute custom tasks using well defined

interfaces and extension points.

Although a number of tools with functionality similar to ANT exist in the Java commu-

nity, only Maven [38] is currently of comparable magnitude in terms of user-basis size and

robustness. Outlining the discussion provided in [39], ANT is considered to be easier to

learn and to enable low-level control, while Maven is considered to provide a more elabo-

rate task organization scheme. Nevertheless, the two frameworks are significantly similar

and the ANT technical solution discussed in this chapter can easily be ported to work with

the latter.

This section provides a brief discussion of the structure and concrete syntax of ANT

workflows, as well as the extensibility mechanisms that ANT provides to enable users

contribute custom tasks.

184

Figure 14.1: Simplified ANT object model

14.2.1 Structure

In ANT, each workflow is captured as a project. A simplified illustration of the structure

of an ANT project is displayed in Figure 14.1. Each ANT project consists of a number

of targets. The one specified as the default is executed automatically when the project is

executed. Each target contains a number of tasks and depends on other targets that must be

executed before it. An ANT task is responsible for a distinct activity and can either succeed

or fail. Exemplar activities implemented by ANT tasks include file system management,

compiler invocation, version management and remote artefact deployment.

14.2.2 Concrete Syntax

In terms of concrete syntax, ANT provides an XML-based syntax. In Listing 14.1, an exem-

plar ANT project that compiles a set of Java files is illustrated. The project contains one

target (main) which is also set to be the default target. The main target contains one javac

185

task that specifies attributes such as srcdir, destdir and classpath, which define that the

Java compiler will compile a set of Java files contained into the src directory into classes

that should be placed in the build directory using dependencies.jar as an external library.

1 <project default="main">

2 <target name="main"/>

3 <javac srcdir="${src}"

4 destdir="${build}"

5 classpath="dependencies.jar"

6 debug="on"

7 source="1.4"/>

8 </target>

9 </project>

Listing 14.1: Compiling Java classes using the javac task

14.2.3 Extending ANT

Binding between the XML tags that describe the tasks and the actual implementations of

the tasks is achieved through a light-weight mechanism at two levels. First, the tag (in the

example of Listing 14.1, javac) is resolved to a Java class that extends the org.apache.ant.Task
abstract class (in the case of javac, the class is org.apache.tools.ant.taskdefs.Javac) via a

configuration file. Then, the attributes of the tasks (e.g. srcdir) are set using the reflective

features that Java provides. Finally, the execute() method of the task is invoked to perform

the actual job.

This lightweight and straightforward way of defining tasks has rendered ANT particu-

larly popular in the Java development community and currently there is a large number of

tasks contributed by ANT users [40], ranging from invoking tools such as code generators

and XSLT processors, to emulating logical control flow structures such as if conditions and

while loops. The AMMA platform [41] also provides integration of model driven engineer-

ing tools such as TCS [42] and ATL [6] with ANT.

ANT also supports more advanced features including nested XML elements and file-
sets, however providing a complete discussion is beyond the scope of this chapter. For a

definitive guide to ANT readers can refer to [36].

14.3 Integration Challenges

A simple approach to extending ANT with support for model management tasks would

be to implement one standalone task for each language in Epsilon. However, such an

186

approach demonstrates a number of integration and performance shortcomings which are

discussed below.

Since models are typically serialized in the file system, before a task is executed, the

models it needs to access/modify must be parsed and loaded in memory. In the absence

of a more elaborate framework, each model management task would have to take respon-

sibility for loading and storing the models it operates on. Also, in most workflows, more

than one task operates on the same models sequentially, and needlessly loading/storing

the same models many times in the context of the same workflow is an expensive operation

both time and memory-wise, particularly as the size of models increases.

Another weakness of this primitive approach is limited inter-task communication. In

the absence of a communication framework that allows model management tasks to ex-

change information with each other, it is often the case that many tasks end up performing

the same (potentially expensive) queries on models. By contrast, an inter-task communi-

cation framework would enable time and resource intensive calculations to be performed

once and their results to be communicated to all interested subsequent tasks.

Having discussed ANT, Epsilon and the challenges their integration poses, the follow-

ing sections presents the design of a solution that enables developers to invoke model

management tasks in the context of ANT workflows. The solution consists of a core frame-

work that addresses the challenges discussed in Section 14.3, a set of specific tasks, each

of which implements a distinct model management activity, and a set of tasks that enable

developers to initiate and manage transactions on models using the respective facilities

provided by the model connectivity layer discussed in Section 2.6.

14.4 Framework Design and Core Tasks

The role of the core framework, illustrated in Figure 14.2, is to provide model loading

and storing facilities as well as runtime communication facilities to the individual model

management tasks that build atop it. This section provides a detailed discussion of the

components it consists of.

14.4.1 The EpsilonTask task

An ANT task can access the project in which it is contained by invoking the Task.getProject()
method. To facilitate sharing of arbitrary information between tasks, ANT projects pro-

vide two convenience methods, namely addReference(String key, Object ref) and getRef-

187

Figure
14.2:

C
ore

Fram
ew

ork

188

Figure 14.3: Core Models Framework

erence(String key) : Object. The former is used to add key-value pairs, which are then

accessible using the latter from other tasks of the project.

To avoid loading models multiple times and to enable on-the-fly management of models

from different Epsilon modules without needing to store and re-load the models after each

task, a reference to a project-wide model repository has been added to the current ANT

project using the addReference method discussed above. In this way, all the subclasses of

the abstract EpsilonTask can invoke the getProjectRepository() method to access the project

model repository.

Also, to support a variable sharing mechanism that enables inter-task communication,

the same technique has been employed; a shared context, accessible by all Epsilon tasks

via the getProjectContext() method, has been added. Through this mechanism, model man-

agement tasks can export variables to the project context (e.g. traces or lists containing

results of expensive queries) which other tasks can then reuse.

EpsilonTask also specifies a profile attribute that defines if the execution of the task must

189

be profiled using the profiling features provided by Epsilon. Profiling is a particularly im-

portant aspect of workflow execution, especially where model management languages are

involved. The main reason is that model management languages tend to provide conve-

nient features which can however be computationally expensive (such as the allInstances()
EOL built-in feature that returns all the instances of a specific metaclass in the model) and

when used more often than really needed, can significantly degrade the overall perfor-

mance.

14.4.2 Model Loading Tasks

The LoadModelTask (epsilon.loadModel) loads a model from an arbitrary location (e.g. file-

system, database) and adds it to the project repository so that subsequent Epsilon tasks

can query or modify it. Since Epsilon supports many modelling technologies (e.g. EMF,

MDR, XML), the LoadModelTask defines only three generic attributes. The name attribute

specifies the name of the model in the project repository. The type attribute specifies

the modelling technology with which the model is captured and is used to resolve the

technology-specific model loading functionality. Finally, the aliases attribute defines a

comma-separated list of alternative names by which the model can be accessed in the

model repository.

The rest of the information needed to load a model is implementation-specific and is

therefore provided through parameter nested elements, each one defining a pair of name-

value attributes. As an example, a task for loading an EMF model that has a file-based

ECore metamodel is displayed in Listing 14.2.

1 <epsilon.loadModel name="Tree1" type="EMF">

2 <parameter name="modelFile" value="TreeInstance.ecore"/>

3 <parameter name="metamodelFile" path="Tree.ecore"/>

4 <parameter name="isMetamodelFileBased" value="true"/>

5 <parameter name="readOnLoad" value="true"/>

6 </epsilon.loadModel>

Listing 14.2: Loading an EMF model using the epsilon.loadModel task

LoadEmfModelTask is a specialised version of LoadModelTask only for EMF models.

While the type attribute is no longer available, the task still supports the name and aliases
attributes. In addition, some of the values which had to be provided through parameter
nested elements can now be set using regular attributes, such as modelFile, modelUri,
metamodelFile (which implicitly indicates that the metamodel is file-based), metamod-
elUri, reuseUnmodifiedMetamodelFile (which can be set to “false” to avoid reusing file-

based metamodels that have not been modified since the last time they were loaded), read

190

1 <epsilon.emf.loadModel name="Tree1"
2 modelFile="TreeInstance.ecore"
3 metamodelFile="Tree.ecore" />

Listing 14.3: Loading an EMF model using the epsilon.emf.loadModel task

(equivalent to readOnLoad) and store (equivalent to storeOnDisposal). Listing 14.3 shows

the equivalent fragment required to produce the same result as in Listing 14.2.

14.4.3 Model Storing Task

The StoreModelTask (epsilon.storeModel) is used to store a model residing in the project

repository. The StoreModelTask defines three attributes:

• name (required): name of the model to be stored.

• targetUri (optional): URI where the model will be stored (e.g. “file:/path/to/destination”).

