
© 2002 IBM CorporationConfidential | Date | Other Information, if necessary© Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Tutorial: Eclipse APIs and Java 5

Boris Bokowski, John Arthorne, Jim des Rivières

IBM Rational Software, Ottawa Lab

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Tutorial schedule (provisional)

08:00-08:15 Welcome + Introduction

08:15-09:00 Recap: API Design

09:00-09:15 Autoboxing, Variable Arity

09:15-09:30 Enumerations

09:30-09:45 Annotations

09:45-10:00 Covariant Return Types

10:00-10:30 Break

10:30-11:00 Generifying Classes and Interfaces

11:00-11:30 Generifying Fields and Methods

11:30-12:00 Evolving Generic Types and Methods

12:00-12:30 New in 3.3: API tools

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

APIs and Java 5

 This is not a tutorial on Java 5 language features

 This is tutorial on impact of Java 5 language features on API design

 Ref: Evolving Java-based APIs, rev 1.1
 http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Language features added in Java 5

 Recap – new in JLS3
 Autoboxing
 Variable arity methods
 Enumerations
 Annotations
 Covariant return types
 Generic types

 Java Language Specification, Third edition (JLS3)
 Full text is available online
 http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

 JLS3 is the language spec underlying Java 5 (aka JDK 1.5)

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Language Compatibility

 Language is highly compatible with previous versions of Java
 All programs that compiled under JLS2 also compile under JLS2 with

the same meaning
 Exception: “enum” is no longer allowed as identifier

 Some program texts that did not compile under JLS2 are legal under
JL3

 Existing 1.4 class files will link and run as before with 1.5 class libraries

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

What would we like people to learn

 Appreciate the role of having strong API specifications
 View API from different perspectives

 Specification
 Implementer
 Client

 Make people aware of the danger of overspecification
 API is a cover story to prevent you from having to tell the truth

 Wiki hub for Eclipse API material
http://wiki.eclipse.org/index.php/API_Central

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Designing APIs == making laws

 Consider which side of road one drives on
 Think back to when there was no convention
 Slowdowns when oncoming carts meet
 Do I pass on (my) left or right?
 Individuals acting locally cannot improve things much
 Significant improvement requires convention
 Convention must be universally adopted to be effective
 Convention overrides desires of individuals
 Convention must choose left vs right
 Everyone passes on left would work fine
 Everyone passes on right would also work fine
 Convention must make arbitrary choice
 Once convention is in widespread use, passing speeds pick up
 Becomes downright dangerous to not follow convention
 Becomes important everyone knows about convention
 Becomes hard to rethink arbitrary choice once made

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Recap: API Design

My eyes are dim I cannot see.
I have not got my specs with me.
I have not got my specs with me.

---The Quartermaster's Song

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API specifications

 APIs are interfaces with specified and supported behavior

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API specs

 API specs play many key roles

A. Tell client what they need to know to use it

B. Tell an implementor how to implement it

C. Tell tester about key behaviors to test

D. Determines blame in event of failure

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Lessons learned

 API is not just public methods

 No specs. No API.

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

References

 Requirements for Writing Java API Specifications
http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html

 How to Write Doc Comments for the Javadoc Tool
http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html

http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html
http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Appropriate level of specification detail

 Is the specification too specific or detailed, making it difficult to evolve
later on?

 Is the spec too vague, making it difficult for clients to know the correct
usage?

 Is the API designed to be implemented or extended by clients?

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API Contract language

 The language used in an API contract is very important

 Changing a single word can completely alter the meaning of an API

 It is important for APIs to use consistent terminology so clients learn
what to expect

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API Contract language

 RFC on specification language: http://www.ietf.org/rfc/rfc2119.txt

 Must, must not, required, shall: it is a programmer error for callers
not to honor these conditions. If you don’t follow them, you’ll get a
runtime exception (or worse)

 Should, should not, recommended: Implications of not following
these conditions need to be specified, and clients need to understand
the trade-offs from not following them

 May, can: A condition or behavior that is completely optional

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API Contract language

Some Eclipse project conventions:

