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NTRODUCTION 
The standard UML specification provides a few hints to represent graphical 

elements. However, it only focuses on the general representation of these 

elements (e.g. A Class is a rectangle, with optional compartments for its 

attributes and operations, and its name should be displayed in italic if the Class 

is abstract). 

Nevertheless, for a better readability (and even esthetic), the user has a certain freedom 

for changing some graphical properties, such as an Element’s color. Until now, in 

Papyrus, this customization could be done by two complement means: 

- Appearance tab (Properties view): change the appearance of the selected 

element(s) 

- Preferences page: change the initial appearance of all newly created element(s) 

While this allows defining a custom theme for our diagrams, this mechanism suffers 

from a few limitations: 

- It is not possible to create different categories of appearance for the same 

semantic Element (e.g. “Blue Class” and “Green class”). We’d have to create 

“Blue classes” and change some of them to “Green” manually. 

- If we wanted to change the current theme, we’d have either to change each 

object’s appearance one by one, or to write an automatic transformation, which 

could be really complicated. 

- It is not easy to export a Theme, as they are stored in the Eclipse preferences. It 

is almost impossible to ship a ready-to-use distribution of Papyrus with a custom 

theme. 

The release of Eclipse 4 Juno this summer gave us the opportunity to rely on their CSS 

Engine to support Cascading StyleSheets in Papyrus diagrams. Just like in web pages, 

the CSS format is used to separate the contents of our diagrams from their appearance. 

It becomes possible to change the appearance of a whole diagram, or even a set of 

diagrams, independently of the number of represented elements, in a single click.  
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NSTALLATION 
The CSS Stylesheet support is not shipped in the base installation of Papyrus. 

However, it can be easily installed from the Papyrus discovery site. Select 

“Help”, “Install Papyrus Additional Components”, and check “Diagram 

Stylesheets”. 

 

Figure 1 - Installing Stylesheets 

Press finish, restart Eclipse, and that’s it. 
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Your diagrams should now look like the following: 

 

Figure 2 - Without theme 

 

Figure 3 - With CSS Support 

Note: If you opened a diagram which has been created without the CSS Support, it may 

still have a custom appearance, e.g. without Element icons. This might or might not be a 

problem, as this may conflict with the CSS Theme. You can reset all custom appearances 

by pressing the “Default style” button in the Style tab of the Diagram’s properties view.  
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SING STYLESHEETS 
To define a custom style, the first step is to create a Stylesheet. The 

creation is really straightforward: a Stylesheet is a text file with the .css 

extension. You can create such a file using the “New > File” wizard. 

Then, you need to associate this file with your diagram. Select a diagram, and then go to 

the Style tab of the properties view, and add a new “Diagram style sheet”. There isn’t 

currently any style sheet available from the diagram, so you need to create a new 

“Stylesheet reference”. 

 

Figure 4 - Import Style sheet 

Browse your workspace to find your css file, and then validate. Your stylesheet is now 

associated to your diagram. 
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DITING A STYLESHEET 
Papyrus Stylesheets are stored in text files with the “.css” extension (e.g. 

stylesheet.css). 

Manually: The CSS Syntax 

Syntax elements 

The CSS syntax is a list of rules, which associates selectors and properties. 

- The selector: describes the condition which has to be fulfilled for a rule to be 

applied 

- The properties: describes the appearance of the elements matching the rule 

Eclipse implements the 2.1 version of the CSS syntax. The available selectors are: 

- *: matches all elements 

- ElementType: Matches the elements of type “ElementType” 

- .myStyle: Matches the elements on which the style “myStyle” is applied 

- #myID: Matches the element with the CSS ID “myID”. The CSS ID must be 

unique among a diagram. To avoid confusing the users, and because this selector 

doesn’t make much sense on diagrams, this selector has been disabled in 

Papyrus. 

- [property=value]: Matches the elements which have a property “property” with 

the value “value”. 

The pseudo-selectors are currently not used in Papyrus. 

These selectors can be combined using one of the following combinators: 

- Selector1 Selector2: Descendant selector. Matches the elements which match 

Selector2 and are contained in an element matching Selector1 

- Selector1 > Selector2: Child selector. Matches the elements which match 

Selector2 and are directly contained in an element matching Selector2 

- Selector1 + Selector2: Sibling selector. Matches the elements which match 

Selector2 and are immediately preceded by a Sibling element which match 

Selector1. 

- Selector1, Selector2: Alternative selector. Matches elements matching either 

Selector1 or Selector2 

A rule also contains a list of properties, in the form property:value; 

In Papyrus, the selectors apply to semantic elements and properties (i.e. UML 

Elements), and the properties apply to the appearance properties (i.e. GMF Appearance 

properties). A few custom properties (Independent from the GMF Appearance model) are 

also available. 
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Examples 

* { 
 fillColor: red; 
 fontColor: #0000FF; 
} 

Meaning: all elements should be filled in red, and all texts should be blue (RGB Color 

#0000FF) 

Class { 
 gradient: white vertical; 
 elementIcon:true; 
 shadow:true; 
 qualifiedNameDepth:full; 
} 

 

Meaning: this style applies to all UML Classes. They will have a white and vertical 

gradient. The Element icon and the shadow will be displayed, as well as their fully 

qualified name. 