• target (optional): file path where the model will be stored (e.g. “file.xmi”).

targetUri takes precedence over target. If neither is defined, then the model is stored

in the location from which it was originally loaded.

14.4.4 Model Disposal Tasks

When a model is no longer required by tasks of the workflow, it can be disposed using the

epsilon.disposeModel task. The task provides the model attribute that defines the name of

the model to be disposed. Also, the attribute-less epsilon.disposeModels task is provided

that disposes all the models in the project model repository. This task is typically invoked

when the model management part of the workflow has finished.

The workflow leverages the model-transaction services provided by the model con-

nectivity framework of Epsilon by providing three tasks for managing transactions in the

context of workflows.

14.4.5 The StartTransaction Task

The epsilon.startTransaction task defines a name attribute that identifies the transaction. It

also optionally defines a comma-separated list of model names (models) that the transac-

tion will manage. If the models attribute is not specified, the transaction involves all the

models contained in the common project model repository.

191

14.4.6 The CommitTransaction and RollbackTransaction Tasks

The epsilon.commitTransaction and epsilon.rollbackTransaction tasks define a name attribute

through which the transaction to be committed/rolled-back is located in the project’s ac-

tive transactions. If several active transactions with the same name exist the more recent

one is selected.

The example of Listing 14.4 demonstrates an exemplar usage of the epsilon.startTransaction
and epsilon.rollbackTransaction tasks. In this example, two empty models Tree1 and Tree2

are loaded in lines 1,2. Then, the EOL task of line 4 queries the models and prints the

number of instances of the Tree metaclass in each one of them (which is 0 for both). Then,

in line 13, a transaction named T1 is started on model Tree1. The EOL task of line 15,

creates a new instance of Tree in both Tree1 and Tree2 and prints the number of instances

of Tree in the two models (which is 1 for both models). Then, in line 26, the T1 transac-

tion is rolled-back and any changes done in its context to model Tree1 (but not Tree2) are

undone. Therefore, the EOL task of line 28, which prints the number of instances of Tree

in both models, prints 0 for Tree1 but 1 for Tree2.

1 <epsilon.loadModel name="Tree1" type="EMF">...</epsilon.loadModel>

2 <epsilon.loadModel name="Tree2" type="EMF">...</epsilon.loadModel>

3

4 <epsilon.eol>

5 <![CDATA[

6 Tree1!Tree.allInstances.size().println(); // prints 0

7 Tree2!Tree.allInstances.size().println(); // prints 0

8]]>

9 <model ref="Tree1"/>

10 <model ref="Tree2"/>

11 </epsilon.eol>

12

13 <epsilon.startTransaction name="T1" models="Tree1"/>

14

15 <epsilon.eol>

16 <![CDATA[

17 var t1 : new Tree1!Tree;

18 Tree1!Tree.allInstances.size().println(); // prints 1

19 var t2 : new Tree2!Tree;

20 Tree2!Tree.allInstances.size().println(); // prints 1

21]]>

22 <model ref="Tree1"/>

23 <model ref="Tree2"/>

24 </epsilon.eol>

25

192

26 <epsilon.rollbackTransaction name="T1"/>

27

28 <epsilon.eol>

29 <![CDATA[

30 Tree1!Tree.allInstances.size().println(); // prints 0

31 Tree2!Tree.allInstances.size().println(); // prints 1

32]]>

33 <model ref="Tree1"/>

34 <model ref="Tree2"/>

35 </epsilon.eol>

Listing 14.4: Exemplar usage of the epsilon.startTransaction and ep-
silon.rollbackTransaction tasks

14.4.7 The Abstract Executable Module Task

This task is the base of all the model management tasks presented in Section 14.5. Its

aim is to encapsulate the commonalities of Epsilon tasks in order to reduce duplication

among them. As already discussed, in Epsilon, specifications of model management tasks

are organized in executable modules. While modules can be stored anywhere, in the case

of the workflow it is assumed that they are either stored as separate files in the file-system

or they are provided inline within the worfklow. Thus, this abstract task defines an src
attribute that specifies the path of the source file in which the Epsilon module is stored,

but also supports inline specification of the source of the module. The two alternatives are

demonstrated in Listings 14.5 and 14.6 respectively.

1 <project default="main">

2 <target name="main">

3 <epsilon.eol src="HelloWorld.eol"/>

4 </target>

5 </project>

Listing 14.5: External Module Specification

1 <project default="main">

2 <target name="main">

3 <epsilon.eol>

4 <![CDATA[

5 "Hello world".println();

6]]>

7 </epsilon.eol>

8 </target>

193

9 </project>

Listing 14.6: Inline Module Specification

Optionally, users can enable debugging for the module to be run by setting the debug
attribute to true. An example is shown in Listing 14.7. If the module reaches a breakpoint,

users will be able to run the code step by step and inspect the stack trace and its variables.

1 <project default="main">

2 <target name="main">

3 <epsilon.eol src="HelloWorld.eol" debug="true"/>

4 </target>

5 </project>

Listing 14.7: Inline Module Specification

The task also defines the following nested elements:

0..n model nested elements Through the model nested elements, each task can define

which of the models, loaded in the project repository it needs to access. Each model
element defines three attributes. The ref attribute specifies the name of the model that

the task needs to access, the as attribute defines the name by which the model will be

accessible in the context of the task, and the aliases defines a comma-delimited sequence

of aliases for the model in the context of the task.

0..n parameter nested elements The parameter nested elements enable users to com-

municate String parameters to tasks. Each parameter element defines a name and a value
attribute. Before executing the module, each parameter element is transformed into a

String variable with the respective name and value which is then made accessible to the

module.

0..n exports nested elements To facilitate low-level integration between different Ep-

silon tasks, each task can export a number of variables to the project context, so that

subsequent tasks can access them later. Each export nested element defines the three at-

tributes. The ref attribute specifies the name of the variable to be exported, the as string

attribute defines the name by which the variable is stored in the project context and the

optional boolean attribute specifies whether the variable is mandatory. If optional is set to

false and the module does not specify such a variable, an ANT BuildException is raised.

0..n uses nested elements The uses nested elements enable tasks to import variables

exported by previous Epsilon tasks. Each use element supports three attributes. The ref

194

attribute specifies the name of the variable to be used. If there is no variable with this

name in the project context, the ANT project properties are queried. This enables Epsilon

modules to access ANT parameters (e.g. provided using command-line arguments). The as
attribute specifies the name by which the variable is accessible in the context of the task.

Finally, the optional boolean paramter specifies if the variable must exist in the project

context.

To better illustrate the runtime communication mechanism, a minimal example is pro-

vided in Listings 14.8 - 14.10. In Listing 14.8, Exporter.eol defines a String variable named

x and assigns a value to it. The workflow of Listing 14.10 specifies that after executing

Exporter.eol, it must export a variable named x with the new name y to the project context.

Finally, it defines that before executing User.eol (Listing 14.9), it must query the project

context for a variable named y and in case this is available, add the variable to the mod-

ule’s context and then execute it. Thus, the result of executing the workflow is Some String
printed in the output console.

1 var x : String = "Some string";

Listing 14.8: Source code of the Exporter.eol module

1 z.println();

Listing 14.9: Source code of the User.eol module

1 <epsilon.eol src="Exporter.eol">

2 <exports ref="x" as="y"/>

3 </epsilon.eol>

4

5 <epsilon.eol src="User.eol">

6 <uses ref="y" as="z"/>

7 </epsilon.eol>

Listing 14.10: ANT Workflow connecting modules 14.8 and 14.9 using the epsilon.eol task

14.5 Model Management Tasks

Having discussed the core framework, this section presents the model management tasks

that have been implemented atop it, using languages of the Epsilon platform.

14.5.1 Generic Model Management Task

The epsilon.eol task executes an EOL module, defined using the src attribute on the models

that are specified using the model nested elements.

195

Figure 14.4: Model Management Tasks

14.5.2 Model Validation Task

The epsilon.evl task executes an EVL module, defined using the src attribute on the models

that are specified using the model nested elements. In addition to the attributes defined by

the ExecutableModuleTask, this task also provides the following attributes:

• failOnErrors : Errors are the results of unsatisfied constraints. Setting the value of

this attribute to true (default is false) causes a BuildException to be raised if one or

more errors are identified during the validation process.

• failOnWarnings : Similarly to errors, warnings are the results of unsatisfied critiques.

Setting the value of this atrribute to true (default is also false) causes a BuildException
to be raised if one or more warnings are identified during the validation process.

• exportConstraintTrace : This attribute enables developers to export the internal con-

straint trace constructed during model validation to the project context so that it can

be later accessed by other tasks - which could for example attempt to automatically

repair the identified inconsistencies.