 Not intended: indicates that you won’t be prohibited from doing
something, but you do so at your own risk and without promise of
compatibility. Example: “This class is not intended to be subclassed”

 Fail, failure: A condition where a method will throw a checked
exception

 Long-running: A method that can take a long time, and should never
be called in the UI thread

 Internal use only: An API that exists for a special caller. If you’re not
that special caller, don’t touch it

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Specs for Subclassers

 Subclasses may
 "implement" - the abstract method declared on the subclass must be

implemented by a concrete subclass
 "extend" - the method declared on the subclass must invoke the method

on the superclass (exactly once)
 "re-implement" - the method declared on the subclass must not invoke

the method on the superclass
 "override" - the method declared on the subclass is free to invoke the

method on the superclass as it sees fit

 Tell subclasses about relationships between methods so that they
know what to override

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Compatibility

It’s the same old story
Everywhere I go,

I get slandered,
Libeled,

I hear words I never heard
In the bible

And I’m one step ahead of the shoe shine
Two steps away from the county line

Just trying to keep my customers satisfied,
Satisfied.

---Simon & Garfunkel, Keep the Customer Satisfied

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Compatibility

 Contract – Are existing contracts still tenable?

 Binary – Do existing binaries still run?

 Source – Does existing source code still compile?

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Contract compatibility

Before: After:

/**
 * Returns the current display.
 * @return the display; never null
 */
public Display getDisplay();

/**
 * Returns the current display, if any.
 * @return the display, or null if none
 */
public Display getDisplay();

• Not contract compatible for callers of getDisplay
• Contract compatible for getDisplay implementors

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Contract compatibility

 Weaken method preconditions – expect less of callers
 Compatible for callers; breaks implementors

 Strengthen method postconditions – promise more to callers
 Compatible for callers; breaks implementors

 Strenghten method preconditions – expect more of callers
 Breaks callers; compatible for implementors

 Weaken method postconditions – promise less to callers
 Breaks callers; compatible for implementors

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Binary compatibility lessons

 It is very difficult to determine if a change is binary compatible
 Binary compatibility and source compatibility can be very different
 You can’t trust the compiler to flag non-binary compatible changes

 Reference: Gosling, Joy, Steele, and Bracha, The Java Language
Specification, Third Edition, Addison-Wesley, 2005; chapter 13 Binary
Compatibility
http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html

 Reference: Evolving Java-based APIs, rev 1.1
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html
http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving APIs

 Techniques for evolving APIs

 Techniques for writing APIs that are evolvable

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Techniques for enabling API evolution

 Use abstract classes instead of interfaces for non-trivial types if clients
are allowed to implement/specialize

 Separate service provider interfaces from client interfaces

 Separate concerns for different service providers

 Hook methods

 Mechanisms for plugging in generic behavior (IAdaptable) or generic
state, such as getProperty() and setProperty() methods

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Autoboxing, Variable Arity

To avoid unexpected effects,
Feed your function the args it expects,

With an arity count
In the proper amount,

Or you'll find that your program objects.
--- mephistopheles, www.oedilf.com

If you have a procedure with 10 parameters,
you probably missed some.

Alan Perlis

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Auto-boxing

 Integer bigX = (Integer) 5; // boxing conversion
 Integer bigX = Integer.valueOf(5); // how it’s compiled

 Integer bigX = 5; // auto-boxing

 int littleX = (int) bigX; // unboxing conversion
 int littleX = bigX.intValue(); // how it’s compiled

 int littleX = bigX; // auto-unboxing

Language feature has no real impact on API design or evolution

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Variable arity methods

 void main(String… args) {…} // variable arity method
 void main(String[] args) {…} // how it’s compiled

 main("A", "B", "C“) // variable arity method invocation
 main(new String[] { "A", "B", "C“ }) // how it’s compiled

 Pros for use in APIs
 More convenient invocations for clients
 Works even better with auto-boxing

 Cons for use in APIs
 Hidden garbage array objects
 Even more hidden garbage with auto-boxing

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Introducing variable arity methods

1. void main(T… args) // variable arity method
2. void main(T[] args) // fixed arity method
3. void main(T a0) // fixed arity method