ClassDiagram Class>Property { 
 fontColor: red; 
} 

Meaning: The properties directly contained in a Class, which is drawn on a 

ClassDiagram (Either as a root element of the diagram, or in a Package) will be 

displayed in red. 

With the Papyrus tooling. 

Papyrus also provides a tool to generate a CSS Rule from an element displayed in the 

diagram. You need to create a stylesheet before you can edit it with the Create style tool, 

and it is recommended (Although not required) to associate this style sheet with your 

current diagram. 

To use it, create an element and change its appearance via the “Appearance” tab of the 

properties view. Then, right click on the element, and select “Format”, “Create a new 

style”. The dialog box contains three tabs: 

- Conditions: The conditions under which the style will be applied (Corresponds to 

the “CSS Selectors”) 

- Properties: The graphical properties to export to the style sheet 

- Stylesheet: The style sheet to edit 
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Figure 5 - Create style dialog 

In the Stylesheet tab, select your stylesheet: 

- If you have already associated the style sheet to your diagram, you can use the 

“Applies stylesheet” button. 

- Otherwise, you need to select “External stylesheet”, and browse your workspace 

to retrieve the file. Note that in this case, as the edited stylesheet might not be 

applied to your diagram, you won’t be able to see the changes in the current 

diagram. 

In the conditions tab, there are three groups of options: 

- The kind of element to which the style applies (e.g. the style will be applied to 

“Class” elements, or to any kind of elements). It can be restricted to a specific 

diagram. 

- You can add restrictions on the current value(s) of the element (e.g. the style will 

be applied to concrete classes). Only primitive type and enumerated attributes 

are supported here. 

- The style name is used to apply a style manually. 

The properties tab contains all the graphical properties that can be applied to the 

selected object. It is used to choose the graphical properties to apply on the objects 

matching the conditions. 
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ANIPULATING STYLES 
The computed styles will be applied automatically. For example, if 

your stylesheet tells that all your abstract classes must be red, the 

classes color will change automatically according to the value of their 

“isAbstract” property. 

In some other cases, however, you may want to specify manually the style that should be 

applied to your objects. For this case, you can use the “Applied styles” property in the 

“Style” tab of the properties view. 

.myOwnStyle { 
 fillColor: #A6C198; 
 gradient:white horizontal; 
} 
 

 

Once a style is applied on an object, the object will be refreshed each time the style 

definition changes. For example, changing the style “myOwnStyle” to the following 

declaration: 

.myOwnStyle { 
  fillColor: #E3A49C; 
  gradient: #FFFFFF horizontal; 
} 

 

All the green classes will become red.  
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EPLOYING A CSS THEME 
Once you have defined your style sheet, you may want to export it to 

create a new theme (Or to extend an existing theme). To do so, Papyrus 

provides an extension point: org.eclipse.papyrus.infra.gmfdiag.css.theme.  

This extension point needs two entries: a Theme Definition (ID, Label and icon of the 

Theme), and Theme contributions (A set of style sheets which will compose the Theme). 

More than one plug-in can contribute to the same Theme, which makes it possible to 

extend a Theme. 

The Theme can be modified from the Papyrus preferences page “CSS Theme”. Only one 

theme can be activated at the same time. A Theme applies to all Papyrus Diagrams from 

the workspace. 
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IMITATIONS & ISSUES 
There are currently a few identified limitations to the Stylesheet 

framework, as well as a few minor bugs. 

Selectors 

Currently, it is not possible to handle complex selectors in the Papyrus stylesheets.  

Selector inheritance 

It is not possible to apply a style to all descendant of a given Metaclass. For example, a 

Behavior will not inherit styles from a Class, although a Behavior actually is a Class. 

Profile/Stereotype support 

It is not possible to restrict a selector to an applied stereotype. There is currently no way 

to specify that a style should only apply to classes on which the SysML::Blocks::Block 

stereotype is applied. 

Labels and compartments 

It is currently not possible to customize labels from the Stylesheets (e.g. show/hide type 

for all properties). It is not possible to show/hide or collapse compartments either (e.g. 

hide the nested classifier compartment in a Class). 

Events support 

Selectors based on user events are not yet implemented. For example, the CSS 

specification defines the :hover pseudo-selector to represent an element hovered by the 

mouse, which is not yet supported in Papyrus. 

Stylesheets 

Model stylesheets 

Currently, stylesheets can only be applied to a Diagram. It is not yet possible to apply a 

stylesheet on a Model. 

Workspace stylesheets 

The only way to define a workspace theme is through the use of a plug-in which defines 

a new extension. It is not yet possible to create a new local theme from the preferences 

page. 

Bugs 

The following bugs have been identified: 

L 
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372322: [Diagram - Refresh] The refresh action is not correctly binded to F5 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=372322 

386574: [CSS - Refresh] Only the active diagram is refresh when the stylesheets change 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=386574 

390534: [CSS - Appearance] Undoing graphical changes results in unexpected behavior 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=390534 
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