196

• exportAsModel : Setting the value of this attribute to true (default is false) causes

EVL to export the results of the validation as a new model in the project repository,

named “EVL”. This model contains all the EVLUNSATISFIEDCONSTRAINTs found by

EVL. These instances contain several useful attributes: constraint points to the EVL-

CONSTRAINT with the definition of the constraint and instance points to the model

element which did not satisfy the constraint. From the EVLCONSTRAINT, isCritique
can be used to check if it is a critique or not, and name contains the name of the

constraint.

14.5.3 Model-to-Model Transformation Task

The epsilon.etl task executes an ETL module, defined using the src attribute to transform

between the models that are specified using the model nested elements. In addition to the

attributes defined by the ExecutableModuleTask, this task also provides the exportTrans-
formationTrace attribute that enables the developer to export the internal transformation

trace to the project context. In this way this trace can be reused by subsequent tasks; for

example another task can serialize it in the form of a separate traceability model.

14.5.4 Model Comparison Task

The epsilon.ecl task executes an ECL module, defined using the src attribute to establish

matches between elements of the models that are specified using the model nested ele-

ments. In addition to the attributes defined by the ExecutableModuleTask, this task also

provides the exportMatchTrace attribute that enables users to export the match-trace cal-

culated during the comparison to the project context so that subsequent tasks can reuse

it. For example, as discussed in the sequel, an EML model merging task can use it as a

means of identifying correspondences on which to perform merging. In another example,

the match-trace can be stored by a subsequent EOL task in the form of an stand-alone

weaving model.

14.5.5 Model Merging Task

The epsilon.eml task executes an EML module, defined using the src attribute on the models

that are specified using the model nested elements. In addition to the attributes defined by

the ExecutableModuleTask, this task also provides the following attributes:

• useMatchTrace : As discussed in 9, to merge a set of models, an EML module needs

an established match-trace between elements of the models. The useMatchTrace at-

197

tribute enables the EML task to use a match-trace exported by a preceeding ECL task

(using its exportMatchTrace attribute).

• exportMergeTrace, exportTransformationTrace : Similarly to ETL, through these at-

tributes an EML task can export the internal traces calculated during merging for

subsequent tasks to use.

14.5.6 Model-to-Text Transformation Task

To support model to text transformations, EglTask (epsilon.egl) task is provided that exe-

cutes an Epsilon Generation Language (EGL) module1. In addition to the attributes defined

by ExecutableModuleTask, EglTask also defines the following attributes:

• target : Defines a file in which all of the generated text will be stored.

• templateFactoryType : Defines the Java class that will be instantiated to provide a

TemplateFactory for the EGL program. The specified class must be on the classpath

and must subtype EglTemplateFactory. See Section 7.4.4 for more information.

EglTask may nest any number of formatter elements. The formatter nested element has

the following attributes:

• implementation (required) : Defines the Java class that will be instantiated to provide

a Formatter for the EGL program. The specified class must be on the classpath and

must subtype Formatter. See Section 7.6.2 for more information.

14.5.7 Model Migration Task

To support model migration, FlockTask (epsilon.flock) is provided for executing an Epsilon

Flock module (Chapter 10). In addition to the attributes defined by ExecutableModuleTask,

FlockTask also defines the following mandatory attributes:

• originalModel : Specifies which of the currently loaded models should be used as the

source of the model migration.

• migratedModel : Specifies which of the currently loaded models should be used as

the target of the model migration.

1As discussed in Section 7 EGL has been built atop Epsilon with a minimal contribution of the author

198

14.5.8 Pattern Matching Task

The epsilon.epl task executes an EPL module, defined using the src attribute to perform

pattern matching on the models that are specified using the model nested elements. In

addition to the attributes defined by the ExecutableModuleTask, this task also provides

the following attributes.

• repeatWhileMatches: A boolean specifying whether the pattern matching process

should continue to execute for as long as matches are found.

• maxLoops: An integer specifying the maximum number of pattern matching itera-

tions.

• exportAs: The name under which the computed pattern match model should be made

available to other Epsilon tasks of the workflow.

14.6 Miscellaneous Tasks

14.6.1 Java Class Static Method Execution Task

The epsilon.java.executeStaticMethod task executes a parameter-less static method, defined

using the method attribute, of a Java class, defined using the javaClass attribute. This task

can be useful for setting up the infrastructure of Xtext-based languages.

14.6.2 Adding a new Model Management Task

As discussed in Section 13, additional task-specific languages are likely to be needed in

the future for tasks that are not effectively supported by existing task-specific languages.

In addition to designing and implementing the syntax and execution semantics of a new

language, it is also important to provide integration with the workflow – if the nature of

the language permits execution within a workflow. As a counter-example, no workflow

task has been provided for EWL since its execution semantics is predominately user-driven

and as such, it makes little sense to execute EWL in the context of an automated workflow.

To implement support for a new task-specific language to the workflow, a new exten-

sion of the abstract ExecutableModuleTask needs to be provided (similarly to what has been

done for existing task-specific languages). By extending ExecutableModuleTask, the task is

automatically provided with access to the essential features of the workflow such as the

shared model repository, and runtime context. Additional configuration options for the

199

task need to specified as new ANT attributes and/or nested elements, similarly to what has

been done for the tasks presented in Sections 14.5.1–14.5.6.

14.7 Chapter Summary

This chapter has presented the detailed design of an ANT-based framework for integrating

and orchestrating mainstream software development tasks with model management tasks

implemented using model management languages in Epsilon. In Section 14.4, the core

framework that provides features such as centralized model loading/storing facilities, a

shared model repository and a mechanism through which individual tasks can communi-

cate at runtime has been illustrated. Then, Section 14.5 has provided a discussion on the

integration of the task specific languages with the framework and also provided guidance

for adding support for additional languages that are likely to be developed in the future

atop Epsilon.

200

Chapter 15

The Epsilon Unit Testing Framework
(EUnit)

EUnit is an unit testing framework specifically designed to test model management tasks,

based on EOL and the Ant workflow tasks. It provides assertions for comparing models,

files and directories. Tests can be reused with different sets of models and input data,

and differences between the expected and actual models can be graphically visualized.

This chapter discusses the motivation behind EUnit, describes how tests are organized and

written and shows two examples of how a model-to-model transformation can be tested

with EUnit. This chapter ends with a discussion of how EUnit can be extended to support

other modelling and model management technologies.

15.1 Motivation

Model-driven approaches are being adopted in a wide range of demanding environments,

such as finance, health care or telecommunications [43]. In this context, validation and

verification is identified as one of the many challenges of model-driven software engineer-

ing (MDSE) [44].

MDSE in practice involves creating models, and thereafter managing them, via various

tasks, such as model transformation, validation and merging. The validation and verifica-

tion of each type of model management task has its own specific challenges. Kolovos et

al. list testing concerns for model-to-model (M2M) and model-to-text (M2T) transforma-

tions, model validations, model comparisons and model compositions in [34]. Baudry et

al. identify three main issues when testing model transformations [32]: the complexity of

the input and output models, the immaturity of the model management environments and

the large number of different transformation languages and techniques.

201

15.1.1 Common Issues

While each type of model management task does have specific complexity, some of the

concerns raised by Baudry can be generalized to apply to all model management tasks:

• There is usually a large number of models to be handled. Some may be created

by hand, some may be generated using hand-written programs, and some may be

generated automatically following certain coverage criteria.

• A single model or set of models may be used in several tasks. For instance, a model

may be validated before performing an in-place transformation to assist the user, and

later on it may be transformed to another model or merged with a different model.

This requires having at least one test for each valid combination of models and sets

of tasks.

• Test oracles are more complex than in traditional unit testing [45]: instead of check-

ing scalar values or simple lists, entire graphs of model objects or file trees may have

to be compared. In some cases, complex properties in the generated artifacts may

have to be checked.

• Models and model management tasks may use a wide range of technologies. Models

may be based on Ecore [46], XML files or Java object graphs, among many others. At

the same time, tasks may use technologies from different platforms, such as Epsilon,

oAW [47] or AMMA [41]. Many of these technologies offer high-level tools for

running and debugging the different tasks using several models. However, users

wishing to do automated unit testing need to learn low-level implementation details

about their modelling and model management technologies. This increases the initial

cost of testing these tasks and hampers the adoption of new technologies.

• Existing testing tools tend to focus on the testing technique itself, and lack integration

with external systems. Some tools provide graphical user interfaces, but most do

not generate reports which can be consumed by a continuous integration server, for

instance.

15.1.2 Testing with JUnit

The previous issues are easier to understand with a concrete example. This section shows

how a simple transformation between two EMF models in ETL using JUnit 4 [48] would

be normally tested, and points out several issues due to JUnit’s limitations as a general-

purpose unit testing framework for Java programs.