 Change T to T…
 Breaks compatibility

 Change T[] to T…
 Compatible
 Compiler warnings if method is overridden/implemented

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving variable arity methods

1. void main(T… args) // variable arity method
2. void main(T[] args) // fixed arity method
3. void main(T a0) // fixed arity method

 Change T… to T
 Breaks compatibility

 Change T… to T[]
 Breaks compatibility
 Binary compatible
 Not source code compatible - invocations may no longer compile

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Enumerations

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Enums

 Enumeration types are a class type with self-typed constants

public enum Direction = {NORTH, EAST, SOUTH, WEST};

 Direction.NORTH is of type Direction
 Constants are canonical instance - can be compared with ==

 Pros for use in APIs
 More strongly typed than ints

 Cons for use in APIs
 Less flexible than ints

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving enums

 Enum constant names are significant at runtime
 Direction.NORTH.name() returns “NORTH“
 Direction.valueOf(“NORTH“) returns Direction.NORTH

 Order of enum constants is significant at runtime
 Direction.values() returns new Direction[] { Direction.NORTH,

Direction.EAST, Direction.SOUTH, Direction.WEST) };
 Rename enum constant

 Breaks binary compatibility
 Delete enum constant

 Breaks binary compatibility
 Reorder enum constants

 Liable to break contact compatibility
 Add enum constant

 Liable to break contact compatibility

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Annotations

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Annotations

 Annotation types are special form of interface
 Methods are called elements

public @interface LongOp {} // marker annotation type
public @interface ServiceType { // simple annotation type
 enum Style { REST, RPC }
 Style value() default Style.REST;
}
public @interface Login { // annotation type
 String firstName();
 String lastName();
}
@ServiceType(ServiceType.Style.RPC) // annotation
public interface MyShop {
 @LongOp // annotation
 @Login(firstName=“Jayne”, firstName=“Daoust”) // annotation
 public void open();
 @LongOp // annotation
 public void close();
}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Annotations

 Impact on API design ??
 Use annotations to systematize and encode information about API

 Annotations are readable by
 Tools that analyze source code

 annotation.RetentionPolicy.SOURCE
 Tools that analyze class files

 annotation.RetentionPolicy.CLASS
 Program itself using reflection

 annotation.RetentionPolicy.RUNTIME

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving annotation types

 Annotation types - follow general guidelines for non-implementable interfaces

 Add annotation type element
 If element specifies default value

 Compatible
 If element does not specify default value

 Breaks compatibility
 Delete annotation type element

 Breaks compatibility
 Rename annotation type element

 Breaks compatibility
 Change type of annotation type element

 Breaks compatibility
 Add default class for annotation type element

 Compatible
 Change default clause for annotation type element

 Compatible
 Delete default clause for annotation type element

 Breaks compatibility

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving annotations

 Adding or removing annotations has no effect on the correct linkage of
class files by the Java virtual machine

 But…

 Annotations exist to be read via reflective APIs for manipulating
annotations

 No uniform answer as to what will happen if a given annotation is or is not
present on an API element (or non-API element, for that matter)

 Depends entirely on the specifics of the annotation and the mechanisms
that are processing those annotations

 Parties that declare annotation types should try to provide helpful
guidance for their customers

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generic Types

I like my lyrics to feel conversational and
truthful, as if we're having real talk.

I don't really like generic lyrics.
---Meredith Brooks

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generic Types

 Generic types are classes or interfaces with type variables

public class Stack<E> { // generic type
public void push(E element);
public E pop();

}

 Parameterized types supply actual type arguments
 Reference types only – no primitive types

Stack<String> stringStack // parameterized type
= new Stack<String>();

Stack<Date> integerStack // parameterized type
= new Stack<Date>();

stringStack.push(“A”);
String s1 = stringStack.pop();
String s1 = (String) stringStack.pop(); // how it’s compiled
stringStack.push(new Date()); // compile error
Integer i1 = stringStack.pop(); // compile error

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Type Bounds

 Type variables may have bounds

public class NumberStack<E extends Number> {
public void push(E element);
public E pop();

}

NumberStack<Integer> integerStack
= new NumberStack<Integer>();

NumberStack<Float> floatStack
= new NumberStack<Float>();

NumberStack<String> stringStack
= new NumberStack<String>(); // compile error

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Wildcard types

 Consider

interface Collection <E> {
boolean containsAll(Collection<> c);
...