202

For the sake of brevity, only an outline of the JUnit test suite is included. All JUnit test

suites are defined as Java classes. This test suite has three methods:

1. The test setup method (marked with the @Before JUnit annotation) loads the re-

quired models by creating and configuring instances of EMFMODEL. After that, it

prepares the transformation by creating and configuring an instance of ETLMODULE,

adding the input and output models to its model repository.

2. The test case itself (marked with @Test) runs the ETL transformation and uses the

generic comparison algorithm implemented by EMF Compare to perform the model

comparison.

3. The test teardown method (marked with @After) disposes of the models.

Several issues can be identified in each part of the test suite. First, test setup is tightly

bound to the technologies used: it depends on the API of the EMFMODEL and ETLMODULE

classes, which are both part of Epsilon. Later refactorings in these classes may break

existing tests.

The test case can only be used for a single combination of input and output models.

Testing several combinations requires either repeating the same code and therefore making

the suite less maintainable, or using parametric testing, which may be wasteful if not all

tests need the same combinations of models.

Model comparison requires the user to manually select a model comparison engine and

integrate it with the test. For comparing EMF models, EMF Compare is easy to use and

readily available. However, generic model comparison engines may not be available for

some modelling technologies, or may be harder to integrate.

Finally, instead of comparing the obtained and expected models, several properties

could have been checked in the obtained model. However, querying models through Java

code can be quite verbose.

15.1.3 Selected Approach

Several approaches could be followed to address these issues. Our first instinct would be to

extend JUnit and reuse all the tooling available for it. A custom test runner would simplify

setup and teardown, and modelling platforms would integrate their technologies into it.

Since Java is very verbose when querying models, the custom runner should run tests in

a higher-level language, such as EOL. However, JUnit is very tightly coupled to Java, and

this would impose limits on the level of integration we could obtain. For instance, errors

203

in the model management tasks or the EOL tests could not be reported from their original

source, but rather from the Java code which invoked them. Another problem with this

approach is that new integration code would need to be written for each of the existing

platforms.

Alternatively, we could add a new language exclusively dedicated to testing to the

Epsilon family. Being based on EOL, model querying would be very concise, and with

a test runner written from scratch, test execution would be very flexible. However, this

would still require all platforms to write new code to integrate with it, and this code would

be tightly coupled to Epsilon.

As a middle ground, we could decorate EOL to guide its execution through a new test

runner, while reusing the Apache Ant [35] tasks already provided by several of the existing

platforms, such as AMMA or Epsilon. Like Make, Ant is a tool focused on automating the

execution of processes such as program builds. Unlike Make, Ant defines processes using

XML buildfiles with sets of interrelated targets. Each target contains in turn a sequence of

tasks. Many Ant tasks and Ant-based tools already exist, and it is easy to create a new Ant

task.

Among these three approaches, EUnit follows the last one. Ant tasks take care of model

setup and management, and tests are written in EOL and executed by a new test runner,

written from the ground up.

15.2 Test Organization

EUnit has a rich data model: test suites are organized as trees of tests, and each test is

divided into many parts which can be extended by the user. This section is dedicated to

describing how test suites and tests are organized. The next section indicates how they

are written.

15.2.1 Test Suites

EUnit test suites are organized as trees: inner nodes group related test cases and define

data bindings. Leaf nodes define model bindings and run the test cases.

Data bindings repeat all test cases with different values in one or more variables. They

can implement parametric testing, as in JUnit 4. EUnit can nest several data bindings,

running all test cases once for each combination.

Model bindings are specific to EUnit: they allow developers to repeat a single test

case with different subsets of models. Data and model bindings can be combined. One

204

root

data
x = 1

test A

model
“X”

model
“Y”

test B

data
x = 2

test A

model
“X”

model
“Y”

test B

Figure 15.1: Example of an EUnit test tree

interesting approach is to set the names of the models to be used in the model binding

from the data binding, as a quick way to try several test cases with the same subsets of

models.

Figure 15.1 shows an example of an EUnit test tree: nodes with data bindings are

marked with data, and nodes with model bindings are marked with model. EUnit will

perform a preorder traversal of this tree, running the following tests:

1. A with x = 1 and model X.

2. A with x = 1 and model Y.

3. B with x = 1 and both models.

4. A with x = 2 and model X.

5. A with x = 2 and model Y.

6. B with x = 2 and both models.

Optionally, EUnit can filter tests by name, running only A or B. Similarly to JUnit, EUnit

logs start and finish times for each node in the tree, so the most expensive test cases can be

quickly detected. However, EUnit logs CPU time1 in addition to the usual wallclock time.

Parametric testing is not to be confused with theories [49]: both repeat a test case

with different values, but results are reported quite differently. While parametric testing

produces separate test cases with independent results, theories produce aggregated tests

which only pass if the original test case passes for every data point. Figure 15.2 illustrates

these differences. EUnit does not support theories yet: however, they can be approximated

with data bindings.
1CPU time only measures the time elapsed in the thread used by EUnit, and is more stable with varying

system load in single-threaded programs.

205

root

data1

test1 test2

data2

test1 test2

(a) Parametric testing

root

test1

data1 data2

test2

data1 data2

(b) Theories

Figure 15.2: Comparison between parametric testing and theories

15.2.2 Test Cases

The execution of a test case is divided into the following steps:

1. Apply the data bindings of its ancestors.

2. Run the model setup sections defined by the user.

3. Apply the model bindings of this node.

4. Run the regular setup sections defined by the user.

5. Run the test case itself.

6. Run the teardown sections defined by the user.

7. Tear down the data bindings and models for this test.

An important difference between JUnit and EUnit is that setup is split into two parts:

model setup and regular setup. This split allows users to add code before and after model

bindings are applied. Normally, the model setup sections will load all the models needed by

the test suite, and the regular setup sections will further prepare the models selected by the

model binding. Explicit teardown sections are usually not needed, as models are disposed

automatically by EUnit. EUnit includes them for consistency with the xUnit frameworks.

Due to its focus on model management, model setup in EUnit is very flexible. Devel-

opers can combine several ways to set up models, such as model references, individual

Apache Ant [35] tasks, Apache Ant targets or Human-Usable Text Notation (HUTN) [50]

fragments.

A test case may produce one among several results. SUCCESS is obtained if all asser-

tions passed and no exceptions were thrown. FAILURE is obtained if an assertion failed.

ERROR is obtained if an unexpected exception was thrown while running the test. Finally,

tests may be SKIPPED by the user.

206

15.3 Test Specification

In the previous section, we described how test suites and test cases are organized. In this

section, we will show how to write them.

As discussed before, after evaluating several approaches, we decided to combine the

expressive power of EOL and the extensibility of Apache Ant. For this reason, EUnit test

suites are split into two files: an Ant buildfile and an EOL script with some special-purpose

annotations. The next subsections describe the contents of these two files and revisit the

previous example with EUnit.

15.3.1 Ant Buildfile

EUnit uses standard Ant buildfiles: running EUnit is as simple as using its Ant task. Users

may run EUnit more than once in a single Ant launch: the graphical user interface will

automatically aggregate the results of all test suites.

EUnit Invocations

An example invocation of the EUnit Ant task using the most common features is shown

in Listing 15.1. Users will normally only use some of these features at a time, though.

Optional attributes have been listed between brackets. Some nested elements can be re-

peated 0+ times (*) or 0-1 times (?). Valid alternatives for an attribute are separated with

|.

1 <epsilon.eunit src="..."

2 [failOnErrors="..."]

3 [package=".."]

4 [toDir="..."]

5 [report="yes|no"]>

6 (<model ref="OldName" [as="NewName"]/>)*

7 (<uses ref="x" [as="y"] />)*

8 (<exports ref="z" [as="w"] />)*

9 (<parameter name="myparam" value="myvalue" />)*

10 (<modelTasks><!-- Zero or more Ant tasks --></modelTasks>)?

11 </epsilon.eunit>

Listing 15.1: Format of an invocation of the EUnit Ant task

The EUnit Ant task is based on the Epsilon abstract executable module task (see Sec-

tion 14.4.7), inheriting some useful features. The attribute src points to the path of the

EOL file, and the optional attribute failOnErrors can be set to false to prevent EUnit

207

from aborting the Ant launch if a test case fails. EUnit also inherits support for importing

and exporting global variables through the <uses> and <exports> elements: the original

name is set in ref, and the optional as attribute allows for using a different name. For

receiving parameters as name-value piars, the <parameter> element can be used.

Model references (using the <model> nested element) are also inherited from the

Epsilon abstract executable module task. These allow model management tasks to refer by

name to models previously loaded in the Ant buildfile. However, EUnit implicitly reloads

the models after each test case. This ensures that test cases are isolated from each other.

The EUnit Ant task adds several new features to customize the test result reports and

perform more advanced model setup. By default, EUnit generates reports in the XML

format of the Ant <junit> task. This format is also used by many other tools, such as the

TestNG unit testing framework [51], the Jenkins continuous integration server [52] or the

JUnit Eclipse plug-ins. To suppress these reports, report must be set to no.

By default, the XML report is generated in the same directory as the Ant buildfile, but

it can be changed with the toDir attribute. Test names in JUnit are formed by its Java

package, class and method: EUnit uses the filename of the EOL script as the class and the

name of the EOL operation as the method. By default, the package is set to the string

“default”: users are encouraged to customize it with the package attribute.

The optional <modelTasks> nested element contains a sequence of Ant tasks which will

be run after reloading the model references and before running the model setup sections

in the EOL file. This allows users to run workflows more advanced than simply reloading

model references, such as the one in Listing 15.5.

Helper Targets

Ant buildfiles for EUnit may include helper targets. These targets can be invoked using

runTarget("targetName") from anywhere in the EOL script. Helper targets are quite

versatile: called from an EOL model setup section, they allow for reusing model loading

fragments between different EUnit test suites. They can also be used to invoke the model

management tasks under test. Listing 15.5 shows a helper target for an ETL transforma-

tion, and listing 15.9 shows a helper target for an ATL transformation.

15.3.2 EOL script

The Epsilon Object Language script is the second half of the EUnit test suite. EOL annota-

tions are used to tag some of the operations as data binding definitions (@data or @Data),

additional model setup sections (@model/@Model), test setup and teardown sections

208

(@setup/@Before and @teardown/@After) and test cases (@test/@Test). Suite

setup and teardown sections can also be defined with @suitesetup/@BeforeClass

and @suiteteardown/@AfterClass annotations: these operations will be run before

and after all tests, respectively.

Data bindings

Data bindings repeat all test cases with different values in some variables. To define a

data binding, users must define an operation which returns a sequence of elements and

is marked with @data variable. All test cases will be repeated once for each element

of the returned sequence, setting the specified variable to the corresponding element.

Listing 15.2 shows two nested data bindings and a test case which will be run four times:

with x=1 and y=5, x=1 and y=6, x=2 and y=5 and finally x=2 and y=6. The example

shows how x and y could be used by the setup section to generate an input model for the

test. This can be useful if the intent of the test is ensuring that a certain property holds in

a class of models, rather than a single model.

1 @data x

2 operation firstLevel() { return 1.to(2); }

3

4 @data y

5 operation secondLevel() { return 5.to(6); }

6

7 @setup

8 operation generateModel() { -* generate model using x and y *- }

9

10 @test

11 operation mytest() { -* test with the generated model *- }

Listing 15.2: Example of a 2-level data binding

Alternatively, if both x and y were to use the same sets of values, we could add two

@data annotations to the same operation. For instance, Listing 15.3 shows how we could

test with 4 cases: x=1 and y=1, x=1 and y=2, x=2 and y=1 and x=2 and y=2.

1 @data x

2 @data y

3 operation levels() { return 1.to(2); }

4

5 @setup

6 operation generateModel() { -* generate model using x and y *- }

7

8 @test

209

1 $with Map {"" = "A", "Other" = "B"}
2 $with Map {"" = "B", "Other" = "A"}
3 @test
4 operation mytest() {
5 -* use the default and Other models, while
6 keeping the rest as is *-
7 }
8

9 $onlyWith Map { "Model" = "A" }
10 $onlyWith Map { "Model" = "B" }
11 @test
12 operation mytest2() {
13 -- first time: A as ’Model’, B is unavailable
14 -- second time: B as ’Model’, A is unavailable
15 }

Listing 15.4: Examples of model bindings

9 operation mytest() { -* test with the generated model *- }

Listing 15.3: Example of reusing the same operation for several data bindings

Model bindings

Model bindings repeat a test case with different subsets of models. They can be defined

by annotating a test case with $with map or $onlyWith map one or more times, where

map is an EOL expression that produces a MAP. For each key-value pair key = value,

EUnit will rename the model named value to key. The difference between $with and

$onlyWith is how they handle the models not mentioned in the MAP: $with will pre-

serve them as is, and $onlyWithwill make them unavailable during the test. $onlyWith

is useful for tightly restricting the set of available models in a test and for avoiding am-

biguous type references when handling multiple models using the same metamodel.

Listing 15.4 shows two tests which will be each run twice. The first test uses $with,

which preserves models not mentioned in the MAP: the first time, model “A” will be the

default model and model “B” will be the “Other” model, and the second time, model “B”

will be the default model and model “A” will be the “Other” model. The second test uses

two $onlyWith annotations: on the first run, “A” will be available as “Model” and “B” will

not unavailable, and on the second run, only “B” will be available as “Model” and “A” will

be unavailable.

210

Additional variables and built-in operations

EUnit provides several variables and operations which are useful for testing. These are

listed in Table 15.1.

Table 15.1: Extra operations and variables in EUnit

Signature Description

runTarget(name : String) Runs the specified target of the Ant buildfile which

invoked EUnit.

exportVariable(name : String) Exports the specified variable, to be used by another

executable module (see Section 14.4.7).

useVariable(name : String) Imports the specified variable, which should have

been previously exported by another executable

module (see Section 14.4.7).

loadHutn(name : String, hutn :

String)

Loads an EMF model with the specified name, by

parsing the second argument as an HUTN [50] frag-

ment.

antProject :

org.apache.tools.ant.Project

Global variable which refers to the Ant project being

executed. This can be used to create and run Ant

tasks from inside the EOL code.

Assertions

EUnit implements some common assertions for equality and inequality, with special ver-

sions for comparing floating-point numbers. EUnit also supports a limited form of ex-

ception testing with assertError, which checks that the expression inside it throws an

exception. Custom assertions can be defined by the user with the fail operation, which

fails a test with a custom message. The available assertions are shown in Table 15.2.

Table 15.3 lists the available option keys which can be used with the model equality asser-

tions, by comparator.

211

Table 15.2: Assertions in EUnit

Signature Description

assertEqualDirectories(

expectedPath : String,

obtainedPath : String)

Fails the test if the contents of the directory in ob-
tainedFile differ from those of the directory in ex-
pectedPath. Directory comparisons are performed

on recursive snapshots of both directories.

assertEqualFiles(

expectedPath : String,

obtainedPath : String)

Fails the test if the contents of the file in obtained-
Path differ from those of the file in expectedPath.

File comparisons are performed on snapshots of

both files.

assertEqualModels(

[msg : String,]

expectedModel : String,

obtainedModel : String

[, options : Map])

Fails the test with the optional message msg if the

model named obtainedModel is not equal to the

model named expectedModel. Model comparisons

are performed on snapshots of the resource sets of

both models. During EMF comparisons, XMI iden-

tifiers are ignored. Additional comparator-specific

options can be specified through options.

assertEquals(

[msg : String,]

expected : Any,

obtained : Any)

Fails the test with the optional message msg if the

values of expected and obtained are not equal.

assertEquals(

[msg : String,]

expected : Real,

obtained : Real,

ulps : Integer)

Fails the test with the optional message msg if the

values of expected and obtained differ in more than

ulps units of least precision. See this site for de-

tails.

assertError(expr : Any) Fails the test if no exception is thrown during the

evaluation of expr.

assertFalse(

[msg : String,]

cond : Boolean)

Fails the test with the optional message msg if

cond is true. It is a negated version of assert-

True.

212

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html#ulp(double)

assertLineWithMatch(

[msg : String,]

path : String,

regexp : String)

Fails the test with the optional message msg if the

file at path does not have a line containing a sub-

string matching the regular expression regexp2.

assertMatchingLine(

[msg : String,]

path : String,

regexp : String)

Fails the test with the optional message msg if the

file at path does not have a line that matches the

regular expression regexp3 from start to finish.

assertNotEqualDirectories(

expectedPath : String,

obtainedPath : String)

Negated version of assertEqualDirectories.

assertNotEqualFiles(

expectedPath : String,

obtainedPath : String)

Negated version of assertEqualFiles.

assertNotEqualModels(

[msg : String,]

expectedModel : String,

obtainedModel : String)

Negated version of assertNotEqualModels.

assertNotEquals(

[msg : String,]

expected : Any,

obtained : Any)

Negated version of assertEquals([msg : String,]

expected : Any, obtained : Any).

assertNotEquals(

[msg : String,]

expected : Real,

obtained : Real,

ulps : Integer)

Negated version of assertEquals([msg : String,]

expected : Real, obtained : Real, ulps : Integer).

assertTrue(

[msg : String,]

cond : Boolean)

Fails the test with the optional message msg if

cond is false.

fail(msg : String) Fails a test with the message msg.