}

Collection<Number> myCollection;
Collection<Integer> yourCollection;
myCollection.containsAll(yourCollection);

Compare:
 boolean containsAll(Collection c); // raw type
 boolean containsAll(Collection<Object> c); // too restrictive
 boolean containsAll(Collection<E> c); // too restrictive
 boolean containsAll(Collection<?> c); // just right

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generic Types

 Pros for use in APIs
 Permits strong typing in certain situations that would otherwise be loosely

typed
 More errors detected at compile-time type
 More convenient for callers
 More convenient for implementers

 Dovetail with Java Collections API

 Cons for use in APIs
 None if done well

 Neither Pro Nor Con
 Performance

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving Generified API
Add type parameter Breaks compatibility

(unless type was not generic)

Delete type parameter Breaks compatibility

Re-order type parameters Breaks compatibility

Rename type parameters Binary compatible

Add, delete, or change type
bounds of type parameters

Breaks compatibility

 We strongly recommend you get it right the first time
 As often the case with API design, there is no second chance

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Evolving APIs that use Generic Types

 Same rules as before:
 Changing an argument type is like removing a method and adding a new

one
 Same for return types

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generification

 Introducing generic types into an existing API

 Possible to preserve compatibility
 E.g., Java Collections API was generified in 1.5

 Language has special provisions for backwards compatibility

 Raw type – using generic type as if it were not generic
 List beatles = Arrays.asList(“John”, “Paul”, “George”, “Ringo”); // raw

 Raw types are discouraged – compiler warnings by default

 Compatibility between old and new is based on erasures

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

 The compiler replaces type variables so that all parameterized types
share the same class or interface at runtime

public class Stack<E> {
public void push(E Object element);
public E Object pop();

}

Stack<String> stringStack;
Stack<Integer> integerStack;

Erasures

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Converting Raw to Parameterized Types

 Applies if
 Raw types (e.g. Collections) appear in your API
 Conversion is contract-compatible

 Return types: making stronger promises, always possible
public Map getArgs() -> public Map<String, String> getArgs()

 Argument types: enforcing existing contracts at compile time
public void setArgs(Map m) -> public setArgs(Map<String, String> m)
 This is a binary compatible change (erasure is the same), BUT...
 Map<String, String> is not equivalent to “Map with String keys and values”
 Sometimes not easy to step up to stronger contract
 For example, it is easy if they create the map themselves, but hard to do if

they get it from somewhere else
 Be careful not to require too much from your clients

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Introducing Type Variables

 Applies if
 Your API is like the collection framework (e.g. container types), or
 You inherit from / delegate to a type that was generified, or
 java.lang.Object appears in your API but clients need to downcast

 Return types: Relieving clients from having to downcast
interface IObservableValue { Object getValue(); }

-> interface IObservableValue<V> { V getValue(); }

 Argument types: Enforcing contracts at compile time
interface IObservableValue { void setValue(Object value); }

-> interface IObservableValue<V> { void setValue(V value); }

 Don’t overdo it, generify cautiously
 Weigh type safety against complexity
 Be aware of ripple effect
 Problematic: Arrays, Fields

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Arrays and Generic Types Are Different

 String[] is a subtype of Object[], but
ArrayList<String> is not a subtype of ArrayList<Object>!

 Reason for this: Principle of substitutability
A is a subtype of B if B can be substituted whenever an A is expected

 Consider:
public static void someMethod(List<Object> someList) {
 someList.add(new Object());
}
List<String> stringList = new ArrayList<String>();
someMethod(stringList); type error

 Array types: String[] is a subtype of Object[], but you will get an
ArrayStoreException if you try to store an Object in an array that was
created as a String array

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Array Types in API and Generification

 class ArrayList<E> {
 ...
 E[] toArray() {
 // how to implement this?
 }
 E[] toArray(E[] es) {
 // here you can use:
 Array.newInstance(es.getClass().getComponentType(), size());
 }
}

 Solution:
 If arrays are pervasive in your API (as in Eclipse):

Do not generify types that appear as array component types in your API
 Otherwise, generify everything except problematic cases like the one

above

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generic Methods

 This sort API is not very useful to clients:
public static void sort(List<Object> list);
Why? Because e.g. List<String> is not a subtype of List<Object>,
clients would be overly constrained.