2See JAVA.UTIL.REGEX.PATTERN for details about the accepted syntax for regular expressions.
3See footnote for assertLineWithMatch for details about the syntax of the regular expressions.

213

Table 15.3: Available options by model comparator

Comparator and key Usage

EMF, “whitespace” When set to “ignore”, differences in EString

attribute values due to whitespace will be ig-

nored. Disabled by default.

EMF, “ignoreAttributeValueChanges” Can contain a Sequence of strings of the

form “package.class.attribute”. Differences in

the values for these attributes will be ignored.

However, if the attribute is set on one side and

not on the other, the difference will be reported

as normal. Empty by default.

EMF, “unorderedMoves” When set to “ignore”, differences in the order

of the elements within an unordered ERefer-

ence. Enabled by default.

More importantly, EUnit implements specific assertions for comparing models, files and

trees of files. Model comparison is not implemented by the assertions themselves: it is an

optional service implemented by some EMC drivers. Currently, EMF models will auto-

matically use EMF Compare as their comparison engine. The rest of the EMC drivers do

not support comparison yet. The main advantage of having an abstraction layer imple-

ment model comparison as a service is that the test case definition is decoupled from the

concrete model comparison engine used.

Model, file and directory comparisons take a snapshot of their operands before com-

paring them, so EUnit can show the differences right at the moment when the comparison

was performed. This is especially important when some of the models are generated on

the fly by the EUnit test suite, or when a test case for code generation may overwrite the

results of the previous one.

Figure 15.3 shows a screenshot of the EUnit graphical user interface. On the left, an

Eclipse view shows the results of several EUnit test suites. We can see that the load-

models-with-hutn suite failed. The Compare button to the right of “Failure Trace” can

be pressed to show the differences between the expected and obtained models, as shown

on the right side. EUnit implements a pluggable architecture where difference viewers are

automatically selected based on the types of the operands. There are difference viewers

for EMF models, file trees and a fallback viewer which converts both operands to strings.

214

Fi
gu

re
15

.3
:

Sc
re

en
sh

ot
of

th
e

EU
ni

t
gr

ap
hi

ca
lu

se
r

in
te

rf
ac

e

215

15.4 Examples

15.4.1 Models and Tasks in the Buildfile

After describing the basic syntax, we will show how to use EUnit to test an ETL transfor-

mation.

The Ant buildfile is shown in Listing 15.5. It has two targets: run-tests (lines 2–19)

invokes the EUnit suite, and tree2graph (lines 23–28) is a helper target which transforms

model “Tree” into model “Graph” using ETL. The <modelTasks> nested element is used to

load the input, expected output and output EMF models. “Graph” is loaded with read set to

false: the model will be initially empty, and will be populated by the ETL transformation.

1 <project>

2 <target name="run-tests">

3 <epsilon.eunit src="test-external.eunit">

4 <modelTasks>

5 <epsilon.emf.loadModel name="Tree"

6 modelfile="tree.model"

7 metamodelfile="tree.ecore"

8 read="true" store="false"/>

9 <epsilon.emf.loadModel name="GraphExpected"

10 modelfile="graph.model"

11 metamodelfile="graph.ecore"

12 read="true" store="false"/>

13 <epsilon.emf.loadModel name="Graph"

14 modelfile="transformed.model"

15 metamodelfile="graph.ecore"

16 read="false" store="false"/>

17 </modelTasks>

18 </epsilon.eunit>

19 </target>

20 <target name="tree2graph">

21 <epsilon.etl src="${basedir}/resources/Tree2Graph.etl">

22 <model ref="Tree"/>

23 <model ref="Graph"/>

24 </epsilon.etl>

25 </target>

26 </project>

Listing 15.5: Ant buildfile for EUnit with <modelTasks> and a helper target

The EOL script is shown in Listing 15.6: it invokes the helper task (line 3) and checks

that the obtained model is equal to the expected model (line 4). Internally, EMC will

216

perform the comparison using EMF Compare.

1 @test

2 operation transformationWorksAsExpected() {

3 runTarget("tree2graph");

4 assertEqualModels("GraphExpected", "Graph");

5 }

Listing 15.6: EOL script using runTarget to run ETL

15.4.2 Models and Tasks in the EOL Script

In the previous section, the EOL file is kept very concise because the model setup and

model management tasks under test were specified in the Ant buildfile. In this section, we

will inline the models and the tasks into the EOL script instead.

The Ant buildfile is shown in Listing 15.7. It is now very simple: all it needs to do is

run the EOL script. However, since we will parse HUTN in the EOL script, we must make

sure the EPACKAGEs of the metamodels are registered.

1 <project>

2 <target name="run-tests">

3 <epsilon.emf.register file="tree.ecore"/>

4 <epsilon.emf.register file="graph.ecore"/>

5 <epsilon.eunit src="test-inlined.eunit"/>

6 </target>

7 </project>

Listing 15.7: Ant buildfile which only runs the EOL script

The EOL script used is shown in Listing 15.8. Instead of loading models through the

Ant tasks, the loadHutn operation has been used to load the models. The test itself is

almost the same, but instead of running a helper target, it invokes an operation which

creates and runs the ETL Ant task through the antProject variable provided by EUnit,

taking advantage of the support in EOL for invoking Java code through reflection.

1 @model

2 operation loadModels() {

3 loadHutn("Tree", ’@Spec {Metamodel {nsUri: "Tree" }}

4 Model {

5 Tree "t1" { label : "t1" }

6 Tree "t2" {

7 label : "t2"

8 parent : Tree "t1"

9 }

217

10 }

11 ’);

12

13 loadHutn("GraphExpected", ’@Spec {Metamodel {nsUri: "Graph"}}

14 Graph { nodes :

15 Node "t1" {

16 name : "t1"

17 outgoing : Edge { source : Node "t1" target : Node "t2" }

18 },

19 Node "t2" {

20 name : "t2"

21 }

22 }

23 ’);

24

25 loadHutn("Graph", ’@Spec {Metamodel {nsUri: "Graph"}}’);

26 }

27

28 @test

29 operation transformationWorksAsExpected() {

30 runETL();

31 assertEqualModels("GraphExpected", "Graph");

32 }

33

34 operation runETL() {

35 var etlTask := antProject.createTask("epsilon.etl");

36 etlTask.setSrc(new Native(’java.io.File’)(

37 antProject.getBaseDir(), ’resources/etl/Tree2Graph.etl’));

38 etlTask.createModel().setRef("Tree");

39 etlTask.createModel().setRef("Graph");

40 etlTask.execute();

41 }

Listing 15.8: EOL script with inlined models and tasks

15.5 Extending EUnit

EUnit is based on the Epsilon platform, but it is designed to accommodate other technolo-

gies. In this section we will explain several strategies to add support for these technologies

to EUnit.

EUnit uses the Epsilon Model Connectivity abstraction layer to handle different mod-

elling technologies. Adding support for a different modelling technology only requires

218

implementing another driver for EMC. Depending on the modelling technology, the driver

can provide optional services such as model comparison, caching or reflection. For more

details, the reader is suggested to consult Chapter 2.

EUnit uses Ant as a workflow language: all model management tasks must be exposed

through Ant tasks. It is highly encouraged, however, that the Ant task is aware of the

EMC model repository linked to the Ant project. Otherwise, users will have to shuffle the

models out from and back into the repository between model management tasks. As an

example, a helper target for an ATL [6] transformation with the existing Ant tasks needs

to:

1. Save the input model in the EMC model repository to a file, by invoking the <ep-
silon.storeModel> task.

2. Load the metamodels and the input model with <atl.loadModel>.

3. Run the ATL transformation with <atl.launch>.

4. Save the result of the ATL transformation with <atl.saveModel>.

5. Load it into the EMC model repository with <epsilon.emf.loadModel>.

Listing 15.9 shows the Ant buildfile which would be required for running these steps,

showing that while EUnit can use the existing ATL tasks as-is, the required helper task is

quite longer than the one in Listing 15.5. Ideally, Ant tasks should be adapted or wrapped

to use models directly from the EMC model repository.

1 <project>

2 <!-- ... omitted ... -->

3 <target name="atl">

4 <!-- Create temporary files for input and output models -->

5 <tempfile property="atl.temp.srcfile" />

6 <tempfile property="atl.temp.dstfile" />

7

8 <!-- Save input model to a file -->

9 <epsilon.storeModel model="Tree"

10 target="${atl.temp.srcfile}" />

11

12 <!-- Load the metamodels and the source model -->

13 <atl.loadModel name="TreeMM" metamodel="MOF"

14 path="metamodels/tree.ecore" />

15 <atl.loadModel name="GraphMM" metamodel="MOF"

16 path="metamodels/graph.ecore" />

219

17 <atl.loadModel name="Tree" metamodel="TreeMM"

18 path="${atl.temp.srcfile}" />

19

20 <!-- Run ATL and save the model -->

21 <atl.launch path="transformation/tree2graph.atl">

22 <inmodel name="IN" model="Tree" />

23 <outmodel name="OUT" model="Graph" metamodel="GraphMM" />

24 </atl.launch>

25 <atl.saveModel model="Graph" path="${atl.temp.dstfile}" />

26

27 <!-- Load it back into the EUnit suite -->

28 <epsilon.emf.loadModel name="Graph"

29 modelfile="${atl.temp.dstfile}"

30 metamodeluri="Graph"

31 read="true" store="false" />

32

33 <!-- Delete temporary files -->

34 <delete file="${atl.temp.srcfile}" />

35 <delete file="${atl.temp.dstfile}" />

36 </target>

37 </project>

Listing 15.9: Testing an ATL model transformation with EUnit

Another advantage in making model management tasks EMC-aware is that they can

easily “export” their results as models, making them easier to test. For instance, the EVL

Ant task allows for exporting its results as a model by setting the attribute exportAsModel
to true, as mentioned in Section 14.5.2. This way, EOL can query the results as any

regular model (see Listing 15.10). This is simpler than transforming the validated model

to a problem metamodel, as suggested in [53]. The example in Listing 15.10 checks that

a single warning was produced due to the expected rule (LabelsStartWithT) and the

expected model element.

1 @test

2 operation valid() {

3 var tree := new Tree!Tree;

4 tree.label := ’1n’;

5 runTarget(’validate-tree’);

6 var errors := EVL!EvlUnsatisfiedConstraint.allInstances;

7 assertEquals(1, errors.size);

8 var error := errors.first;

9 assertEquals(tree, error.instance);

10 assertEquals(false, error.constraint.isCritique);

11 assertEquals(’LabelsStartWithT’, error.constraint.name);

220

12 }

Listing 15.10: Testing an EVL model validation with EUnit

15.6 Summary

This chapter has presented EUnit, an unit testing framework specialized on testing model

management tasks, such as model-to-model transformations, model-to-text transforma-

tions and model validations. Section 15.1 has presented the motivation for creating EUnit.

Section 15.2 has described the data model used by EUnit, and the steps involved in run-

ning a test. Section 15.3 has specified how tests in EUnit are written. Section 15.4 has

shown two examples that test the same ETL transformation using different EUnit con-

structs. Finally, Section 15.5 suggests how to extend EUnit to handle additional modelling

and model management technologies.

221

Bibliography

[1] Object Management Group. UML 2.0 OCL Specification.

http://www.omg.org/docs/ptc/03-10-14.pdf.

[2] Craig Larman. Applying UML and Patterns : An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development. Prentice Hall PTR, 3rd edition, October

2004.

[3] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2 edition, 1997.

[4] Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. On the Evolution of

OCL for Capturing Structural Constraints in Modelling Languages. In Proc. Dagstuhl
Workshop on Rigorous Methods for Software Construction and Analysis, 2008.

[5] Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. The Epsilon Trans-

formation Language. In Proc. 1st International Conference on Model Transformation,

Zurich, Switzerland, July 2008.

[6] Frédéric Jouault and Ivan Kurtev. Transforming Models with the ATL. In Jean-

Michel Bruel, editor, Proceedings of the Model Transformations in Practice Workshop
at MoDELS 2005, volume 3844 of LNCS, pages 128–138, Montego Bay, Jamaica,

October 2005.

[7] Object Management Group. MOF QVT Final Adopted Specification.

http://www.omg.org/cgi-bin/doc?ptc/05-11-01.pdf.

[8] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-

proaches. In OOPSLA ’03 Workshop on Generative Techniques in the Context of Model-
Driven Architecture, 2003.

[9] Jack Herrington. Code Generation in Action. Manning, 2003. ISBN: 1930110979.

223

[10] Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon Object

Language. In Proc. European Conference in Model Driven Architecture (EC-MDA) 2006,

volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July 2006.

[11] George A. Miller. WordNet: a lexical database for English. Communications of ACM,

38(11):39–41, 1995.

[12] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys
(CSUR), 33(1):31–88, 2001.

[13] SimMetrics Similarity Metrics Library. http://www.dcs.shef.ac.uk/~sam/simmetrics.html.

[14] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-

sals. Soviet Physics Doklady, 10:707–710, 1966.

[15] Object Management Group, Jishnu Mukerji, Joaquin Miller. MDA Guide version

1.0.1, 2001. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

[16] Rachel A. Pottinger and Philip A. Bernstein. Merging Models Based on Given Cor-

respondences. Technical Report UW-CSE-03-02-03, University of Washington, 2003.

Technical report.

[17] C. Batini, M. Lenzerini, S.B. Navathe. A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Computing Surveys, 18(4):323–364, December

1986.

[18] Kim Letkeman. Comparing and merging UML models in IBM Ratio-

nal Software Architect. IBM Developerworks, July 2005. http://www-

128.ibm.com/developerworks/rational/library/05/712_comp.

[19] S. Melnik, E. Rahm and P. A. Bernstein. Rondo: A Programming Platform for Generic

Model Management. In Proc. SIGMOD, pages 193–204, 2003.

[20] J. Sprinkle. Metamodel Driven Model Migration. PhD thesis, Vanderbilt University,

TN, USA, 2003.

[21] M. Herrmannsdoerfer, S. Benz, and E. Juergens. Automatability of coupled evolution

of metamodels and models in practice. In K. Czarnecki, I. Ober, J. Bruel, A. Uhl,

and M. Völter, editors, Proc. International Conference on Model Driven Engineering
Languages and Systems (MoDELS), volume 5301 of Lecture Notes in Computer Science,

pages 645–659. Springer, 2008.

224

[22] L.M Rose, D.S. Kolovos, R.F Paige, and F.A.C. Polack. Epsilon Flock: A model migra-

tion language. Software and Systems Modeling [accepted and to appear], 2012.

[23] L.M. Rose. Structures and Processes for Managing Model-Metamodel Co-evolution. PhD

thesis, University of York, United Kingdom, 2011.

[24] L.M. Rose, M. Herrmannsdoerfer, J.R. Williams, D.S. Kolovos, K. Garcés, R.F. Paige,

and F.A.C. Polack. A comparison of model migration tools. In D.C. Petriu, N. Rou-

quette, and Ø. Haugen, editors, Proc. International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), Part I, volume 6394 of Lecture Notes in
Computer Science, pages 61–75. Springer, 2010.

[25] Taentzer, Gabriele. AGG: A Graph Transformation Environment for Modeling and

Validation of Software. In Pfaltz, John and Nagl, Manfred and Böhlen, Boris, ed-

itor, Applications of Graph Transformations with Industrial Relevance, volume 3062

of Lecture Notes in Computer Science, pages 446–453. Springer Berlin / Heidelberg,

2004.

[26] Biermann, Enrico and Ermel, Claudia and Taentzer, Gabriele. Precise Semantics

of EMF Model Transformations by Graph Transformation. In Proceedings of the 11th
international conference on Model Driven Engineering Languages and Systems, MoDELS

’08, pages 53–67, Berlin, Heidelberg, 2008. Springer-Verlag.

[27] Edgar Jakumeit, Sebastian Buchwald, Moritz Kroll. GrGen.NET. International Jour-
nal on Software Tools for Technology Transfer (STTT), 12(3):263–271, July 2010.

[28] Andras Balogh, Daniel Varro. Advanced model transformation language constructs

in the VIATRA2 framework. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 1280–1287, New York, NY, USA, 2006. ACM Press.

[29] Bergmann, Gábor and Ujhelyi, Zoltán and Ráth, István and Varró, Dániel. A graph

query language for EMF models. In Proceedings of the 4th international conference
on Theory and practice of model transformations, ICMT’11, pages 167–182, Berlin,

Heidelberg, 2011. Springer-Verlag.

[30] Maged Elaasar, Lionel C. Briand, and Yvan Labicie. An Approach

to Detecting Design Patterns in MOF-Based Domain-Specific Models

with QVT. Technical Report TR-SCE-10-02, Carleton University, 2010.

http://squall.sce.carleton.ca/pubs/tech_report/TR-SCE-10-02.pdf.