 Generic methods to the rescue:
class SortUtil {
 public <E> void sort(List<E> list) { ... }
}

 Can be invoked as follows:
List<String> stringList = ...;
SortUtil.<String>sort(stringList); (oftentimes, type parameter can be omitted)

 If the concrete type of E is not used in the body of sort(), you can write:
public static void sort(List<?> list) { ... }

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generic Methods and Type Bounds

 Generic method with type constraint:
class SortUtil {
 public <E extends Comparable> void sort(List<E> list) { ... }
}

 If E is not important in the body of sort:
class SortUtil {
 public void sort(List<? extends Comparable> list) { ... }
}
(remember that using List<Comparable> would be very restrictive for clients)

 However, consider this:
class SortUtil {
 public <E> void sort(List<E> list, Comparator<E> comparator) { ... }
}

 Requiring a Comparator<E> is restrictive, you should instead do this:
 public <E> void sort(List<E> list, Comparator<? super E> comparator)
{ ... }

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Hidden casts

 Not recommended:

class Wrapper<T> {
 protected T wrapped;
}
class FileWrapper
 extends Wrapper<File> {

 public void mkdirs() {
 if (wrapped != null)
 wrapped.mkdirs();
 }
 public void createNewFile() {
 if (wrapped != null)
 wrapped.createNewFile();
 }

}

 Will be translated to:

class Wrapper {
 protected Object wrapped;
}
class FileWrapper
 extends Wrapper {

 public void mkdirs() {
 if (wrapped != null)
 ((File)wrapped).mkdirs();
 }
 public void createNewFile() {
 if (wrapped != null)
 ((File)wrapped).createNewFile();
 }

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

More Resources about Java 5 and APIs

 EMF long talks on Tuesday and Wednesday

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API Tools

 Work in PDE Incubator to provide API tools
 Four general categories of tooling:

 API Comparison
 Bundle version checking
 Usage discovery
 Usage validation

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

API Comparison

 Create XML-based snapshot of the API of a given bundle or project
 Produce a report on API changes between two snapshots
 Identifies potentially breaking changes (not perfect, there are various

corner cases)
 Uses API difference analysis to suggest appropriate version number

changes

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Uses for API Comparison

 Catch breaking API changes early
 Helps in writing migration documentation for clients in cases where

breaking changes are necessary
 Useful as input for New & Noteworthy, API documentation

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

More information on API tools

 In CVS at dev.eclipse.org/cvsroot/eclipse/pde-incubator/api-tooling/
 http://wiki.eclipse.org/index.php/PDE_UI_Incubator_ApiTools

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Autobox/Arity Quiz 1: Is this compatible?

Before:

public class A {
public void foo(String... x) {
}

}

After:

public class A {
public void foo(String... x) {
}
public void foo(String x, String... y) {
}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Autobox/Arity Quiz 2: What does it print?

public class Sum {
public int length(int... x) {

return Arrays.asList(x).size();
}

public int length(String... x) {
return Arrays.asList(x).size();

}

public static void main(String[] arguments) {
System.out.print(new Sum().length(1, 2, 3, 4));
System.out.print(new Sum().length(“1”, “2”, “3”, “4”));

}
}

A) 11
B) 44
C) 14
D) ClassCastException

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 1: Is This Compatible?

Before:

public class A {
public void foo(Collection c) {…}

}

After:

public class A<T> {
public void foo(Collection<T> c) {…}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 2: Is This Compatible?

Before:

public class A {
public void foo(Collection<String> c) {…}

}

After:

public class A {
public void foo(Collection c) {…}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 3: Is This Compatible?

Before:

public class A {
public final void foo(Collection<String> c) {…}

}

After:

public class A<T> {
public final void foo(Collection<Object> c) {…}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 4: Is This Compatible?