225

[31] Richard F. Paige and Dimitrios S. Kolovos and Louis M. Rose and Nicholas Drivalos

and Fiona A.C. Polack. The Design of a Conceptual Framework and Technical Infras-

tructure for Model Management Language Engineering. IEEE International Confer-
ence on Engineering of Complex Computer Systems, 0:162–171, 2009.

[32] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and

Jean-Marie Mottu. Barriers to systematic model transformation testing. Communica-
tions of the ACM, 53:139–143, June 2010.

[33] A. Ferdjoukh, A. Baert, E. Bourreau, A. Chateau, R. Coletta, and C. Nebut. Instan-

tiation of Meta-models Constrained with OCL - A CSP Approach. pages 213–222.

SCITEPRESS, 2015.

[34] Dimitrios S. Kolovos, Richard F. Paige, Louis M. Rose, Fiona A.C. Polack. Unit Testing

Model Management Operations. In Proc. 5th Workshop on Model Driven Engineering
Verification and Validation (MoDeVVa), IEEE ICST, Lillehammer, Norway, April 2008.

[35] The Apache Ant Project. http://ant.apache.org.

[36] Steve Holzner. Ant: The Definitive Guide, Second Edition. O’Reilly, April 2005. ISBN

0-596-00609-8.

[37] GNU Make, Official Web-Site. http://www.gnu.org/software/make/.

[38] Apache Maven Project. http://maven.apache.org.

[39] Julien Dubois. Master and Commander. Mastering J2EE Application

Development Series. http://www.oracle.com/ technology/pub/articles/mas-

terj2ee/files/j2ee2.pdf.

[40] ANT External Tools and Tasks. http://ant.apache.org/external.html.

[41] Atlas Model Management Architecture. http://www.sciences.univ-

nantes.fr/lina/atl/AMMAROOT/.

[42] Fréderic Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the Specification of

Textual Concrete Syntaxes in Model Engineering. In Proc GPCE’06: Proceedings of the
fifth international conference on Generative programming and Component Engineering,

pages 249–254, 2006.

[43] Michael Guttman and John Parodi. Real-Life MDA: Solving Business Problems with
Model Driven Architecture. Morgan Kaufmann, first edition, December 2006.

226

[44] Ragnhild Straeten, Tom Mens, and Stefan Baelen. Challenges in Model-Driven soft-

ware engineering. In Michel R. V. Chaudron, editor, Models in Software Engineering,

volume 5421 of LNCS, pages 35–47. Springer-Verlag, Berlin, Germany, 2009.

[45] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Model transformation testing:

oracle issue. In Proc. of the 2008 IEEE Int. Conf. on Software Testing Verification and
Validation, pages 105–112, Lillehammer, Norway, April 2008.

[46] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, second edition, December 2008.

[47] openArchitectureWare MDSD platform, Official Web-Site.

http://www.openarchitectureware.org/.

[48] Kent Beck. JUnit.org, April 2011.

[49] David Saff. Theory-infected: or how I learned to stop worrying and love universal

quantification. In Companion to the 22nd ACM SIGPLAN Conf. on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 846–847, New York, NY,

USA, 2007. ACM.

[50] Object Management Group. Human-Usable Textual Notation v1.0, 2004.

http://www.omg.org/cgi-bin/doc?formal/2004-08-01.

[51] Cédric Beust. TestNG, March 2011.

[52] Kohsuke Kawaguchi. Jenkins CI, April 2011.

[53] Frédéric Jouault, Jean Bezívin. Using ATL for Checking Models. In Proc. International
Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia, September

2005.

227

	Contents
	List of Figures
	List of Tables
	Introduction
	What is Epsilon?
	How To Read This Book
	Questions and Feedback
	Additional Resources
	Epsilon Website
	EpsilonLabs
	Twitter

	The Epsilon Model Connectivity Layer (EMC)
	The IModel interface
	Loading and Persistence
	Type-related Services
	Ownership
	Creation, Deletion and Modifications
	The IModelTransactionSupport interface
	The ModelRepository class
	The ModelGroup class
	Assumptions about the underlying modelling technologies

	The Epsilon Object Language (EOL)
	Module Organization
	User-Defined Operations
	Annotations
	Pre/post conditions in user-defined operations
	Operation Result Caching

	Types
	Primitive Types
	Collections and Maps
	Native Types
	Model Element Types

	Expressions
	Literal Values
	Feature Navigation
	Arithmetical and Comparison Operators
	Logical Operators
	Enumerations

	Statements
	Variable Declaration Statement
	Assignment Statement
	Special Assignment Statement
	If Statement
	Switch Statement
	While Statement
	For Statement
	Break, BreakAll and Continue Statements
	Throw Statement
	Transaction Statement

	Extended Properties
	Context-Independent User Input
	Task-Specific Languages

	The Epsilon Validation Language (EVL)
	Motivation
	Limited user feedback
	No support for warnings/critiques
	No support for dependent constraints
	Limited flexibility in context definition
	No support for repairing inconsistencies
	No support for inter-model constraints

	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Capturing Dependencies Between Invariants

	Intra-Model Consistency Checking Example
	Scenario: The Singleton Pattern
	Using OCL to Express the Invariants
	Using EVL to Express the Invariants

	Inter-Model Consistency Checking Example
	Summary

	The Epsilon Transformation Language (ETL)
	Style
	Source and Target Models
	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Rule and Block Overriding
	Rule Execution Scheduling
	Source Elements Resolution
	Overriding the semantics of the EOL SpecialAssignmentOperator

	Interactive Transformations
	Summary

	The Epsilon Wizard Language (EWL)
	Motivation
	Automating the Construction and Refactoring Process

	Update Transformations in the Small
	Structure of Wizards
	Capabilities of Wizards

	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Examples
	Summary

	The Epsilon Generation Language (EGL)
	Abstract Syntax
	Concrete Syntax
	Comments and Markers
	User-Defined Operations

	The OutputBuffer
	Co-ordination
	The Template type
	The TemplateFactory object
	An Example of Co-ordination with EGL
	Customising the Co-ordination Engine
	Summary

	Merge Engine
	Formatters
	Using a Formatter
	Implementing a Custom Formatter

	Traceability

	The Epsilon Comparison Language (ECL)
	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Rule and Block Overriding
	Comparison Outcome
	Rule Execution Scheduling
	The matches() built-in operation
	Cyclic invocation of matches()

	Fuzzy and Dictionary-based String Matching
	Interactive Matching
	Exploiting the Comparison Outcome

	The Epsilon Merging Language (EML)
	Motivation
	Phases of Model Merging
	Relationship between Model Merging and Model Transformation

	Realizing a Model Merging Process with Epsilon
	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Rule and Block Overriding
	Rule Scheduling
	Rule Applicability
	Source Elements Resolution

	Homogeneous Model Merging Example

	Epsilon Flock for Model Migration
	Background and Motivation
	Abstract Syntax
	Concrete Syntax
	Execution Semantics
	Example
	Limitations and Scope
	Limitations
	Scope

	Further Reading

	The Epsilon Pattern Language (EPL)
	Background and Motivation
	Syntax
	Negative Roles
	Optional and Active Roles
	Role Cardinality

	Execution Semantics
	Pattern Matching Output
	Interoperability with Other Model Management Tasks

	The Epsilon Model Generation Language (EMG)
	Background and Motivation
	Approaches to Model Generation

	Syntax
	EMG predefined operations

	Creating Model Elements
	Creating Model Links
	Meaningful Strings
	Values as a parameter
	Values as a model

	Implementing a New Task-Specific Language
	Identifying the need for a new language
	Eliciting higher-level constructs from recurring patterns
	Implement Execution Semantics and Scheduling
	Overriding Semantics

	Orchestration Workflow
	Motivation
	The ANT Tool
	Structure
	Concrete Syntax
	Extending ANT

	Integration Challenges
	Framework Design and Core Tasks
	The EpsilonTask task
	Model Loading Tasks
	Model Storing Task
	Model Disposal Tasks
	The StartTransaction Task
	The CommitTransaction and RollbackTransaction Tasks
	The Abstract Executable Module Task

	Model Management Tasks
	Generic Model Management Task
	Model Validation Task
	Model-to-Model Transformation Task
	Model Comparison Task
	Model Merging Task
	Model-to-Text Transformation Task
	Model Migration Task
	Pattern Matching Task

	Miscellaneous Tasks
	Java Class Static Method Execution Task
	Adding a new Model Management Task

	Chapter Summary

	The Epsilon Unit Testing Framework (EUnit)
	Motivation
	Common Issues
	Testing with JUnit
	Selected Approach

	Test Organization
	Test Suites
	Test Cases

	Test Specification
	Ant Buildfile
	EOL script

	Examples
	Models and Tasks in the Buildfile
	Models and Tasks in the EOL Script

	Extending EUnit
	Summary

	Bibliography