Before:

public class A<T> {
public void foo(Collection<T> c) {…}

}

After:

public class A<T,E> {
public void foo(Collection<T> c) {…}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 5: Is This Compatible?

Before:

public class A {
public void foo(Collection<Number> c) {…}

}

After:

public class A<T extends Number> {
public void foo(Collection<T> c) {…}

}

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 6: What does this print?

static class A<T extends A<T>> {
public T ping() {

return (T) this;
}

}
static class B extends A {

public B pong() {
return this;

}
}
public static void main(String... args) {

System.out.println(new
B().ping().pong().getClass().getSimpleName());

}

A) A
B) B
C) Compile error
D) ClassCastException

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Generics Quiz 7: What does this print?

public class Doit {
public static class A<T> {

T val = (T)new Object();
}
public static void main(String... arguments) {

A<String> a = new A<String>();
 if (a.val != null)

System.out.println(a.val);
}

}

A) null
B) java.lang.Object@1a2b4c1d
C) Compile error
D) ClassCastException

/* © Copyright 2007 IBM Corp. All rights reserved. This source code is made available under the terms of the Eclipse Public License, v1.0. */

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Legal Notices

 IBM and Rational are registered trademarks of International Business
Corp. in the United States and other countries

 Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both

 Other company, product, or service names may be trademarks or
service marks of others

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

END

 Questions or Comments?

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

BACKUP SLIDES

Eclipse APIs and Java 5 © Copyright 2007 IBM Corp.; made available under Creative Commons Att. Nc Nd 2.5 license

Compatibility Quiz Material

 Collection -> Collection<E>
 Map<K> -> Map<K,V>
 Collection<E> -> Collection
 foo(List<String> list) -> foo(List<Object> list)
 void containsAll(Collection<E> c) -> void containsAll(Collection<?> c)

Compatible for callers
 void containsAll(Collection<Object> c)

 -> void containsAll(Collection<?> c)
Compatible for callers

 double sum(Collection<Integer> c)
 -> double sum(Collection<? extends Number> c)
compatible for callers

	Tutorial: Eclipse APIs and Java 5 Boris Bokowski, John Arthorne, Jim des Rivières IBM Rational Software, Ottawa Lab
	Tutorial schedule (provisional)
	APIs and Java 5
	Language features added in Java 5
	Language Compatibility
	What would we like people to learn
	Designing APIs == making laws
	Recap: API Design
	API specifications
	API specs
	Lessons learned
	References
	Appropriate level of specification detail
	API Contract language
	Slide 15
	Slide 16
	Specs for Subclassers
	Compatibility
	Slide 19
	Contract compatibility
	Slide 21
	Binary compatibility lessons
	Evolving APIs
	Techniques for enabling API evolution
	Autoboxing, Variable Arity
	Auto-boxing
	Variable arity methods
	Introducing variable arity methods
	Evolving variable arity methods
	Enumerations
	Enums
	Evolving enums
	Annotations
	Slide 34
	Slide 35
	Evolving annotation types
	Evolving annotations
	Generic Types
	Generic Types
	Type Bounds
	Wildcard types
	Slide 42
	Evolving Generified API
	Evolving APIs that use Generic Types
	Generification
	Erasures
	Converting Raw to Parameterized Types
	Introducing Type Variables
	Arrays and Generic Types Are Different
	Array Types in API and Generification
	Generic Methods
	Generic Methods and Type Bounds
	Hidden casts
	More Resources about Java 5 and APIs
	API Tools
	API Comparison
	Uses for API Comparison
	More information on API tools
	Autobox/Arity Quiz 1: Is this compatible?
	Autobox/Arity Quiz 2: What does it print?
	Generics Quiz 1: Is This Compatible?
	Generics Quiz 2: Is This Compatible?
	Generics Quiz 3: Is This Compatible?
	Generics Quiz 4: Is This Compatible?
	Generics Quiz 5: Is This Compatible?
	Generics Quiz 6: What does this print?
	Generics Quiz 7: What does this print?
	Legal Notices
	END
	BACKUP SLIDES
	Compatibility Quiz Material

